Фундамент ленточный 6 на 6: сколько стоит, цена и особенности создания

Содержание

Фундамент «под ключ»! Фундамент для дома цена! Строительство фундамента! Ленточный фундамент! Монолитный фундамент! Строительство коттеджей!

Выполним работы по изготовлению любых видов фундамента: ленточный, буронабивные сваи, ростверк, монолитная плита, цокольный этаж..

Строим из кирпича, кремнегранита, пено\газобетона, бетоноблока, арболита, бруса, каркасное строительство.

Исправляем некачественные и разрушенные фундаменты. «Поднимаем» садовые домики на новые фундаменты.

Бетонные работы: фундаменты, подпорные стены, перекрытия, стены..

Работаем в Красноярске, пригородах, рассмотрим варианты удалённых объектов.

Впечатляющий опыт реализации в строительстве сложных архитектурных проектов, успели даже поучаствовать в возведении православного храма  

ЗВОНИТЕ: 296-63-02 ; 8-905-976-63-02

НАША ПОЧТА: 2966302@mail. ru

ПРИЕЗЖАЙТЕ: УЛ. 60 ЛЕТ ОКТЯБРЯ, 105, оф. 3-04В (только, пожалуйста, предварительно созвонитесь и договоритесь о встрече)

Вопросы можете оставлять здесь, на аукционе — стараюсь отвечать оперативно, оставляйте в личных сообщениях свои контакты — мы вам перезвоним либо на электронную почту (она указана выше по тексту).

А еще лучше — приезжайте к нам в офис, поговорим поплотнее и более конструктивно.

Мы выполняем:

  • строительство из: бруса, кирпича, газобетона, бетоноблока, шлакоблока, теплоблока, арболита, кремнегранита
  • каркасное строительство
  • монолитное строительство
  • изготовление фундаментов: ленточный, монолитная плита, УШП, буронабивные сваи, столбчатый)

Винтовыми сваями не занимаемся.

  • исправление некачественных фундаментов, поднятие дачных домиков на новые фундаменты
  • строим цокольные этажи ; гаражи ; склады, ангары, все виды производственных и хозяйственных построек
  • фасадные работы: утепление фасадов, сайдинг, блок-хаус, штукатурка , покраска фасадов
  • исправление обветшалых, испорченных и некачественно сделанных фасадов
  • кровельные работы (изготовление крыши любой конфигурации): плоская, односкатная, двускатная, четырёхскатная (вальмовая), полувальмовая двускатная и четырёхскатная, многощипцовая, мансардная. ..
  • исправление некачественной крыши, утепление, софиты, устранение протечек и промерзания
  • установка заборов и ограждений:кирпичные сплошные, кирпичные столбы, из профлиста, деревянные, секционные, сетчатые, бетонные
  • укладка брусчатки и тротуарных плит
  • бетонные работы: монолиты, фундаменты, подпорные стены, перекрытия, стяжки, колонны, стены и пр.
  • сантехнические работы
  • вентиляционные работы
  • электрические работы
  • песчано-цементная штукатурка стен, штукатурка стен смесями
  • кладка межкомнатных перегородок из кирпича, блоков или монтаж из гипсокартона
  • снос старых строений с вывозом мусора
  • демонтажные работы

Из последних наших работ:

Внутренняя отсыпка в ростверк щебнем:

Подготовка с утеплением под стяжку:

Залили стяжку:

Возвели первый этаж коттеджа из газобетона:

Монтируем плиты перекрытий:

Вот и второй этаж дома из газобетона:

Блокхаус на фасад дачного домика:

Вяжем арматурный пространственный каркас для очередной подпорной стены:

Возможна работа без участия заказчика и его представителей с ежедневным фото-отчётом о проделанной работе. Такие заказы мы выполняли не единожды, заказчики находились как в других городах, так и за пределами страны, включая иностранных граждан.

Друзья, хочу ещё раз уточнить, что композитная арматура не должна использоваться в фундаментах и вообще в несущих конструкциях. Только металлическая арматура конкретных маркировок. Равно как и кладочная сетка не может быть использована в фундаментах — это вообще не вариант.

Так же не нужно слушать малограмотных строителей по поводу глубины залегания буронабивных свай. Свая должна быть ниже уровня промерзания.

Армирование свай, ленточного фундамента, монолитной плиты, прочих монолитов тоже обязано быть по правилам. И правила эти не рушимы. Если вам говорят, что у вас якобы «лёгкий» дом и армирование можно сделать, так сказать, пореже, то не рискуйте с такими строителями. Фундамент не может и не должен делаться «на глаз» или по принципу «сосед так сделал», под каждый конкретный дом нужен кокретный фундамент.

Заливайте фундаменты под капитальные коттеджи только сертифицированным бетоном. Ну, нельзя заливать буронабивные сваи, ростверк и плиту в этом случае, замешивая на месте бетон бетономешалкой — и всё тут. Другое дело, если надо исправить фундамент дачного домика или под какое-нибудь некапитальное дачное сооружение.

8 ошибок обустройства ленточного фундамента — Реальное время

И два лайфхака, которые облегчат строительство

Готовя и строя ленточный фундамент, который мы подробно рассмотрели в предыдущей статье, можно по незнанию совершить ошибку. Список таких ошибок может быть сколь угодно велик, но самые распространенные — одни и те же. Перечислим их здесь. Зная их основной список, вы сможете проконтролировать создание фундамента под ваш дом. Важно, что профессиональный проектировщик и строительная фирма вряд ли допустит подобный промах. Так что эта статья — скорее для тех, кто на свой страх и риск полагается на советы соседей и на частную строительную бригаду.

Отсутствие гидроизоляции

Гидроизоляция — это один из важнейших пунктов обустройства не только ленточного, но и любого основания под дом. Если ее не сделать, есть риск разрушения конструкций самого фундамента. Кроме того, от проникновения влаги нужно защитить подвал или цокольный этаж (если они есть).

Ленточный монолитный фундамент гидроизолируется по всей верхней поверхности — там, где соприкасается с почвой. Есть несколько популярных способов гидроизоляции. Этому будет посвящена отдельная статья проекта, здесь лишь кратко перечислим их.

  • Напыление (гидроизоляционный состав наносится из пульверизаторного оборудования на поверхность фундаментной ленты). Этот состав хорошо заполняет поры материала, но такой способ дороже большинства остальных.
  • Обмазка битумной мастикой — этот способ можно назвать классическим. Мастикой обмазывается весь фундамент, включая его подземную часть.
  • Рубероид или другие рулонные материалы. Этот способ дополняет предыдущий (рулонный материал приклеивается к битумной мастике). Кроме того, верхняя горизонтальная плоскость фундамента тоже может быть гидроизолирована парой слоев рубероида.
  • Грунтовка для бетона глубокого проникновения.
Фото: svoimirukami.lesstroy.net

Пренебрежение этапом исследования грунта

Геологические изыскания регламентируются отдельным сводом правил и обязательно должны проводиться на участке. Причем специалисты советуют заказывать не экспресс-геологию, а полный анализ грунта на участке. Это исследование определит все особенности строения грунта. Распространенная ошибка — поинтересоваться результатами геологических изысканий у соседа и решить, что на вашем участке точно так же. Но экономия на этой процедуре впоследствии может привести к гораздо более серьезным потерям. Например, под домом может залегать водяная или торфяная линза, и на ее наличие абсолютно ничто не будет намекать, если не провести исследование непосредственно в том месте, где планируется поставить дом.

Результаты «геологии» четко покажут, какой тип фундамента подойдет для вашего дома, насколько глубокий дренаж надо делать, как высоко подходят грунтовые воды (а значит, как работать с гидроизоляцией подвала) — без этого исследования вы сильно рискуете всей устойчивостью своего будущего дома.

Изменение проекта дома после обустройства фундамента

Особенность ленточного фундамента заключается в том, что он проходит под всеми несущими конструкциями дома и принимает на себя все основные нагрузки. Соответственно, если вы сначала залили фундамент, а потом почесали в затылке — и решили, что неплохо было бы построить дополнительный этаж — рассчитанные заранее нагрузки серьезно изменятся. А значит, изменились бы и многие параметры фундамента, не будь он уже залит.

Нельзя «на ходу» изменять и материал, из которого вы хотите строить дом. Вернее, если фундамент рассчитан под кирпич, а вы решили строить, скажем, «каркасник» — беды не будет, просто на фундамент не будет давить та масса, которая была рассчитана по проекту. А вот если наоборот — это гораздо хуже, потому что фундамент может с таким сюрпризом и не справиться.

Фото: svoimirukami.lesstroy.net

Неверный расчет самого фундамента

Расчет массы дома, которая будет давить на фундамент, а исходя из этого — расчет материалов, глубины, ширины конструкции, делается по соответствующему своду правил. Если расчет и проект фундамента делает для вас специалист, то этот пункт проконтролировать, пожалуй, будет сложнее всего, поскольку оперирование формулами и коэффициентами требует, во-первых, понимания основ, на которых зиждятся эти расчеты, а во-вторых — определенной сноровки.

В интернете есть несколько разнообразных калькуляторов расчета фундамента, рассчитанных на самостоятельную стройку. Загрузив в них определенные параметры дома, пользователь может получить раскладку по материалам и геометрическим параметрам ленточного фундамента. Однако нужно понимать, что эти расчеты — приблизительные, и в этих делах ошибка может привести к фатальным последствиям. Поэтому для расчета и проектирования фундамента все-таки рекомендуется привлекать специалистов.

Отсутствие фундамента под несущими стенами

Бывает, что ленточный фундамент решают «протягивать» только под основным контуром дома. И это очень серьезная ошибка. Дело в том, что на внутренние несущие стены давит та же нагрузка, что и на внешние. Поэтому если вы не хотите, чтобы дом просел в процессе эксплуатации — не стоит экономить на несущих стенах.

Экономия на материалах и силах — вообще один из корней зла, из-за которых и денег, и сил, и времени впоследствии уходит в разы больше. Между тем ошибки в обустройстве фундамента исправить сложнее всего. В ряде случаев это вообще не представляется возможным.

Фото: svoimirukami.lesstroy.net

Экономия на бетоне

Если вы собираетесь строить курятник или летнюю кухню на ленточном фундаменте, можно купить бетон недорогих марок — М150—М200. Но для капитального дома они не подходят и не обеспечат необходимой прочности фундамента. Для таких строений обязательно нужен бетон не меньше М250, а лучше М300. Хорошо покупать заводской бетон, особенно если завод есть поблизости. В некоторых случаях, заказывая товарный бетон, вы заодно сможете арендовать бетономешалку и насос для заливки фундамента.

И еще один важный момент: стоит насторожиться, если бетон предлагают существенно дешевле, чем по рынку. Это чаще всего означает, что либо вас собираются «нагреть» в объемах, либо бетон продадут ненадлежащего качества.

Фундамент — одна из важнейших частей вашего дома, качество которого впоследствии определит качество жизни и продолжительность существования постройки. Поэтому экономить на нем специалисты не советуют.

Неправильный подбор арматуры и ее сварка

Арматура обязательно потребуется, чтобы усилить ленточный фундамент. В целях все той же пагубной экономии многие решают, что тонкой арматуры или даже толстой металлической проволоки вполне достаточно, чтобы сделать качественный, крепкий, сильный фундамент. Однако это далеко не так.

Фото: svoimirukami.lesstroy.net

Итак, ленточный фундамент требует ребристой арматуры диаметром от 8 до 12 мм, ни в коем случае не меньше. Из такой арматуры связывается каркас в виде решетки с ячейкой от 50х50 до 250х250 мм (с шагом 50 мм), в зависимости от масштабов всей конструкции. Мы не зря употребили слово «связывается» — сваривать арматурный каркас не рекомендуется, поскольку металл склонен растягиваться, а бетон — сжиматься. Поэтому лучше, если детали арматуры между собой связаны металлической проволокой, это снизит давление на металл. Под углы фундамента нужно укладывать только цельные куски арматуры: здесь не должно быть узлов связывания, поэтому арматура здесь сгибается под необходимым углом.

Неправильная подготовка траншеи

Пожалуй, этот пункт контроля проще всего обеспечить, даже ничего не понимая в строительстве. Во-первых, нужно, чтобы траншея была выкопана везде на одинаковую глубину. Поэтому, кстати, начинать выкапывать ее нужно с самого нижнего участка площадки — чтобы фундамент точно «сел» на нужную расчетную глубину. Во-вторых, надо обязательно контролировать, чтобы стены траншеи были ровными (кривизна стен траншеи потом, после заливки бетона, приведет к неравномерности и к неправильности распределения нагрузки по фундаменту). Если почва неплотная и стены траншеи осыпаются — их нужно укреплять сразу же в процессе рытья. Еще одна популярная ошибка — начать заливку «подошвы» в траншею, не обустроив предварительно песчаную подушку, которая выполняет функцию дренажа и механической амортизации. И, наконец, нельзя начинать копать траншею под фундамент в промерзшем грунте (вряд ли вам этого очень хочется, но на всякий случай предупредим) — после разморозки у такого грунта (а значит, и у траншеи) могут получиться совсем другие линейные характеристики.

Фото: svoimirukami.lesstroy.net

Два лайфхака: отверстия под коммуникации и снятый грунт

Есть рекомендации, которые не являются обязательными, но могут серьезно помочь будущему домовладельцу.

  • Во-первых, если у вас есть готовый проект дома, то вы уже точно будете знать, как в ваш дом будут заходить инженерные коммуникации — газ, вода, как будет выходить канализация.
    Поэтому можно на этапе заложения фундамента определить, где коммуникационные трубы будут проходить под домом. И если фундамент ленточный, да еще и монолитный — лучше всего будет предусмотреть отверстия под них заранее. Иначе впоследствии придется потратить много сил и времени на то, чтобы «продолбить» сплошную бетонную стену. Поэтому в ленточном фундаменте в опалубке заранее можно проделать отверстия, а в них сунуть куски трубы нужного диаметра. Потом их замените теми самыми трубами, коммуникационными.
  • И во-вторых, многие строительные бригады советуют удалять часть грунта из-под будущего дома. Мы намеренно сейчас не говорим о тех случаях, когда грунт в принципе не подходит под выбранный тип фундамента, его вынимают на глубину от полуметра и засыпают подходящим. Мы — о том случае, когда грунт нас вполне устраивает. Но и в этом случае есть смысл в том, чтобы убрать верхние 10—15 см — большую часть плодородного слоя почвы, и только после этого начинать разметку под фундамент. Это выполняет две задачи: исключить рост растений (вряд ли вы мечтаете о травке в подвале) и выровнять незаметные, на первый взгляд, неровности строительной площадки.
    И кстати, вынутая почва может быть использована для наполнения вазонов, или парников, обустройства альпинариев или других интересных клумб на участке — ландшафтный дизайнер вряд ли проигнорирует такой внезапно свалившийся на голову подарок.

Людмила Губаева

Недвижимость Татарстан

Как рассчитать количество арматуры для заливки фундамента?

Казалось бы, всем понятно, что прочность и долговечность фундамента — это основа будущего дома. Ошибки, допущенные на этапе проектирования, армирования и заливки фундамента, в дальнейшем исправить практически невозможно. Поэтому во избежание трещин в фундаменте под действием нагрузок и движения грунта необходимо правильно рассчитать количество бетона, который будет работать на сжатие, а также количество и диаметр арматуры, которая будет работать на растяжение. В комплексе правильный расчет арматуры и четкое выполнение работ согласно проекту обеспечит вашему дому надежный фундамент на долгие годы.

Фундаменты бывают разные, и расчет арматуры для каждого из них проводится по отдельной схеме:

  1. Ленточный фундамент — наиболее популярный вид фундамента для частных домов.
  2. Свайный буронабивной — используется на слабом грунте при глубине промерзания до 1,5 метров.
  3. Свайно-ростверковый — это сочетание свай и железобетонной ленты, которое обходится дешевле ленточного фундамента, но при этом отлично себя показывает на склонах и при подвижной почве.
  4. Столбчатый фундамент — применим для легких домов и построек.
  5. Плитный фундамент – самый прожорливый в плане использования бетона и арматуры фундамент, который очень дорого обходится в частном домостроении.

Чтобы материал был более полезен для тех, кто пытается произвести расчет количества и диаметра арматуры самостоятельно, мы проведем расчет на примере ленточного фундамента под дачный дом 6 на 8 метров, а потом сравним расход арматуры на этот же проект с плитным и столбчатым фундаментом.


Металлобаза «Аксвил» продает оптом и в розницу:

• АРМАТУРУ РИФЛЕНУЮ А3 • ВЯЗАЛЬНУЮ ПРОВОЛОКУ • СВАРНУЮ СЕТКУ

Первый поставщик проката. Низкие оптовые и розничные цены. Консультация по выбору. Оформление заказа на сайте и в офисе. Нарезка в размер. Доставка по Беларуси, в том числе, и в выходные дни.

 

Схемы армирования ленточного фундамента

Для расчета количества и диаметра арматуры в первую очередь нужно определиться со схемой армирования фундамента. В зависимости от нагрузки на фундамент и пучинистости грунта для строительства частных домов чаще всего применяют армирование:

  1. Четырьмя стержнями арматуры;
  2. Шестью стержнями арматуры;
  3. Восемью стержнями арматуры.

Как же определиться со схемой армирования, чтобы она была достаточно надежной, но в то же время не излишне затратной?

Согласно правилам по проектированию и строительству (СП 52-101-2003), максимальное расстояние между продольными стержнями арматуры должно быть не более 40 см. А также арматурные стержни должны отстоять от края опалубки, верха и низа мелкозаглубленного ленточного фундамента на 5-7 см.

 

Исходя из этих данных, если проектом предусмотрен ленточный фундамент шириной 50 см, то лучше всего подойдет армирование в четыре стержня:

5+40+5=50 см.

При более широком фундаменте будет целесообразно использовать схему армирования 6-8 стержнями.

Расчет диаметра продольной арматуры

От диаметра арматуры зависит прочность всей конструкции: чем толще арматура, тем прочнее. При выборе ее толщины стоит ориентироваться на вес дома и тип грунта. Если грунт плотный, то под нагрузкой от дома он будет меньше деформироваться, а значит, от плиты требуется меньшая устойчивость.

Второй фактор — это вес здания. Если вы собираетесь построить легкий деревянный дом или гараж, то устойчивость такому дому может обеспечить и арматура диаметром 10 мм. Но если это капитальное строение в несколько этажей, то может потребоваться арматура 14-16 мм. Это все учитывается на этапе разработки проекта и отражается на глубине и ширине фундамента. Далее стоит полагаться на строительные нормы, которые зависят от ширины и высоты фундамента.

Согласно правилам по проектированию и строительству (СНиП 52-01-2003), минимальная площадь сечения продольной арматуры в ленточном фундаменте должна составлять 0,1% от общего поперечного сечения железобетонной ленты.

Для того, чтобы посчитать площадь поперечного сечения фундамента, нужно его ширину умножить на высоту. Допустим, высота нашего фундамента 80 см. Тогда при ширине 50 см поперечное сечение даст:

80*50=4000 см2

Тогда суммарная площадь поперечного сечения арматуры получится:

4000*0,1%=4 см2

При схеме армирования в 4 стержня и известной площади суммарного поперечного сечения арматуры в ленточном фундаменте мы можем определить диаметр продольной арматуры по таблице:

Казалось бы, при площади поперечного сечения арматуры в 4 см2 и 4 стержнях можно сделать вывод, что вам хватит и десятки. Но в таблице видно, что 4 стержня диаметром 10 мм имеют площадь поперечного сечения 3,14 см2. Не попадитесь на эту удочку и не допустите глупых математических ошибок при расчете фундамента вашего дома.

Выбрав столбец с 4 стержнями арматуры, нам нужно найти значение, наиболее приближенное к 4 см2, но не менее того. Поэтому нам подойдет значение 4,52 см2 и, соответственно, арматура 12 мм в диаметре.

Согласно таблице, при 4 стержнях площадь их поперечного сечения будет 4,52 см2 при диаметре арматуры 12 мм. Это наиболее ходовой тип арматуры, применяемый для армирования ленточных фундаментов малоэтажных строений.

Рассчитать диаметр арматуры при схеме армирования шестью или восемью стержнями можно аналогичным образом, найдя необходимой значение в соответствующей колонке.

Также правилами регламентируется минимальный диаметр арматуры в зависимости от ее длины: При длине фундамента до 3 м этот минимум составляет 10 мм, а при длине от 3 м — 12 мм.

Также отметим, что продольная арматура железобетонной ленты должна быть одинакового диаметра. Если же вы строите сарай или баню из остатков арматуры, то стержни большего диаметра должны оказаться в нижней части армокаркаса.

Расчет диаметра поперечной и вертикальной арматуры

Продольная арматура для ленточного фундамента должна быть рифленой, тогда как поперечная и вертикальная арматура может быть гладкой.

Рассчитать диаметр поперечной и вертикальной арматуры можно без сложных вычислений. Стоит ориентироваться на данные таблицы:

В нашем случае при высоте фундамента 80 см для поперечной и вертикальной арматуры можно брать гладкие стержни 6 мм в диаметре. Если же вы строите, скажем, двухэтажный коттедж, то для поперечной и вертикальной арматуры будет достаточно прутьев диаметром 8 мм.

Расчет количества продольной арматуры

Очень часто при возведении фундамента в разгар стройки становится понятно, что арматуры не хватает. Или же наоборот: после приемки работ оказывается, что несколько десятков погонных метров арматуры осталось, а ведь она не копейки стоит. А потом еще придется думать, куда ее пристроить. Поэтому так важно на этапе проектирования и планирования точно рассчитать количество необходимой арматуры для заливки фундамента.

К примеру, наш дачный дом имеет вот такую схему фундамента:

При фундаменте 6*8 нам потребуется посчитать периметр основания и добавить к нему длину несущих стен, под которыми также будет возводится фундамент. В нашем случае периметр равен:

 6+8+6+8=28 м

К периметру прибавим еще длину несущей стены:

28+6=34 м

Полученную цифру нам необходимо умножить на количество стержней в схеме армирования, в нашем случае на 4:

34*4=136 м

При расчете арматуры необходимо помнить, что обычно она поставляется в стержнях длиной 3-6 метров. Далеко не каждый поставщик металлопроката имеет возможность поставлять арматуру длиной 0,5 до 11,7 метров. Чаще всего на месте арматуру приходится резать в размер и стыковать внахлест, как показано на схеме.

При стыковке арматуры нужно помнить, что соседние прутья должны соединяться не строго друг над другом. Расстояние между соседними соединениями стержней арматуры должно составлять 1,5 длины нахлеста, но не менее 61 см.

Нахлест рассчитывается исходя из диаметра арматуры, умноженного на 30. В нашем случае это:

12*30=360 мм (36 см)

Чтобы добавить припуски с учетом нахлеста, можно:

  1. Посчитать количество стыков;
  2. Прибавить 10-15% к общей сумме длины арматуры.

Мы воспользуемся вторым способом и прибавим к нашей цифре 10%:

136+136*0,1=149,6 м

Учитываем то, что в угловой части фундамента арматуру придется изгибать  с загибом длиной 0,5 м. Итого на каждый угол придется 4 м таких выпусков или 20 м всего на весь фундамент. Прибавляем это количество к метражу ребристой арматуры:

149,6+20=169,6 м

Итого, для ленточного фундамента дачного дома 6*8 нам потребуется около 170 метров рифленой арматуры диаметром 12 мм.

Расчет количества вертикальной и поперечной арматуры

После того, как мы определились, сколько нам нужно купить рифленой арматуры 12 мм, нам нужно рассчитать, сколько потребуется гладкой арматуры диаметром 6 мм.

Взглянем на схему поперечного сечения фундамента:

Периметр каждого прямоугольника, который опоясывает продольную арматуру, в нашем случае составит:

40+70+40+70=220 см (2,2 метра)

Если взглянуть на припуски в местах соединения и учесть, что некоторые строители вертикальную арматуру вбивают в землю для устойчивости армокаркаса, то к этой сумме смело можно прибавлять сантиметров 20.

220+20=240 см (2,4 м)

Теперь нам нужно подсчитать, сколько таких прямоугольников разместится в нашем фундаменте. Это можно сделать двумя способами:

  1. Просто поделив длину нашего периметра и несущих оснований на расстояние между перемычками;
  2. Начертив схему фундамента и подсчитав места связок на чертеже.

Мы попробуем подсчитать количество связывающих колец на плане фундамента. Связки продольной арматуры вертикальными и поперечными прутьями необходимо производить каждые полметра (допустимо расстояние 0,3-0,8 метра). К тому же, на углах у нас разместится по две таких связки.

Сперва посчитаем, сколько таких опоясывающих прямоугольников поместится на стене 8 метров. Как видно из схемы, на восьмиметровой стене уже есть 6 угловых элементов. А если принять во внимание, что такие перемычки необходимо делать через каждые полметра, то на ней необходимо будет разместить еще 12 таких соединений. То же самое на второй восьмиметровой стене.

(6+12)*2=36 штук

Оставшиеся три стены по 5 метров предполагают еще по 9 перемычек:

9*3+36=63 перемычки

Получается, нам нужно длину гладкой арматуры, необходимой для фиксации в неподвижном состоянии продольной арматуры, умножить на количество таких соединений:

2,4*63=151,2 м

Получается, что для фундамента нашего дачного домика нам потребуется примерно 170 метров рифленой арматуры диаметром 12 мм и 150 гладкой арматуры диаметром 6 мм.

Учитывайте также, что в процессе работы часто остается много коротких стержней, непригодных для дальнейшего использования, поэтому к полученной цифре лучше прибавить еще процентов 10.

170+170*0,1=187 метров диаметром 12 мм

151,2+151,2*0,1=166,22 метров диаметром 6 мм

Зачастую поставщики считают количество арматуры не метрами погонными, а тоннами, поэтому на заключительном этапе подсчета вам может потребоваться перевести эти данные из расчета, что вес 1 мп рифленой арматуры 12 мм в диаметре равен 0,89 кг, а гладкой арматуры 6 мм в диаметре — 0,222 кг.

Итого:

187*0,89=166,43 кг

166,22*0,222=39,9 кг

Расчет количества вязальной проволоки

В места пересечения продольных, поперечных и вертикальных прутьев стыки связываются проволокой. Сварка при армировании фундамента крайне нежелательна, так как ухудшает свойства металла в местах соединения и может вызвать трещины при вибрации.

Рассчитать количество вязальной проволоки можно, зная количество стыков и длину проволоки, которая потребуется на каждый стык. Как правило, на каждый стык необходимо 15 см проволоки, сложенной вдвое, итого 30 см (0,3 м).

Ранее мы подсчитали, что в нашем фундаменте будет 63 перемычки, в каждой из которых 4 соединения для связки проволокой.

63*4=252 соединения

Далее нам необходимо количество соединений умножить на длину проволоки, необходимой для  каждого соединения:

252*0,3=75,6 метров

Если вы не имеете навыков вязки арматуры, то лучше вязальной проволоки взять с запасом, так как в неумелых руках даже обожженная проволока часто ломается.

Таким образом, для ленточного фундамента 6*8 с несущей стеной нам потребуется 166,43 кг рифленой арматуры диаметром 6 мм и 40 кг гладкой арматуры, а также 75,6 метров вязальной проволоки.

Расход арматуры в сравнении с плитным и столбчатым фундаментом

А теперь попробуем подсчитать, сколько бы нам понадобилось арматуры, если бы мы выбрали плитный или столбчатый фундамент.

Примерный расчет арматуры для плитного фундамента

Плитный фундамент состоит из двух арматурных сеток, связанных между собой. Для него, как правило, используется рифленая арматура диаметром 12 мм.

Ячейка между продольными и поперечными стержнями арматуры в сетке представляет собой квадрат 20*20 см. При фундаменте 6*8 нам потребуется узнать, сколько прутьев арматуры ляжет вдоль каждой стены с шагом в 20 см.

6/0,2=30 штук по 8 метров

8/0,2=40 штук по 6 метров

Если мы суммируем полученные цифры, мы получим количество прутков на одну сетку.

30*2+40*2=140 штук

В нашем варианте идеально было бы заказать 80 прутков длиной 6 метров и 60 прутков длиной 8 метров. Но чаще всего арматура продается длиной 3-6 метров, поэтому ее придется стыковать внахлест. Допустим, если заказать всю арматуру длиной 6 метров, то к 140 нужно будет прибавить еще 30 на наращивание по длинной стороне, которые потом разрежутся на трехметровые стержни с запасом на связку внахлест.

140+30=170 штук

170*6=1020 м рифленой арматуры

После этого необходимо соединить верхнюю и нижнюю сетку вертикальными стержнями, которых будет ровно столько, сколько пересечений продольной и поперечной арматуры.

30*40=1200 соединений

Допустим, высота плитного фундамента 20 см, то, соблюдая отступ от верха и низа бетонной плиты по 5 см, мы получим расстояние между верхней и нижней сеткой арматуры в 10 см.

1200*0,1=120 метров вертикальной арматуры

Общее количество арматуры для плитного фундамента составит:

1020+120=1122 метра погонных,
что в 6 раз больше, чем для ленточного фундамента.

Вязальной проволоки также нужно в несколько раз больше, так как в каждом месте, где пересекаются два горизонтальных и один вертикальный стержень, получится по два узла проволоки. Таких пересечений у нас 1200 в верхней сетке и столько же в нижней. На каждый узел необходимо в среднем 30 см вязальной обожженной проволоки.

1200*2*0,3=720 метров вязальной проволоки,
что в 10 раз больше, чем для ленточного фундамента на тот же дачный дом.

Примерный расчет арматуры для столбчатого фундамента

В принципе, для легкого дачного дома подойдет и столбчатый фундамент.

Для армирования свай достаточно арматуры диаметром 10 мм. Для вертикальных прутков используется ребристая арматура, горизонтальные прутки применяются только для того, чтобы связать их в единый каркас. Обычно арматурный каркас для столбика состоит из 2-4 прутков, длина которых равна высоте столба. Если диаметр столба превышает 20 см, то надо использовать больше стержней, равномерно распределяя их внутри столба. Для армирования 2-метрового столба диаметром 20 см можно ограничиться четырьмя прутками из арматуры диаметра 10 мм, которые расположены на расстоянии 10 см друг от друга и перевязаны в четырех местах гладкой арматурой диаметром 6 мм.

Предположим, что сваи для фундамента нашего дачного дома будут диаметром 200 мм с интервалом в 1,5 метра.

Делим периметр основания на шаг между сваями и получаем их количество:

34/1,5=22,6

Округляем до 23 столбов.

Свая будет армироваться тремя прутами рифленой арматуры и четырьмя хомутами — из гладкой. Посчитаем, сколько нужно рифленой арматуры на один столбик высотой 1,5 метра с выпуском под ростверк 0,3 м:

(1,5+0,3)*3=5,4 м

На все сваи уйдет:

5,4*23=124,2м рифленой арматуры

Для армокаркаса будет использоваться гладкая арматура, согнутая в окружность. Длина этой окружности с запасом составит:

3,14*0,2=0,628 м

Таких хомутов на одну сваю потребуется, как минимум, 4:

0,628*4=2,512 м

На все 23 столба гладкой арматуры потребуется:

2,512*23=57,776 м ≈58 м

Для расчета вязальной проволоки нам нужно посчитать количество соединений в наших столбах. Три прутка рифленой арматуры соединяются с четырьмя опоясывающими кольцами гладкой арматуры в шести местах:

3*4*0,3=3,6 метра проволоки на каждый столб

3,6*23=82,8 метра проволоки

Итого на свайный фундамент нашего дачного домика 6*8 потребуется около 125 метров погонных рифленой арматуры и 58 м гладкой арматуры, а также 83 м вязальной проволоки, что, конечно, получится экономичнее, чем ленточный фундамент и вполне подойдет для каркасного дачного дома.

Выводы:

 

В общем, совсем не сложно самостоятельно рассчитать количество и диаметр арматуры, необходимой для заливки фундамента. Особенно, при наличии проектно-сметной документации. Используя данный материал, вы без проблем сможете довольно точно рассчитать количество арматуры для заказа, чтобы потом не переплачивать за повторную доставку или излишний металлопрокат, оставшийся после стройки.

Сравнение расчетов количества арматуры для разных видов фундамента показало, что для дачного дома лучше всего подходят столбчатый и ленточный фундамент. А уж какой из них выбрать, будет зависеть от материала стен, кровли, перекрытий и количества этажей дома, пучинистости грунта и личных предпочтений.

 

Металлобаза «Аксвил» предлагает купить рифленую арматуру А3 и гладкую арматуру А1, вязальную проволоку, по безналичному и наличному расчету, оптом и в розницу с доставкой по Беларуси.

Ленточный фундамент для деревянного дома под ключ от Азбуки Леса

Оптимальное решение для сруба — это заложение фундамента на промерзающем слое почвы, но выше уровня подземных вод. Такой вид основания эффективен при строительстве на пучинистых грунтах, при близком залегании грунтовых вод. Это оптимальный вариант по критериям: эффективность/финансовые вложения. Единственный недостаток: невозможно сделать подвал/цокольный этаж.

При проектировании ленточного основания нельзя уменьшать показатели прочности для экономии на материалах, потому что это критическая ошибка. Также нет необходимости завышать технические характеристики, что станет причиной лишних трудовых и финансовых затрат. Наши расчеты являются максимально оптимальными.

Конструкция ленточного фундамента

Главным критерием является тип грунта именно в “пятне застройки”. Точный анализ почвы дают геологические изыскания, стоимость которых в нашей компании составляет 3000 р. — м.п.

Пример расчета показателей ленточного мелкозаглубленного фундамента

Показатели зависят от типа грунта, рельефа и особенностей сруба.

  • Высота (H) всегда рассчитывается индивидуально. В среднем, общая высота при ровном рельефе составляет 1,1 м, при этом 0,6 м приходится на подземную часть. При строительстве на проблемных грунтах или при наличии неровного рельефа этот показатель увеличивается.
  • Ширина (A) связана с диаметром стенового бревна. Если диаметр венцов до 350 мм, толщина ленты — 300 мм, при ø бревна от 350 до 450 мм — 400 мм, ø более 450 мм — 500 мм.
  • Длина ленты (B) и ее конфигурация рассчитывается индивидуально: к длине наружных стен приплюсовывается длина всех внутренних перегородок, террасы, веранды и крыльца.

Кубатура бетонного раствора

Кубатура рассчитывается по формуле: V = A*B*H.

К примеру, длина фундамента равна 100 п.м., для строительства используется бревно диаметром 300 мм, а высота ленты составит 1,1 м.

Таким образом, при подстановке заданных значений в формулу получаем:

V = 100*0,3*1,1 = 33 м3 бетона. К полученному числу нужно добавить коэффициент потерь, равный 15%.

Значит, итоговый объем бетона составит — 33*1,15=37,95 м3.

Расчет объёма траншеи

Под ленточный фундамент вырывают траншею, размеры которой превышают показатели самой ленты: по каждой из сторон по всему периметру прибавляется по 100 мм. В глубину котлован больше ориентировочно на 400 мм, чтобы была возможность сделать песчано-гравийную подушку.

Регулируемые насыпи позволяют корректировать поведение грунта в “пятне застройки”, в частности, это позволяет уменьшить влагонасыщение прилегаемой почвы и снизить степень морозного пучения.

За смену работы экскаваторщик вынимает до 50 м3 земли. Чтобы понять, сколько смен потребуется оплатить, можно подсчитать объем траншеи для фундамента из предыдущего примера.

Используем такую же формулу: V = A*B*H, где

  • V — объем земли.
  • А — ширина, которая равна 0,3+0,2=0,5 м.
  • В — длина, условно равна 100 м.
  • H — глубина, которая равна 1,1+0,5=1,6 м.

Подставляя данные, получаем

V = 0,5*100*1,6 = 80 м3. Значит, потребуется 1,6 смены работы экскаватора.

Армирование

Чтобы усилить бетонную конструкцию делают армирование. Добиться увеличения несущей способности дает правильная схема армирования и выбор достаточного диаметра арматуры.

Основная сила, действующая на фундамент, имеет продольный вектор приложения. Это связано с морозным пучением и неравномерной нагрузкой самого сруба. Поэтому, продольные пруты выбирают ребристыми, чтобы обеспечить максимальную силу сцепления с бетонным раствором. Поперечные прутья могут быть гладкими. Для связывания элементов каркаса используют стальную проволоку диаметром 1,2 мм.

Мелкозаглубленную ленту усиливают ребристыми и гладкими прутами диаметром 6-12 мм. Согласно действующих норм, минимальное количество арматуры составляет от 0,1% от общей площади.

Варианты армирования ленточного фундамента

Для армирования ленточных фундаментов предполагает использование продольной арматуры А-III диаметром 12-14 мм, поперечная арматура может быть меньшего диаметра — от 6 до 10 мм. Типичные схемы армирования и частные случаи представлены в схема внизу.

Расчет параметров армирования (количество и диаметр арматуры)

Рассмотрим на примере. Длина фундамента (l) равна 12000 мм, а ширина (a) – 500 мм. По формуле, площадь сечения (S) = lхa.В нашем случае, это 600000 мм2. Значит, минимальная площадь всей арматуры согласно нормам составляет 0,01% от 600000 и равняется 600 мм2. 

При практических расчетах нормативное значение может увеличиваться или уменьшатся в зависимости от конфигурации фундамента и марки бетона. Отклонение не должно превышать 20%.

Чтобы проверить правильность расчетов, можно воспользоваться табличкой 1.

Таблица 1. Площадь всей арматуры для усиления ленточного фундамента

  Диаметр арматуры, мм       Количество рядов, шт/площадь всей арматуры, мм2              
 1  2  3  4  5  6  7  8  9
6 28,3 57,0 85,0 113,0 141,0 170,0 198,0 226,0 254,0
 8 50,3 101,0 151,0 201,0 251,0 302,0  352,0 402,0 453,0
 10 76,5 157,0 236,0 314,0 393,0 471,0 550,0 628,0 707,0
 12 113,0 226,0 339,0 452,0 565,0 679,0 792,0 905,0 1018,0
 14 154,0
308,0 462,0 616,0 769,0 923,0 1077,0 1123,0 1385,0
 16  201,0 402,0 603,0 804,0 1005,0 1206,0 1407,0 1608,0 1810,0
 18  254,5 509,0 763,0 1018,0 1272,0  1527,0 1781,0 2036,0 2290,0
 20 314,2  628,0 942,0 1256,0  1571,0 1885,0 2199,0  2513,0  2828,0
Продолжим расчеты для нашего фундамента. К примеру, в проекте были заложены 8 рядов арматуры, диаметром 10 мм. По таблице видно, что общая площадь арматуры в этом случае составит 628 мм2. Что не меньше, чем предусмотрено СНИП для нашего фундамента (высота 1200 мм и ширина 500 мм). Выше мы посчитали, что минимальная площадь должна быть 600 мм2. Подобрать нужный диаметр арматуры можно с помощью таблицы 2.

Таблица 2. Минимально допустимый диаметр арматуры для ленточных фундаментов

 Условия, для которых выбирается арматура  Минимально допустимый
диаметр арматуры, мм 
 Нормативный документ
Продольная арматура вдоль стены до 3-х метров  

10

Приложение 1 к Пособию «Армирование элементов монолитных железобетонных зданий». М., 2007 г.
Продольная арматура вдоль стены более 3-х метров    

12

Приложение 1 к Пособию «Армирование элементов монолитных железобетонных зданий». М., 2007 г.
Поперечная арматура (хомуты) вязанных каркасов высотой до 800 мм    

6

п. 3.106 Руководства конструирования бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения). М., 1978 г.
Поперечная арматура (хомуты) вязанных каркасов высотой более 800 мм    

8

п. 3.106 Руководства конструирования бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения). М., 1978 г.

Этапы строительства ленточного фундамента

При возведении ленточного фундамента есть определенные этапы работы, которые проводятся в строгой очередности. Иногда к перечню могут добавляться другие работы, например, выравнивание и укрепление грунта, обогрев мерзлой земли с помощью шатров, защита залитого бетона от замерзания (при строительстве зимой) и другие работы.

Цикл возведения ленточного фундамента состоит из следующих этапов:

Подготовительные работы

Убирается мусор, при необходимости проводится удаление пней и перенос зеленых насаждений из “пятна застройки”.
На земле делают разметку осей будущего дома, фиксируют узлы фундамента. Для разметки используют колья, бечевку или проволоку. Если на участке неровный рельеф, для работ необходим лазерный уровень.
После окончания разметки проверяют прямые углы — они должны быть ровно 90 градусов. С помощью теодолита проверяют отметку низа траншеи, уделяя внимание углам сруба и точкам пересечения.
Размеры выровненной и подготовленного участка на 3-5 метров больше размеров будущего дома в каждую из сторон.

Создание траншеи

Траншею можно рыть экскаватором или вручную. При использовании спецтехники важно, чтобы размер ковша совпадал с шириной котлована. После работы экскаватора дно траншеи выравнивают и трамбуют вручную.
На выровненном дне траншеи и ее стенках укладывают нетканый геотекстиль Дорнит с плотностью 300 г/м2. Материал укладывают внахлест, чтобы добиться герметичности.

Песчано-гравийная подготовка

В начале устраивается “подушка” из крупнозернистого песка с фракцией более 2,5 мм. Песок насыпается слоями, каждый из которых уплотняется вибротрамбовкой. Коэффициент уплотнения составляет 1,3.
Следующий слой — это гравий с фракцией 20-40. Гравийная насыпь также уплотняется вибротрамбовкой, коэффициент уплотнения 1,1.
Каждый слой утрамбовывается до плотности 1,6 т/м2.
Сверху укладывается гидроизоляционная полиэтиленовая пленка, которая предотвращает уход воды из раствора в грунт.
При отсутствии изоляции вода уходит в землю, что ухудшает прочностные характеристики бетонной конструкции.

Монтаж опалубки

Для монтажа опалубки используются доски размером 25х150х6000 мм. Для опор берут доски 50х100х6000 мм.
Деревянный каркас очищается от мусора и смачивается водой. При монтаже достигается жесткая фиксация с помощью распорок. Такая конструкция не будет деформироваться под весом раствора.
При установке деревянных опалубок стены проверяются на вертикальность с помощью лазерного уровня или отвеса. Наземная часть опалубки возвышается над землей на высоту цоколя + 200 мм.

Армирование каркаса

Одновременно с возведением опалубки по всему периметру ленточного фундамента делается каркас из ребристых и гладких прутов.
Диаметр прутов, схемы вязания и количество указываются в проекте. Чаще всего используется арматура А-III ø 12 мм и А-III ø 10 мм. Для фиксации используется проволока 1,2 мм.
Стандартный вариант — это два ряда вертикальных прутьев, скрепленных с горизонтальными. Шагом между ними 100, 150, 200 или 250 мм.
Наличие арматуры усиливает несущую способность фундамента и позволяет получить монолитную конструкцию, устойчивую к пучению грунта и другим механическим воздействиям по всем направлениям.

Вентиляционные продухи

На этом этапе создаются вентиляционные отверстия с учетом аэродинамической тени, для которых используются трубы из ПВХ диаметром 110 мм.
Вентиляция позволит добиться циркуляции воздуха в подпольном пространстве, исключив тем самым риск появления сырости и грибка.

Заливка бетона

Для ленточных фундаментов рекомендован бетон М350, В25, F150, W8. После достижения бетоном марочной прочности, конструкция имеет высокие несущие показатели.
Лучше использовать готовый раствор с завода, который имеет однородную консистенцию, что достигается тщательным перемешиванием в промышленных условиях. Количественные и качественные характеристики готового раствора полностью отвечают действующим СНИП.
Заливать раствор в опалубку нужно слоями по 150-200 мм. В процессе работы раствор трамбуется глубинным вибратором, что позволяет избежать появления пустоты в готовой конструкции. Для этих же целей делают простукивание стенок опалубки.
Использование очень жидкого раствора — это причина расслоения и оседания заполнителя на дне траншеи. Такая ситуация приводит к уменьшению прочностных характеристик. Увеличивает риск расслоения заливка раствора с высоты более полутора метров.
Демонтаж опалубки производится после того, как бетон наберет 70 и более процентов своей марочной прочности. Обычно, для этого требуется от 7 до 10 дней. Сроки увеличиваются при низкой температуре и высокой влажности воздуха, при использовании состава неправильной консистенции и при нарушении правил заливки. На время застывания конструкция закрывается полимерной пленкой и раз в несколько дней обильно поливается чистой водой.
При заливке бетонного фундамента при минусовых температурах нужны морозостойкие присадки, а после окончания работ необходимо обеспечить утепление бетона во время его схватывания.
Для этих целей используют подручные материалы — ветошь, солому. Иногда требуется создание шатра из воздухонепроницаемой ткани над конструкцией и прогрев воздуха тепловыми пушками.

Гидроизоляция фундамента

Для защиты фундамента от влаги используют разные гидроизоляторы, самый оптимальный — рубероид. Битумной мастикой обрабатывают наружные стенки и приклеивают “Технониколь Стеклоизол ХПП-2,5 10х1 м”.
Для максимального эффекта грунт по периметру ленточного фундамента обрабатывают полимерными составами с вяжущими свойствами.

Обратная засыпка

Пазухи фундамента заполняются грунтом или песком средней фракции. Также можно использовать песчано-гравийную смесь. Во время засыпки материал трамбуется и поливается водой, что обеспечивает отсутствие полостей.
Использование искусственной насыпи (песок, гравий) уменьшит давление на боковую поверхность фундамента со стороны грунта во время морозного пучения.

В стоимость ленточного фундамента входят такие работы:

  • Геодезические работы, вынос осей.
  • Разработка грунта вручную (выемка грунта под ленту, песчаную и гравийную подготовку).
  • Укладка нетканного материала (геотекстиль) на дно и стенки котлована.
  • Создание песчаной подготовки с послойным трамбованием виброплитой.
  • Устройство гравийной подготовки с послойным трамбованием виброплитой.
  • Устройство горизонтальной гидроизоляции.
  • Устройство ленточного монолитного ж/б фундамента с изготовлением арматурного каркаса.
  • Монтаж/демонтаж опалубки.
  • Вибрирование бетона с помощью глубинного вибратора.
  • Устройство вентиляционных отверстий с учетом аэродинамической тени.
  • Уход за бетоном.

В стоимость ленточного фундамента входят такие материалы:

  • Бетон М350, В25, F150, W8.
  • Армирование А-III ø 12 мм.
  • Армирование А-III ø 10 мм.
  • Вязальная проволока 1,2 мм.
  • Геотекстиль нетканый Дорнит 300 г/м2.
  • Крупнозернистый песок, фракции более 2,5 мм.
  • Гравий фр 20-40.
  • “Технониколь Стеклоизол ХПП-2,5”.
  • Пиломатериалы для изготовления опалубки 25х150х6000 мм.
  • Пиломатериалы для изготовления опор 50х100х6000 мм.
  • Фиксаторы-звездочка 25 мм.
  • Гвозди, метизы (крепеж для опалубки).
  • Шпильки для стяжки.
  • Труба ПВХ, 110 мм.
  • Пленка полиэтиленовая 200 мкм.
  • Расходный материал (перчатки, диски отрезные и т.д.).
  • Бензин АИ -92 для вибротрамбовки.
  • Аренда автобетононасоса.
  • Доставка материалов, ГСМ, такелажные работы.

Топ-6 типов фундаментов коммерческих зданий

Коммерческие фундаменты отличаются от жилых в одном основном — коммерческие фундаменты должны выдерживать более тяжелые нагрузки, и это меняет их конструкцию. Есть несколько различных типов фундаментов зданий, используемых в состоянии Одинокой звезды, и каждый из них имеет наилучшее применение.

6 различных типов коммерческих фундаментов для зданий в Техасе

Если вы строитель, строитель или владелец коммерческого предприятия, скорее всего, вы знакомы хотя бы с одним типом этих фондов.Вот что вам следует знать о типах фундаментов зданий.

Фундамент перекрытия

Это один из наиболее экономичных типов коммерческих фондов и один из наиболее часто используемых. Он состоит из толстого бетонного основания, залитого прямо на почву. Чаще всего его используют в более теплом климате, где меньше вероятность промерзания грунта. Кроме того, поскольку это цельный кусок бетона, монолитный фундамент не подвержен заражению насекомыми, грызунами и другими вредителями.

Мат Фундамент

В фундаменте из циновки или плота используется одна залитая плита для поддержки нагрузки здания. Он похож на фундамент из плиты, за одним исключением. Для стабилизации верхних уровней конструкции в плиту вставляются колонны. Это гарантирует, что фундамент поддерживает здание, включая все верхние этажи. Этот тип фундамента лучше всего подходит для участков, где почва не может выдержать полную нагрузку.

Фундаменты опор и балок

Опоры и балочные фундаменты обычно дороже в установке, но дополнительные затраты окупаются в районах, подверженных сильным ветрам или рыхлой, подвижной почве.В некоторых жилых домах также используется опорно-балочный фундамент, но есть некоторые отличия от коммерческого применения.

В отличие от свайных фундаментов, опорные и балочные не требуют бурения вглубь скального грунта. Вместо этого используется несколько опор для равномерного распределения веса конструкции. Опоры стоят на опорах прямоугольной формы, которые уходят в землю всего на несколько футов.

Комбинация опор и опор придает фундаменту дополнительную устойчивость, обеспечивая защиту здания от ветра и сдвигов почвы.Это также один из самых надежных фундаментов здания, что объясняет более высокую цену.

Ленточный фундамент

Ленточный фундамент или раздвижное основание имеет широкое основание для распределения веса по большей площади, обеспечивая большую устойчивость здания. Этот тип фундамента здания поддерживает колонны и отдельные стены, а также опоры мостов, где несущий слой почвы находится на 10 футов ниже поверхности.

Важно отметить, что ленточный фундамент — не лучший выбор в местах, где вода может перетекать через несущий слой почвы.Это может ослабить основание, что приведет к нестабильности конструкции.

Индивидуальные опоры

Этот тип неглубокого фундамента используется на участках с неглубокой почвой и может применяться на глубине до 3 футов. В индивидуальном фундаменте чаще всего используется одна колонна, которая поддерживает нагрузку здания, а не фундамент.

Отдельные опоры могут быть квадратными или прямоугольными. Это зависит от размеров и формы конструкции, а также от площади застройки. Тип почвы также играет роль в определении размера колонны.Это зависит от несущей способности слоев почвы.

Комбинированные опоры

Комбинированный фундамент — это еще один тип неглубокого фундамента. Когда слой почвы неглубокий — на глубине около 3 футов — для поддержки используются открытые или раздвинутые опоры. В этом типе фундамента используется несколько столбцов, образующих прямоугольник.

В больших зданиях на мелководье рекомендуется использовать комбинированные опоры. Несколько колонн обеспечивают равномерное распределение нагрузки по фундаменту для максимальной устойчивости.

URETEK Gulf Coast предлагает услуги по ремонту коммерческих фундаментов в Хьюстоне, Техас

Хьюстон и его окрестности могут похвастаться всеми типами почвы, от рыхлого песка до плотно утрамбованной глины, и не каждый тип фундамента здания подходит для любой ситуации.

Коммерческие здания требуют хорошей опоры из-за их большого и тяжелого размера. Знание того, какой тип фундамента использовать, имеет первостепенное значение для успеха любого строительного проекта, и специалисты URETEK всегда готовы помочь.

Если у вас есть вопросы, вам нужен совет или если у вас есть коммерческий фундамент, нуждающийся в ремонте, мы можем помочь. Свяжитесь с URETEK сегодня и узнайте, как мы можем помочь вам с вашими нуждами фонда.

8 наиболее важных типов фундаментов

Фундамент — одна из важнейших частей конструкции. Он определяется как та часть конструкции, которая переносит нагрузку от конструкции, построенной на ней, а также свой вес на большую площадь почвы таким образом, чтобы эта величина не превышала предельную несущую способность почвы и осадка. всей конструкции остается в допустимых пределах.Фундамент — это часть конструкции, на которой стоит здание. Твердая почва, на которой он стоит, называется фундаментным основанием.

Зачем нужен фундамент

Фундамент должен выполнять следующие задачи:

  • Распределить вес конструкции на большой площади почвы.
  • Избегайте неравных расчетов.
  • Не допускайте бокового смещения конструкции.
  • Повышение устойчивости конструкции.

Почему бывают разные типы опор

Как мы знаем, существуют разные типы почвы, и несущая способность почвы различна для каждого типа почвы.В зависимости от профиля почвы, размеров и нагрузки конструкции инженеры выбрали разные типы фундамента.

В целом все фундаменты делятся на две категории — мелкие и глубокие фундаменты. Термины «Мелкий фундамент» и «Глубокий фундамент» относятся к глубине почвы, на которой он расположен. Обычно, если ширина фундамента больше глубины, он обозначается как «Неглубокий фундамент». Если ширина меньше глубины фундамента, это называется «глубокий фундамент».”Однако глубокий фундамент и неглубокий фундамент можно классифицировать, как показано в следующей таблице.


Ниже приведены основные аспекты различных типов фундаментов, а также их изображения. Поскольку экономическая осуществимость является одним из основных факторов при выборе типа, она также кратко обсуждается с каждым типом. Чтобы узнать о других факторах, влияющих на выбор основы, прочтите: Факторы, учитываемые при выборе основы.

Фундаменты мелкого заложения

Поскольку фундамент неглубокого заложения невелик и экономичен, он является наиболее популярным типом фундамента для легких конструкций.Ниже рассматриваются несколько типов фундаментов мелкого заложения.

Типы фундаментов мелкого заложения

Ниже приведены типы фундаментов мелкого заложения.

1. Изолированная раздвижная опора

Это наиболее широко известный и простой тип неглубоких фундаментов, так как это наиболее экономичный тип. Обычно они используются в неглубоких помещениях для переноса и распределения концентрированной нагрузки, вызванной, например, колоннами или колоннами. Обычно они используются для обычных зданий (обычно до пяти этажей).

Рисунок: Изображение изолированного неглубокого фундамента

Изолированное основание представляет собой фундамент непосредственно у основания сегмента. Как правило, каждая секция имеет свою основу. Они легко переносят нагрузки с колонны на почву. Он может быть прямоугольным, квадратным или круговым. Он может состоять как из армированного, так и из неармированного материала. Однако для неармированной опоры высота опоры должна быть более заметной, чтобы обеспечить жизненно важное распределение нагрузки. Возможно, их следует использовать, когда нет никаких сомнений в том, что под всей структурой не произойдет никаких различных расчетов.Недопустимы раздвинутые опоры для ориентации больших грузов. Он используется для уменьшения времени скручивания и уменьшения силы сдвига в их основных областях.

Размер основания можно приблизительно рассчитать, разделив общую нагрузку на основание колонны на допустимую несущую способность почвы.

Ниже приведены типы раздвижных фундаментов.

  1. Опора одинарная.
  2. Ступенчатая опора для колонны.
  3. Наклонная опора для колонны.
  4. Стеновая опора без ступеньки.
  5. Ступенчатая опора для стен.
  6. Фундамент ростверк.

Чтобы решить, когда использовать мелкий фундамент, необходимо знать, когда это экономично. Это экономично, когда:

  • Нагрузка на конструкцию относительно низкая.
  • Колонны не расположены близко друг к другу.
  • Несущая способность почвы высокая на небольшой глубине.

2. Стеновая или ленточная опора

Стеновая опора также известна как непрерывная опора.Этот тип используется для распределения нагрузок несущих стен несущих конструкций и не несущих конструкций на землю таким образом, чтобы предел несущей способности почвы не превышался. Он проходит по направлению стены. Ширина фундамента стены обычно в 2-3 раза больше ширины стены.

Рисунок: Стеновой или ленточный фундамент

Стеновой фундамент представляет собой непрерывную полосу перекрытия по длине стены. Камень, кирпич, железобетон и др. Используются для возведения фундаментов стен.

  • Из-за блочных стен основание состоит из нескольких рядов кирпичей, причем наименьший ряд, как правило, вдвое превышает ширину вышеупомянутой стены.
  • За счет каменной кладки стен противовесы могут быть 15 см, у статуй 30 см. В этом случае размер опор незначительно больше, чем у опор блочных разделителей.
  • Если на стене большой отвал или грунт имеет низкий предел несущей способности, может быть предоставлен этот тип железобетонного фундамента.

Стеновые фундаменты экономичны в следующих случаях:

  • Передаваемые нагрузки небольшой величины.
  • Уложен на плотный песок и гравий.

3. Комбинированная опора

Комбинированная опора очень похожа на изолированную опору. Когда колонны конструкции аккуратно размещены или несущая способность грунта низкая и их опоры перекрывают друг друга, обеспечивается комбинированная опора. По сути, это смесь различных опор, в которой используются свойства различных противовесов в одной опоре в зависимости от необходимости конструкции.

Фундаменты, которые являются общими для более чем одной колонны, называются комбинированными опорами . Существуют различные типы комбинированных оснований, в том числе плиты перекрытия, перекрытия и балки, прямоугольные, стропильные и ленточные балки. Они могут быть квадратными, тройниковыми или трапециевидными. Основная цель — равномерное распределение нагрузок по всей площади опоры, для этого необходимо, чтобы центр тяжести зоны опоры совпал с центром тяжести общих нагрузок.

Рисунок: Комбинированные опоры

Комбинированные опоры экономичны, когда:

  • Колонны размещаются близко друг к другу.
  • Когда колонна находится близко к линии собственности, а изолированное основание пересекает линию собственности или становится эксцентричным.
  • Размеры одной стороны опоры ограничены некоторым меньшим значением.

4. Консольные или ленточные опоры

Ленточные опоры аналогичны комбинированным опорам. Причины рассмотрения или выбора ленточной опоры идентичны комбинированной.

В ленточном фундаменте фундамент под колонны строится индивидуально и соединяется ленточной балкой. Обычно, когда край основания не может выходить за пределы линии собственности, внешнее основание соединяется перемычкой с внутренним основанием.

Рисунок: Консольное или ленточное основание

5. Плотный или матовый фундамент

Плотный или матовый фундамент используется там, где другие мелкие или свайные фундаменты не подходят. Это также рекомендуется в ситуациях, когда несущая способность грунта недостаточна, нагрузка на конструкцию должна распределяться по большой площади или конструкция постоянно подвергается ударам или толчкам.

Плотный фундамент представляет собой железобетонную плиту или плиту из Т-образной балки, размещенную по всей площади конструкции. В этом типе вся плита цокольного этажа выступает в качестве фундамента. Общая нагрузка на конструкцию распределяется равномерно по всей площади конструкции. Это называется плот, потому что в этом случае здание выглядит как судно, которое плавает в море почвы.

Рисунок: Фундаменты на плотах или матах

Фундаменты на плотах экономичны, если:

  • Почва слабая, и нагрузку приходится распределять по большой площади.
  • В состав сооружения входит подвал.
  • Колонны расположены близко друг к другу.
  • Другие виды фундаментов невозможны.
  • Не допускать дифференциальной осадки.

Глубокие фундаменты

Несколько типов глубоких фундаментов рассматриваются ниже.

Типы глубокого фундамента.

Ниже приведены типы глубоких фундаментов.

1. Свайный фундамент

Свайный фундамент — это распространенный тип глубокого фундамента.Они используются для снижения стоимости, и когда по соображениям состояния почвы желательно передавать нагрузки на слои почвы, которые находятся вне досягаемости фундаментов мелкого заложения.

Ниже представлены типы свайных фундаментов.

  1. В зависимости от функции или использования
    1. Шпунтовые сваи
    2. Несущие сваи
    3. Сваи с торцевыми опорами
    4. Сваи трения
    5. Сваи для уплотнения грунта
  2. В зависимости от материалов и метода строительства
    1. Деревянные сваи
    2. Бетонные сваи
    3. Стальные сваи
    4. Композитные сваи

Свая — это тонкий элемент с небольшой площадью поперечного сечения по сравнению с его длиной.Он используется для передачи нагрузок на фундамент на более глубокие слои почвы или породы, когда несущая способность почвы у поверхности относительно низкая. Свая передает нагрузку либо трением, либо опорой. Сваи также используются для защиты конструкций от подъема и обеспечения устойчивости конструкций от боковых и опрокидывающих сил.

Свая — это тонкий элемент с небольшой площадью поперечного сечения по сравнению с его длиной. Он используется для передачи нагрузок на фундамент на более глубокие слои почвы или породы, когда несущая способность почвы у поверхности относительно низкая.Нагрузка сваи распределяется либо трением, либо опорой. Сваи также используются для защиты конструкций от подъема и обеспечения устойчивости конструкций от боковых и опрокидывающих сил.

Свайные фундаменты экономичны, когда

  • Грунт с большой несущей способностью находится на большей глубине.
  • Когда есть вероятность строительства оросительных каналов на близлежащей территории.
  • Когда поставить плот или ростверк очень дорого.
  • Когда фундамент подвергается сильной сосредоточенной нагрузке.
  • В заболоченных местах.
  • Когда верхний слой почвы сжимается по своей природе.
  • В случае мостов, когда размыв больше в русле реки.

Его снова можно классифицировать по материалу и механизму передачи нагрузки или функции. На следующей диаграмме показано несколько типов свайных фундаментов.


Предметы свайного фундамента

2. Фундамент пирса

Пирс — это подземное сооружение, которое передает более массивную нагрузку, которую не могут нести мелкие фундаменты.Обычно он более мелкий, чем сваи. Фундамент опоры обычно используется в многоэтажных конструкциях. Поскольку базовый регион определяется стратегией плана для регулярного предприятия, испытание на нагрузку на одну опору отменяется. Таким образом, он становится все более популярным в жестких условиях.

Рисунок: Фундамент опоры

Фундамент опоры представляет собой цилиндрический конструктивный элемент, который передает тяжелую нагрузку от надстройки на грунт с помощью концевой опоры. В отличие от свай, он может передавать нагрузку только за счет опоры, а не за счет поверхностного трения.

Фундамент пирса является экономичным, когда:

  • Толщина твердой породы лежит под слоем разложившейся породы наверху.
  • Верхний слой почвы — это жесткая глина, которая сопротивляется забиванию несущей сваи.
  • При переносе тяжелого груза на почву.

Фундамент опоры имеет множество преимуществ:

  • Имеет широкий ассортимент по конструкции. Здесь мы можем использовать различные материалы, чтобы создать стильный вид, и это остается в пределах нашего лимита расходов.
  • Это экономит деньги и время, так как не требует обширного удаления тонны цемента.
  • Пределы подшипника можно увеличить за счет недостаточного расширения основания.

Наряду с преимуществами, у него есть и несколько недостатков:

  • Если один пост или док поврежден, это может нанести серьезный ущерб обществу.
  • Это может быть расточительным, если не защищено должным образом.
  • Полы должны быть надежно и надежно защищены и ограждены от животных.

3. Фундамент из кессона

Фундамент из кессона представляет собой водонепроницаемую подпорную конструкцию, используемую в качестве опоры моста, строительства плотины и т. Д. Как правило, он используется в сооружениях, требующих фундамента под рекой или аналогичными водоемами. Причина выбора кессона в том, что его можно спустить в нужное место, а затем погрузить на место.

Рисунок: Фундамент из кессона

Фундамент из кессона представляет собой готовый полый цилиндр, вдавленный в грунт до желаемого уровня и затем заполненный бетоном, который в конечном итоге превращается в фундамент.В основном используется как опоры моста. Кессоны чувствительны к строительным процедурам и не имеют опыта строительства.

Есть несколько типов кессонных фундаментов.

  1. Ящик-кессон.
  2. Плавучие кессоны.
  3. Пневматические кессоны.
  4. Открытые кессоны.
  5. Кессоны с брезентом.
  6. Раскопанные кессоны.

Фундаменты кессона экономичны, когда:

  • Требование к свайной заглушке должно быть минимальным.
  • Необходимо снизить уровень шума и вибрации.
  • Устанавливается под водоемы.
  • Требуется высокая боковая и осевая нагрузка.

Статьи Фонда Кессона

В заключение, фундамент представляет собой несущий элемент конструкции, который передает общую нагрузку на плиту, балку, колонну, стену и т. Д. Основная цель фундамента — обеспечить общую устойчивость. конструкции и безопасно переносить общую нагрузку с конструкции на почву при оптимальных затратах.

В зависимости от функции или использования
Шпунтовые сваи
Несущие сваи
Концевые опорные сваи
Фрикционные сваи
Сваи для уплотнения грунта
В зависимости от материалов и метода строительства
Деревянные сваи
Бетонные сваи
Стальные сваи
Композитные сваи

Фундамент по низкой цене здания

https://doi.org/10.1016/j.jcde.2016.09.002Получить права и контент

Основные моменты

В анализе используются две различные системы фундаментов, а именно; прямоугольные ленточные фундаменты и гнутые ленточные фундаменты соответственно.

Программное обеспечение для анализа методом конечных элементов ADINA используется для моделирования и анализа структурных и геотехнических характеристик обоих типов оснований с акцентом на влияние изменения формы основания и типа почвы (Ks) на напряжения и грунт. поселок.

Результаты показали, что максимальное значение контактного давления снизилось примерно на 38% для гнутого ленточного фундамента по сравнению с традиционным ленточным фундаментом в жестком глинистом грунте и примерно на 25% в плотном песчаном грунте при увеличении вертикальной статики. нагрузки до пикового значения.

Уменьшение степени армирования между двумя типами опор составляет около 26% в пользу гнутых ленточных опор. При этом общая стоимость бетона для гнутого ленточного фундамента меньше прямоугольного примерно на 18%. Таким образом, сложенная форма экономичнее обычного прямоугольного ленточного фундамента.

Реферат

Достижение экономичного и безопасного проектирования конструкций рассматривается как необходимое условие для инженера-строителя.Рыночные цены на арматурную сталь за последние годы на международном уровне резко выросли. Таким образом, целью данной статьи является не просто снижение доли арматурной стали в фундаментах каркасных конструкций, а, скорее, минимизация этого соотношения за счет выбора наиболее эффективной формы опор (гнутых ленточных опор). Складчатые опоры использовались как альтернатива обычным прямоугольным ленточным опорам. Высота исследуемой модели — десять этажей. В анализе используются две различные системы фундамента, а именно: прямоугольные ленточные фундаменты и гнутые ленточные фундаменты соответственно.Обе формы фундаментов будут спроектированы как сплошные фундаменты с решетчатой ​​формой под зданием. Также представлено сравнение двух систем в отношении бетонных сечений и коэффициента армирования при одинаковых приложенных нагрузках. Программное обеспечение для анализа методом конечных элементов ADINA используется для моделирования и анализа структурных и геотехнических характеристик обоих типов фундаментов с акцентом на влияние изменения формы фундамента на напряжения в бетонном теле фундамента и подстилающих грунтах.В результатах исследований представлены внутренние напряжения в области основания и грунта, а также распределение контактного давления для усиленного гнутого ленточного фундамента, опирающегося на различные типы грунта. Также изучается влияние угла наклона складывания и типа почвы на результаты. Результаты показали, что гнутые ленточные опоры эффективны для уменьшения количества необходимого армирования, и такая эффективность в уменьшении требуемой стальной арматуры в опорах зависит от приложенных нагрузок на опоры и, в некоторой степени, от типа и свойств почвы.Уменьшение степени армирования между прямоугольными и фальцевыми типами фундаментов составляет около 26% в пользу гнутых ленточных фундаментов. Сравнительное экономическое исследование показывает, что общая стоимость железобетонного профиля для гнутых ленточных фундаментов меньше традиционного примерно на 18%. Эта разница в стоимости обоих типов опор в основном связана с относительно меньшей степенью армирования сталью, необходимой для гнутого типа по сравнению с прямоугольными. Таким образом, гнутый ленточный фундамент экономичнее прямоугольного ленточного фундамента.

Графический реферат

Ключевые слова

ADINA

Конечный элемент

Гнутый ленточный фундамент

Напряжение

Расчетный

Рекомендуемые статьиЦитирующие статьи (0)

© 2016 Design Society for Computational. Издательские услуги Elsevier.

Рекомендуемые артикулы

Цитирующие артикулы

Несущая способность ленточного фундамента на армированном песке

DOI: 10.1016 / j.jare.2014.04.003. Epub 2014 19 апреля.

Принадлежности Расширять

Принадлежность

  • 1 Кафедра структурной инженерии, инженерный факультет, Университет Танта, Танта, Египет.
Бесплатная статья PMC

Элемент в буфере обмена

WR Azzam et al. J Adv Res. 2015 сен.

Бесплатная статья PMC Показать детали Показать варианты

Показать варианты

Формат АннотацияPubMedPMID

DOI: 10.1016 / j.jare.2014.04.003. Epub 2014 19 апреля.

Принадлежность

  • 1 Кафедра структурной инженерии, инженерный факультет, Университет Танта, Танта, Египет.

Элемент в буфере обмена

Полнотекстовые ссылки Опции CiteDisplay

Показать варианты

Формат АннотацияPubMedPMID

Абстрактный

В этой статье предельные нагрузки на фундаментные оболочки на неармированном и армированном песке были определены с помощью лабораторных модельных испытаний.Серия нагрузочных испытаний была проведена на основании модели оболочки с однослойной арматурой и без нее. Испытания проводились на фундаменте-оболочке при различной глубине заделки оболочки и плотности земляного полотна. Результаты сравнивались с результатами для плоских фундаментов без армирования. Результаты испытаний модели были проверены с помощью конечно-элементного анализа с помощью программы PLAXIS. Экспериментальные исследования показали, что предельная несущая способность фундамента оболочки на усиленном земляном полотне выше, чем на неармированном основании, и кривые осадки под нагрузкой были значительно изменены.Фундамент-оболочка поверх армированного земляного полотна можно считать хорошим методом увеличения эффективной глубины фундамента и уменьшения возникающей осадки. Кроме того, поверхность разрыва армированной системы оболочки была значительно глубже, чем обычное основание и основание корпуса без армирования. Численный анализ помогает понять деформационное поведение исследуемых систем и определить поверхность разрушения армированного основания оболочки.

Ключевые слова: Армирование; Песок; Расчетный коэффициент; Эффективность Shell; Ракушечный фундамент; Максимальная грузоподъемность.

Цифры

Рис.1

Схематический вид: (а)…

Рис.1

Схематическое изображение: (а) испытательной установки и (б) модели фундамента оболочки.

рисунок 1

Схематическое изображение: (а) испытательной установки и (б) модели фундамента оболочки.

Фиг.2

Сводка кривых расчета нагрузки…

Рис.2

Сводка расчетных нагрузок для плоского и оболочкового фундамента при различной плотности…

Рис. 2

Сводка кривых расчета нагрузок для плоского и оболочкового фундамента различной плотности с армированием и без него.

Рис.3

Отношение между углом…

Фиг.3

Соотношение между углом сопротивления сдвигу и предельной нагрузкой для плоских…

Рис. 3

Соотношение между углом сопротивления сдвигу и предельной нагрузкой для плоского и оболочечного фундамента с армированием и без него при различных подъемах оболочки.

Фиг.4

Изменение коэффициента C 1…

Фиг.4

Изменение коэффициента C 1 и C 2 с соотношением a / B…

Инжир.4

Изменение коэффициента C 1 и C 2 с соотношением a / B для фундамента-оболочки с армированием и без него.

Фиг.5

Эффективность оболочки по сравнению с оболочкой…

Рис.5

Коэффициент полезного действия оболочки по сравнению с оболочкой для опор оболочки с и без…

Рис. 5

Коэффициент полезного действия оболочки по сравнению с оболочкой увеличивается для оснований оболочки с армированием и без него при разной относительной плотности.

Рис.6

Вариация КПД оболочки…

Фиг.6

Изменение КПД оболочки в зависимости от угла сопротивления сдвигу для опор оболочки…

Рис. 6

Изменение КПД оболочки в зависимости от угла сопротивления сдвигу для опор оболочки с армированием и без него при различных коэффициентах подъема.

Фиг.7

Отношение между углом…

Фиг.7

Соотношение между углом сопротивления сдвигу и коэффициентом усадки для плоских и…

Инжир.7

Соотношение между углом сопротивления сдвигу и коэффициентом осадки для плоского и оболочечного фундамента с армированием и без армирования различной плотности.

Фиг.8

Модифицированная картина отказов для…

Рис.8

Модифицированная схема разрушения фундамента оболочки без усиленной одинарной арматуры и с усиленной одинарной арматурой…

Рис. 8

Модифицированная картина разрушения фундамента оболочки без и с усиленным одинарным армирующим слоем, a / B = 0,50.

Рис.9

Кривые расчета нагрузки для модели…

Фиг.9

Кривые осадки под нагрузкой для модельных испытаний и численные результаты в плотном состоянии, ϕ…

Рис.9.

Кривые осадки под нагрузкой для модельных испытаний и численные результаты в плотном состоянии, ϕ = 41 °.

Фиг.10

Ответы нормального и снарядного…

Фиг.10

Реакции нормального и оболочечного фундамента с армированием и без него ( a /…

Инжир.10

Отклик нормального и оболочечного фундамента с армированием и без него ( a / B = 0,75 и ϕ = 41 °).

Фиг.11

Вариант контакта…

Рис.11

Изменение контактного давления в зависимости от отношения a / B для оболочки…

Рис. 11

Изменение контактного давления в зависимости от отношения a / B для фундамента оболочки с армированием и без него ниже центра оболочки на глубине a /2, полученное в результате численного анализа.

Рис.12

Сравнение повышения грузоподъемности…

Фиг.12

Сравнение повышения несущей способности подошвы оболочки на усиленном земляном полотне для модели…

Рис. 12

Сравнение повышения несущей способности фундамента оболочки на усиленном земляном полотне для модельных испытаний и теоретического анализа крупномасштабного фундамента оболочки.

Все фигурки (13)

Похожие статьи

  • Эффективность ленточного фундамента с армированием георешеткой для различных типов почв в Мосуле, Ирак.

    Хасан Н.И., Мохд Тайб А., Мухаммад Н.С., Мат Язид М.Р., Муталиб А.А., Абанг Хасболла Д.З.Хасан Н.И. и др. PLoS One. 2020 17 декабря; 15 (12): e0243293. DOI: 10.1371 / journal.pone.0243293. Электронная коллекция 2020. PLoS One. 2020. PMID: 33332375 Бесплатная статья PMC.

  • Испытания на нагрузку плиты для анализа реакции на оседание фундаментов мелкого заложения на песчаных пластах, усиленных микровлажными сваями.

    Малик Б.А., Шах М.Ю., Савант В.А. Малик Б.А. и др. Environ Sci Pollut Res Int.2021 13 июля. Doi: 10.1007 / s11356-021-15390-4. Онлайн до печати. Environ Sci Pollut Res Int. 2021 г. PMID: 34258699

  • Модельные исследования характеристик оседания нагрузки крупнозернистого грунта, обработанного геофиброй и цементом.

    Ли И, Су Л, Лин Х, Ван Дж, Ян Ю. Ли Y и др. Полимеры (Базель). 5 июня 2018 г .; 10 (6): 621. DOI: 10.3390 / polym10060621.Полимеры (Базель). 2018. PMID: 30966655 Бесплатная статья PMC.

  • Комплексное технико-экономическое обоснование использования стружки изношенных шин для улучшения характеристик фундаментов мелкого заложения.

    Гилл Дж., Миттал РК, Рават С. Gill G, et al. Environ Sci Pollut Res Int. 2021 17 июня. Doi: 10.1007 / s11356-021-14876-5. Онлайн до печати. Environ Sci Pollut Res Int.2021 г. PMID: 34138428

  • Геосинтетическое армирование слоя песчано-матового покрытия над мягким грунтом.

    Пак Джей Би, Парк Х.С., Ким Д. Park JB и др. Материалы (Базель). 2013 ноябрь 19; 6 (11): 5314-5334. DOI: 10.3390 / ma6115314. Материалы (Базель). 2013. PMID: 28788392 Бесплатная статья PMC.

Процитировано

1 артикул
  • Эффективность ленточного фундамента с армированием георешеткой для различных типов почв в Мосуле, Ирак.

    Хасан Н.И., Мохд Тайб А., Мухаммад Н.С., Мат Язид М.Р., Муталиб А.А., Абанг Хасболла Д.З. Хасан Н.И. и др. PLoS One. 2020 17 декабря; 15 (12): e0243293. DOI: 10.1371 / journal.pone.0243293. Электронная коллекция 2020. PLoS One. 2020. PMID: 33332375 Бесплатная статья PMC.

использованная литература

    1. Куриан Н.P. Экономика гиперболических параболоидальных оснований оболочек. Geotech Eng. 1977; 8: 53–59.
    1. Фарид А, Давуд Р. Цилиндрические оболочки на упругом основании. Всемирный конгресс, ракушечные и пространственные конструкции. Мадрид, Испания; 1979, 1 (3). п. 33–46.
    1. Паливал Д.Н., Рай Р.Н. Неглубокая сферическая оболочка на фундаменте Пастернака, подверженная повышенным температурам.J Тонкостенная конструкция. 1986. 5 (1): 343–349.
    1. Паливал Д.Н., Синха С.Н. Статическое и динамическое поведение мелких сферических оболочек на фундаменте Винклера. J Тонкостенная конструкция. 1986. 4 (2): 411–422.
    1. Мелерски Э. Тонкостенный фундамент, опирающийся на стохастический грунт. J Struct Eng ASCE.1988. 114 (8): 2692–2709.

Показать все 27 ссылок

LinkOut — дополнительные ресурсы

  • Источники полных текстов

  • Другие источники литературы

ФУНДАМЕНТ

Выбор типа фундамента

Выбор подходящего тип фундамента определяется некоторыми важными факторами, такими как

  1. Характер конструкции
  2. Нагрузки от структура
  3. Характеристика недр
  4. Выделенная стоимость фундаменты

Поэтому решить о тип фундамента, необходимо проведение геологоразведочных работ.Тогда почва характеристики в зоне поражения под зданием должны быть тщательно оценен. Допустимая несущая способность пораженного грунта затем следует оценить слои.

После этого исследования можно было затем решите, следует ли использовать фундамент неглубокий или глубокий.

Фундаменты мелкого заложения, такие как опоры и плоты дешевле и проще в исполнении. Их можно было бы использовать, если бы выполняются следующие два условия;

  1. Наложенное напряжение (Dp) вызванная зданием, находится в пределах допустимой несущей способности различных слоев почвы, как показано на рис.1.

Это условие выполнено когда на рисунке 1 меньше и меньше, меньше и меньше и так далее.

  1. Здание выдержало расчетная расчетная осадка для данного типа фундамента

Если один или оба из этих двух условия не могут быть выполнены использование глубоких фундаментов должно быть считается.

Глубокие фундаменты используются, когда верхние слои почвы мягкие и имеется хороший несущий слой на разумная глубина.Толщина грунта, лежащего под несущим слоем, должна быть достаточная прочность, чтобы противостоять наложенным напряжениям (Dp) из-за нагрузок, передаваемых на опорный слой, как показано на рисунке 2.

Глубокие фундаменты обычно сваи или опоры, которые передают нагрузку здания на хорошую опору страта. Обычно они стоят дороже и требуют хорошо обученных инженеров для выполнять.

Если исследуемые слои почвы мягкий на значительной глубине, и на разумных глубины, можно использовать плавучие фундаменты.

построить плавающий фундамент, масса грунта, примерно равная весу Предлагаемое здание будет демонтировано и заменено зданием. В в этом случае несущее напряжение под зданием будет равно весу удаленной земли (γD) что меньше

(q a = γD + 2C)

а также Дп будет равно нулю.Это означает, что несущая способность под здания меньше, чем (q a ), и ожидаемое поселение теоретически равно нуль.

Наконец, инженер должен подготовить смету стоимости наиболее перспективного типа фундамента что представляет собой наиболее приемлемый компромисс между производительностью и Стоимость.

Фундамент мелкого заложения

Фундаменты неглубокие — это те выполняется у поверхности земли или на небольшой глубине.Как упоминалось ранее в предыдущей главе фундаменты мелкого заложения использовались при грунтовых разведка доказывает, что все слои почвы, затронутые зданием, могут противостоять наложенным напряжениям (Dp) не вызывая чрезмерных заселений.

Фундаменты мелкого заложения либо опоры или плоты.

Опоры

Фундамент является одним из старейший и самый популярный вид фундаментов мелкого заложения.Опора — это увеличение основания колонны или стены с целью распределения нагрузка на поддерживающий грунт при давлении, соответствующем его свойствам.

Типы опор

Существуют разные виды опоры, соответствующие характеру конструкции. Подножки можно классифицировать на три основных класса

Настенный или ленточный фундамент

Он проходит под стеной мимо его полная длина, как показано на рис.3. обычно используется в несущей стене типовые конструкции.

Изолированный фундамент колонны

Он действует как основание для колонны. Обычно применяется для железобетонных зданий типа Скелтон. Оно может принимать любую форму, например квадратную, прямоугольную или круглую, как показано на рисунке 4.

Инжир.4 Типовые раздвижные опоры

Комбинированная опора колонны

Это комбинированное основание для внешней и внутренней колонн здания, рис.5. Он также используется когда две соседние колонны здания расположены близко друг к другу другая, их опоры перекрывают друг друга

Распределение напряжений под опорами

Распределение напряжений под опорами считается линейным, хотя на самом деле это не так. Ошибка участие в этом предположении невелико, и на него можно не обращать внимания.

Загрузить сборники

Нагрузки, влияющие на обычные типы строений:

  1. Постоянная нагрузка (D.L)
  2. Живая нагрузка (L.L)
  3. Ветровая нагрузка (W.L)
  4. Землетрясение (E.L)

Статическая нагрузка

Полная статическая нагрузка, действующая на элементы конструкции следует учитывать при проектировании.

Живая нагрузка

Маловероятно, что полная интенсивность динамической нагрузки будет действовать одновременно на всех этажах многоэтажный дом.Следовательно, своды правил допускают определенные снижение интенсивности динамической нагрузки. Согласно египетскому кодексу На практике допускается следующее снижение временной нагрузки:

N или . перекрытий Снижение временной нагрузки%

Земля нулевой этаж%

1 ул нулевой этаж%

2 nd этаж 10.0%

3 рд этаж 20,0%

4 чт этаж 30,0%

5 эт и более 40,0%

Временная нагрузка не должна снижаться в течение склады и общественные здания, такие как школы, кинотеатры и больницы.

Ветровые и землетрясения нагрузки

Когда здания высокие и узкие, Необходимо учитывать ветровое давление и землетрясение.

Допущение, использованное при проектировании спреда Опоры

Теория анализа эластичности указывает на что распределение напряжений под симметрично нагруженными фундаментами не является униформа. Фактическое распределение напряжений зависит от типа материала. под опорой и жесткостью опоры. Для опор на рыхлых не связный материал, зерна почвы имеют тенденцию смещаться вбок на края из-под груза, тогда как в центре почва относительно ограничен.Это приводит к диаграмме давления, примерно такой, как показано на рисунке 6. Для общего случая жестких оснований на связных и несвязных материалов, Рис.6 показывает вероятное теоретическое распределение давления. Высокое краевое давление можно объяснить тем, что краевой сдвиг должен иметь место до урегулирования.

Потому что давление интенсивность под опорой зависит от жесткости опоры, тип почвы и состояние почвы, проблема в основном неопределенный.Обычно используется линейное распределение давления. под фундаментом, и в этом тексте будет следовать этой процедуре. В в любом случае небольшая разница в результатах проектирования при использовании линейного давления распределение

Допустимые опорные напряжения под опорами

Коэффициент запаса прочности при расчете допустимая несущая способность под фундаментом должна быть не менее 3 если учитываемые при расчете нагрузки равны статической нагрузке + пониженная живая нагрузка.Коэффициент запаса прочности не должен быть меньше 2, когда рассматривается наиболее тяжелое состояние нагрузки, а именно: статическая нагрузка + полный рабочий ток. нагрузка + ветровая нагрузка или землетрясения.

Нагрузки на надстройку обычно рассчитывается на уровне земли. Если указано допустимое допустимое давление на опору, оно должно быть уменьшено на объем бетона. под землей на единицу площади основания, умноженную на разница между удельным весом бетона и грунта.Если принять равной среднюю плотность грунта и бетона рис.7, тогда следует уменьшить на

Конструктивное исполнение раздвижных опор

Для опоры на ноги следующие позиции следует рассматривать как

1 ножницы

Напряжения сдвига съедали обычно контролировать глубину расставленных опор.Критическое сечение для широкой балки сдвиг показан на рис.8-а. Находится на расстоянии d от колонны или стены. лицо. Значения касательных напряжений приведены в таблице 1. разрез для продавливания сдвига (двусторонний диагональный сдвиг) показан на рис. 8-б. Он находится на расстоянии d / 2 от лицевой стороны колонны. Это предположение в соответствии с Кодексом Американского института бетона (A.CI).

Таблица 1): допустимые напряжения в бетоне и арматуре: —

Виды напряжений

символ

Допустимые напряжения в кг / см 2

Прочность куба

ж у.е.

180

200

250

300

Осевой комп.

f co

45

50

60

70

Простые изгибающие и эксцентрические усилия с большим эксцентриситетом

ж в

70

80

95

105

Напряжения сдвига

Плиты и опоры без армирования.

Другие участники

Элементы с армированием

q 1

q 1

в 2

7

5

15

8

6

17

9

7

19

9

7

21

Пробивные ножницы

q cp

7

8

9

10

Армирование

Низкоуглеродистая сталь 240/350

Сталь 280/450

Сталь 360/520

Сталь 400/600

f с

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

Пробивные ножницы обычно контролировать глубину разложенных опор.Из принципов статики Рис. 8-б , сила на критическом участке сдвига равна силе на опора за пределами секции сдвига, вызванная чистым давлением грунта f n .

где q p = допустимое напряжение сдвига при штамповке

= 8 кг / см 2 (для куба сила = 160)

f n = чистое давление на грунт

b = Сторона колонны

d = глубина продавливания

Можно предположить, что критический участок для продавливания сдвига находится на торце колонны, и в этом случае допустимое напряжение сдвига при штамповке можно принять равным 10.0 кг / см 2 (для прочности куба = 160).

Фундамент обычно проектируется чтобы гарантировать, что глубина будет достаточно большой, чтобы противостоять сдвигу бетона без армирования полотном ..

2- Облигация

Напряжение связи рассчитывается как

.

где поперечная сила Q равна взятые в том же критическом сечении для изгибающего момента или при изменении бетонное сечение или стальная арматура.Для опор постоянное сечение, сечение для склеивания находится на лицевой стороне колонны или стены. В арматурный стержень должен иметь достаточную длину d d , Рис.9, чтобы избежать выдергивания (разрыва соединения) или раскалывание бетона. Значение d d вычисляется следующим образом:

Для первого расчета возьмем f s равно допустимой рабочей стресс.Если рассчитанный d d есть больше имеющегося d d затем пересчитайте d d взяв f с равно действительному напряжению стали.

Допустимая стоимость облигации напряжение q b следующие

3- Изгибающий момент

Критические разделы для изгибающий момент определяется по рис.10 следующим образом:

Для бетонной стены и колонны, это сечение берется на лицевой стороне стены или колонны рис.10-а.

Для кладки стены этот участок берется посередине между серединой и краем стены Рис.10-б.

Для стальной колонны этот раздел расположен на полпути между краем опорной плиты и лицевой стороной столбец Рис.(10-с).

Глубина, необходимая для сопротивления изгибающий момент

4- Опора на опору

Когда железобетон колонна передает свою нагрузку на опору, сталь колонны, которая несущий часть груза, не может быть остановлен на опоре, так как это может привести к чрезмерной нагрузке на бетон в зоне контакта колонны.Следовательно, это необходимо передать часть нагрузки, которую несет стальная колонна, на напряжение сцепления с основанием за счет удлинения стальной колонны или дюбеля. Из Рис.11:

куда f s — фактическое напряжение стали

5- Обычная бетонная опора под R.C. Подставка

Распространенной практикой является размещение простой бетонный слой под железобетонным основанием. Этот слой около 20 см. до 40 см. Проекция C плоского бетонного слоя зависит от его толщины t. Ссылаясь на Рис.12, максимальный изгибающий момент на единицу длины в сечении a-a равно

Где f n = чистое давление почвы.

Максимальное растягивающее напряжение внизу раздела а-а это:

ДИЗАЙН R.C. СТЕНА:

Основание стены представляет собой полосу из железобетон шире стены. На Рис.13 показаны различные типы стеновые опоры. Тип, показанный на Рис. 13-а, используется для опор, несущих легкие. нагрузки и размещены на однородном грунте с хорошей несущей способностью.Тип, показанный в Рис. 13-б используется, когда грунт под фундаментом неоднородный и разная несущая способность. Используется тип, показанный на рисунках 13-c и 13-d. для тяжелых нагрузок.

Процедура проектирования:

Рассмотрим 1.0 метров длиной стена.

1. Найдите P на уровне земли.

2. Найти, если дано, то оно сокращается или вычисляется P T .

3. Вычислить площадь опоры

Если напряжение связи небезопасно, либо увеличиваем за счет использования стальных стержней меньшего диаметра, либо увеличивать ∑ О глубина d.Сгибая вверх стальная арматура по краям фундамента помогает противостоять сцеплению стрессы. Диаметр основной стальной арматуры не должен быть меньше более 12 мм. Для предотвращения растрескивания из-за неравномерного оседания под стеной Само по себе дополнительное армирование используется, как показано на рис. 13-c и d. это принимается как 1,0% от поперечного сечения бетона под стеной и распределяется одинаково сверху и снизу.

19.Проверить анкерный залог

Конструкция одностоечной опоры

одноколонный фундамент обычно квадратный в плане, прямоугольный фундамент — используется, если есть ограничение в одном направлении или если поддерживаемые столбцы слишком удлиненный.прямоугольное сечение. В простейшем виде они состоят из единой плиты ФИг.15-а. На рис. 15-б изображена колонна на пьедестале. опора, пьедестал обеспечивает глубину для более благоприятной передачи нагрузки и во многих случаях

требуется чтобы обеспечить необходимую длину для дюбелей. Наклонные опоры, такие как те, что на Рис. 15-c

Методика расчета опор квадратной колонны

Американец Кодексы практики равно момент около критического сечения y-y чистого напряжения, действующего на вылупился.area abcd Рис. 16-a. Согласно континентальным кодексам практики M max . равно любому; момент действия чистых напряжений на заштрихованной области abgh, показанной на рис. 16-b, около критического сечения y-y или 0,85 момент результирующих напряжений, действующих на площадь abcd на рис. 16-а. о г-у.

8.Определите необходимую глубину сопротивления пробивке d p .

9. Рассчитайте d м , глубину сопротивления

b = B, сторона опоры согласно Американским нормам практики

.

b = (b c + 20) см где b c — сторона колонны по континентальному Кодексы практики.

Следует отметить, что d м вычисленное континентальным методом, больше, чем вычисленное американским кодом. Большая глубина уменьшит количество стальной арматуры и обычно соответствует глубине, необходимой для штамповки. Американский код дает меньший d м с более высоким значением стальной арматуры, но с использованием высокопрочной стали, площадь стальной арматуры может быть уменьшена. В этом тексте изгибающий момент рассчитывается в соответствии с Американскими нормами, а b равно принимается либо равным b c + 20, когда используется обычная сталь, либо равно B при использовании стали с высоким пределом прочности.

Глубина основания d может быть принимает любое значение между двумя значениями, вычисленными двумя вышеуказанными методами. Это Следует отметить, что при одном и том же изгибающем моменте большая глубина будет требуется меньшая площадь арматурной стали, которая может не удовлетворять требованиям минимальный процент стали. Также небольшая глубина потребует большой площади стали. особенно при использовании обычной низкоуглеродистой стали.

10. Выберите большее из d m или d p

11.Проверить d d , глубину установки дюбеля колонны.

Методика расчета прямоугольной опоры

Процедура такая же, как и квадратный фундамент. Глубина обычно контролируется пробивными ножницами, кроме случаев, когда отношение длины к ширине велико, сдвиг широкой балки может контролировать глубина. Критические участки сдвига находятся на расстоянии d по обе стороны от столбец Рис.17-а. Изгибающий момент рассчитывается для обоих направлений, вокруг оси 1-1 и вокруг оси b-b, как показано на рис. 17.b и c.

Армирование в длинном направление (сторона L) рассчитывается по изгибающему моменту и равномерно распределяется по ширине B. армирование в коротком направлении (сторона B) рассчитывается по изгибу момент М 11 .При размещении стержней в коротком направлении один необходимо учитывать, что опора, обеспечиваемая опорой колонны, является сосредоточены около середины, следовательно, зона опоры, прилегающая к колонна более эффективна в сопротивлении изгибу. По этой причине произведена регулировка стали в коротком направлении. Эта регулировка помещает процент стали в зоне с центром в колонне шириной, равной к длине короткого направления опоры.Остальная часть арматура должна быть равномерно распределена в двух концевых зонах, рис.18. По данным Американского института бетона, процент стали в центральная зона выдается по:

где S = отношение длинной стороны к короткой сторона, L / B.

SEMELLES

Одиночные опоры должны быть связаны вместе пучками, известными как семеллы, как показано на рис.19.a. Их функция нести стены первого этажа и переносить их нагрузки на опоры. Семелла могут предотвратить относительное оседание, если они имеют очень жесткое сечение. и сильно усиленный.

Семелле спроектирован как неразрезная железобетонная прямоугольная балка. несущий вес стены. Ширина семели равна ширина стены плюс 5 см и не должна быть меньше 25 см. Должно сопротивляться силам сдвига и изгибающим моментам, которым он подвергается, semelles должен

быть усиленным сверху и снизу для противодействия дифференциальным расчетам.равным усилением A s .

Верх уровень семеллы должен быть на 20 см ниже уровня платформы. окружающие здание. Если уровень первого этажа выше уровень платформы, уровень внутренней полумельки можно принять 20 см. ниже уровня первого этажа

Опоры, подверженные воздействию момента

Введение

Многие основы сопротивляются, в в дополнение к концентрической вертикальной нагрузке, момент вокруг одной или обеих осей основания.Момент может возникнуть из-за нагрузки, приложенной не к центру основание. Примеры основ, которые должны противостоять моменту, — это основания для подпорные стены, опоры, опоры мостов и колонны фундаменты высотных зданий, где давление ветра вызывает заметный прогиб моменты у основания колонн.

Результирующее давление на почву под внецентренно нагруженным основанием считается совпадающим с осевым нагрузка P, но не с центром тяжести фундамента, что приводит к линейному неравномерное распределение давления.Максимальное давление не должно превышать максимально допустимое давление на почву. Наклон опоры из-за возможна более высокая интенсивность давления почвы на пятку. Это может быть уменьшенным за счет использования большого запаса прочности при расчете допустимого грунта давление. Глава 1, Раздел «Опоры с эксцентрическими или наклонными нагрузками» обеспечивают снижение допустимого давления на грунт для внецентренно нагруженных опоры.

Опоры с моментами или эксцентриситетом относительно Одна ось

где P = вертикальная нагрузка или равнодействующая сила

е = Эксцентриситет вертикальной нагрузки или равнодействующей силы

q = интенсивность давления грунта (+ = сжатие)

и не должно быть больше допустимого

давление почвы q a

c-Нагрузка P за пределами средней

Когда нагрузка P находится за пределами средней трети, то есть е > L / 6, Уравнение7 указывает на то, что под опорой возникнет напряжение. Однако нет между почвой и основанием может возникнуть напряжение, поэтому напряжение напряжения не принимаются во внимание, а площадь основания, которая находится в натяжение не считается эффективным при несении нагрузки. Следовательно диаграмма давления на почву всегда должна быть в сжатом состоянии, как показано на Рис.21-.c. Для в эксцентриситет е > L / 6 с участием относительно только одной оси, можно управлять уравнениями для максимальной почвы давление q 1 , найдя диаграмму давления сжатия, результирующая должна быть одинаковой и на одной линии действия нагрузки P.Этот диаграмма примет форму треугольника со стороной = q 1 и основанием =

Опоры с моментами или эксцентриситетом относительно обе оси

Для опор с моментами или эксцентриситет относительно обеих осей Рис. 22, давление может быть вычислено с помощью следующее уравнение

a- Нейтральная ось за пределами базы:

Если нейтральная ось находится снаружи основание, то все давление q находится в сжатом состоянии, и уравнение (9) имеет вид действительный.Расположение максимального и минимального давления на почву может быть определяется быстро, наблюдая направления моментов. Максимум давление q 1 находится в точке (1)

Рис.22-а и минимальный давление q 2 находится в точке (3). Давление q 1 и q 2 определяются из уравнения (9).

б- Нейтральная ось режет основание

Если нейтральная ось режет основание, то некоторый участок основания подвергается растяжению Рис.22. Как почва вряд ли захватит опору, чтобы удерживать ее на месте, поэтому диаграмму, показанную на рис. 22-б, и уравнение (9) использовать нельзя. Расчет Максимальное давление на почву должно зависеть от площади, фактически находящейся на сжатии. Диаграмма сжатия должна быть найдена таким образом, чтобы ее результирующая должны быть равны и на одной линии действия силы P. Простейший способ получить эту диаграмму — методом проб и ошибок следующим образом:

1- Находить давление почвы во всех углах, применяя уравнение.(9).

2- Определите положение нейтральной оси N-A (линия нулевого давления). Это не прямая линия, но предполагается, что это так. Поэтому необходимо найти только две точки, по одной на каждой соседней стороне. основания.

3- Выбрать другой нейтральная ось (N’-A ‘) параллельна (N-A), но несколько ближе к месту результирующей нагрузки P, действующей на опору.

4- Вычислить момент инерции сжатой области по отношению к N’-A ‘. В Самая простая процедура — нарисовать опору в масштабе и разделить площадь на прямоугольники и треугольники

4.4 КОНСТРУКЦИЯ ПРЕДНАЗНАЧЕННЫХ ФУНТОВ К МОМЕНТУ

Основная проблема в конструкция эксцентрично нагруженных опор — это определение распределение давления под опорами. Как только они будут определены, процедура проектирования будет аналогична концентрически нагруженным опорам, выбраны критические сечения и произведены расчеты напряжений из-за момент и сдвиг сделаны.

Где изгибающие моменты на колонне поступают с любого направления, например от ветровые нагрузки, квадратный фундамент; предпочтительнее, если не хватает места диктуют выбор прямоугольной опоры. Если изгибающие моменты действуют всегда в том же направлении, что и в колоннах, поддерживающих жесткие каркасные конструкции, опору можно удлинить в направлении эксцентриситета

Размеры фундамента B и L пропорциональны таким образом, чтобы максимальное давление на носке не превышает допустимого давления почвы.

Если колонна несет постоянный изгибающий момент, например, кронштейн, несущий длительной нагрузке, может оказаться преимуществом смещение колонны от центра на опоры так, чтобы эксцентриситет результирующей нагрузки был равен нулю. В этом случае распределение давления на основание будет равномерным. Долго носок опоры должен быть спроектирован как консоль вокруг сечение лицевой стороны колонны, Расчет глубины сопротивления пробивные ножницы и ножницы для широкой балки такие же, как при опоре фундаментов концентрические нагрузки

Поскольку изгибающий момент на основание колонны, вероятно, будет большим для этого типа фундамента, арматура колонны должна быть правильно привязана к фундаменту., Детали армирования для этого типа фундаментов показаны на Рис.24.

Для квадратного фундамента это как правило, удобнее всего поддерживать одинаковый диаметр стержня и расстояние между ними в обоих направления во избежание путаницы при креплении стали.

Комбинированные опоры

Введение

В предыдущем разделе были представлены элементы оформления разворота и стены. опоры.В этом разделе рассматриваются некоторые из наиболее сложных проблемы с мелким фундаментом. Среди них есть опоры, поддерживающие более один столбец в ряд (комбинированные опоры), который может быть прямоугольным или трапециевидной формы, или две накладки, соединенные балкой, как ремешок опора. Эксцентрично нагруженные опоры и опоры несимметричной формы тоже будет рассмотрено.

Прямоугольные комбинированные опоры

Когда линии собственности, расположение оборудования, расстояние между колоннами и другие соображения. ограничить расстояние от фундамента в местах расположения колонн, возможное решение: использование фундамента прямоугольной формы.Этот тип фундамента может поддерживать два столбца, как показано на рисунках 25 и 26, или более двух столбцов с только небольшое изменение процедуры расчета. Эти опоры обычно проектируется, предполагая линейное распределение напряжения на дне основания, и если равнодействующая давления почвы совпадает с равнодействующая нагрузок (и центр тяжести опоры), грунт предполагается, что давление равномерно распределено, линейное давление Распределение подразумевает твердую опору на однородной почве.Настоящий опора, как правило, не жесткая, и давление под ней неравномерно, но Было обнаружено, что решения, использующие эту концепцию, являются адекватными. Этот Концепция также приводит к довольно консервативному дизайну.

Конструкция жесткой прямоугольной опоры заключается в определении расположение центра тяжести (cg) нагрузок на колонну и использование длины и такие размеры ширины, чтобы центр тяжести основания и центр силы тяжести колонны нагрузки совпадают.С размерами опоры установили, ножницы

можно подготовить диаграмму моментов, выбрать глубину сдвига (опять же является обычным, чтобы сделать глубину достаточной для сдвига без использования сдвига армирование, чтобы косвенно удовлетворить требованиям жесткости), и армирование сталь, выбранная для требований к гибке. Критические секции на сдвиг, оба диагональное натяжение и широкая балка должны приниматься, как указано в предыдущем раздел.Максимальные положительные и отрицательные моменты используются при проектировании армирующей стали, и в результате получится сталь как в нижней, так и в верхней части луч.

В коротком направлении очевидно, что вся длина не будет эффективен в сопротивлении изгибу. Эта зона, ближайшая к колонне, будет наиболее эффективен для изгиба, и рекомендуется использовать этот подход. Это в основном то, что Кодекс ACI определяет в Ст.15.4.4 для прямоугольного опоры

Если принять, что зона, в которую входят столбцы, больше всего эффективная, какой должна быть ширина этой зоны? Конечно, это должно быть что-то больше ширины столбца. Наверное, не должно быть больше ширина столбца плюс d до 1,5d, в зависимости от расположения столбца на основе аналитическая работа автора, отсутствие руководства по Кодексу и признание того, что дополнительная сталь «укрепит» зону и увеличит моменты в этой зоне и уменьшить момент выхода из зоны.Эффективная ширина при использовании этого метода проиллюстрирован на рис.27. Для оставшейся части фундамента в коротком направлении Кодекс ACI Должно использоваться требование для минимального процентного содержания стали (ст. 10.5 или 7.13).

При выборе размеров для комбинированного фундамента размер длины равен несколько критично, если желательно иметь диаграммы сдвига и момента математически близко как проверка ошибок.Это означает, что если длина точно вычисленное значение из местоположения cg столбцов, Эксцентриситет будет внесен в основание, что приведет к нелинейному диаграмма давления грунта. Однако фактическая длина в заводском состоянии должна быть округляется до практической длины, скажем, с точностью до 0,25 или 0,5 фута (от 7,5 до 15 см).

Нагрузки на колонну могут быть приняты как сосредоточенные нагрузки для расчета сдвига и диаграммы моментов.Для расчета значения сдвига и момента на краю (торце) столбца следует использовать. Результирующая ошибка при использовании этого подхода: незначительно Рис. (28)

Если основание нагружено более чем двумя колоннами, проблема не устранена. статически детерминированный; реакции (нагрузки на колонку) известны также как распределенная нагрузка, то есть давление грунта.

Методика расчета прямоугольной комбинированной опоры: —

Ссылаясь на Рис.29, этапы проектирования можно резюмировать следующим образом:

1- Найдите направление применения полученного R. Это исправление L / 2, поскольку y равно известные и ограниченные. Следует указать, что если длина L не равна точно рассчитанное значение, эксцентриситет будет введен в опоры, в результате чего получается нелинейная диаграмма давления грунта.Фактический как построенный длину, однако, следует округлить до практической длины, например, до ближайшие 5 см или 10 см.

максимальный + ve момент в точке K, где сила сдвига = ноль

6- Определите глубину сдвига. Принято делать глубину адекватной на сдвиг без использования сдвига армирование. Критическое сечение сдвига находится на расстоянии d от грани. столбца, имеющего максимум сдвиг, рис.30

7-Определить глубина продавливания сдвига для обеих колонн. По данным ACI, критическое сечение это на d / 2 от грани колонны. Рис.30.

9-д выбран наибольший из

т = д + От 5 до 8 см.

11- Проверьте напряжения сцепления и длину анкеровки d.

12- Короткое направление:

Нагрузки на колонны распределяются поперечно поперечными балками (скрытыми), одна под каждым столбцом.Длина балок равна ширине балки. опоры B. Эффективную ширину поперечной балки можно принять как минимум из следующего:

а- Ширина колонны a + 2 d или ширина колонны a + d + проекция фундамента за столбцом y, рис.31.

б- Ширина подошвы

Следует отметить, что код ACI считает, что эффективная ширина поперечная балка равна ширине колонны a + d или ширине колонны a + d / 2 + y. Поперечный изгибающий момент M T1 в колонне (1) равен

Поперечная арматура должна быть распределена по полезной ширине. поперечной балки.Для остальной части фундамента минимум следует использовать процентную сталь. Напряжения связи и длина анкеровки d d , следует проверить.

Стойка комбинированная трапециевидная: —

Комбинированная трапециевидная опора для двух колонн, используемая, когда колонна несет самая большая нагрузка находится рядом с линией собственности, где проекция ограничена или когда есть ограничение на общую длину опоры.Ссылаясь на Рис.32 ,

Положение результирующей нагрузки на столбцы R определяет положение центриод трапеции. Длина L определяется, а площадь A равна вычислено из:

Процедура проектирования такая же, как и для прямоугольного комбинированного фундамента, за исключением того, что диаграмма сдвига будет кривой второй степени, а изгибающий момент — кривая третьей степени.

Конструкция ременных или консольных опор

Можно использовать ленточную опору. где расстояние между колоннами настолько велико, что комбинированная или трапециевидная опора становится довольно узкой, что приводит к высоким изгибающим моментам, или где, как в предыдущем разделе.

Ремешок основание состоит из двух опор колонн, соединенных элементом, называемым ремень, балка или консоль, передающая момент извне опора.На рис.33 показано ленточное основание. Поскольку ремешок предназначен для

момент, либо это должно быть образуются вне контакта с почвой или почву следует разрыхлить на на несколько дюймов ниже ремешка, чтобы ремешок не оказывал давления на грунт действуя по нему. Для простоты разбора, если ремешок есть. не очень долго, весом ремешка можно пренебречь.

При проектировании ленточной опоры сначала необходимо выровнять опоры.Это делается при условии, что равномерное давление грунта под основаниями; то есть 1 и 2 (Рис.33) действуют в центре тяжести опор.

Ремешок должен быть массивным член, чтобы это решение было действительным. Развитие уравнения 1 подразумевает жесткую вращение тела; таким образом, если ремень не может передать эксцентрик момент из столбца 1 без вращения, решение недействительно.Избегать рекомендуется вращение внешней опоры.

I планка / I опора > 2

Желательно пропорции обе опоры так, чтобы B и q были как можно более равны для управления дифференциальные расчеты.

Методика расчета опор ремня

реакция под интерьер опора будет уменьшена на такое же значение, как показано на Рис.33

1- Дизайн начинается с пробной стоимости

евро.

6- Убедитесь, что центр тяжести площадей двух опор совпадают с равнодействующей нагрузок на колонну.

7- Рассчитайте моменты и сдвиг в различных частях ремня. опора.

8- Дизайн ремешка

Ремешок представляет собой однопролетная балка нагружена вверх нагрузками, передаваемыми ей двумя опор и поддерживаются нисходящими реакциями по центральным линиям двух столбцы.Таким образом, нагрузка вверх по длине L равна R 1 / L. т / м ‘. Местоположение максимального момента получается приравниванием сдвига сила до нуля. Момент уменьшается к внутренней колонне и равен нулю. по центральной линии этого столбца. Следовательно, половина армирования ремня составляет прекращено там, где больше нет необходимости, а вторая половина продолжается до внутренняя колонна. Проверьте напряжения сдвига и используйте хомуты и изогнутые стержни, если необходимо.

9- Конструкция наружной опоры

Внешняя опора действует точно так же, как настенный фундамент длиной, равной L. Хотя колонна расположен на краю, балансирующее действие ремня таково, что передают реакцию R 1 равномерно по длине L 1 Таким образом достигается желаемое равномерное давление на почву. Дизайн выполнен точно так же, как для настенного фундамента.

10- Дизайн межкомнатной опоры

Внутренняя опора может быть спроектирован как простой одноколонный фундамент. Основное отличие состоит в том, что Пробивные ножницы следует проверять по периметру fghj, рис.33.

ФУНДАМЕНТЫ

Введение

Фундамент плота непрерывное основание, которое покрывает всю площадь под конструкцией и поддерживает все стены и колонны.Термин мат также используется для обозначения фундамента. этого типа. Обычно используется на почвах с низкой несущей способностью и там, где площадь, покрытая расстеленными опорами, составляет более половины площади, покрытой структура. Плотный фундамент применяется также там, где в грунтовой массе содержится сжимаемые линзы или почва достаточно неустойчива, так что дифференциал урегулирование будет трудно контролировать. Плот имеет тенденцию переходить мост неустойчивые отложения и уменьшает дифференциальную осадку.

Несущая способность плотов по песку

Биологическая способность основания на песке увеличивается по мере увеличения ширины. Благодаря большой ширине плота по сравнению с шириной обычной опоры, допустимая вместимость под плотом будет намного больше, чем под опорой.

Было замечено на практике что при допустимой несущей способности под плотом, равной удвоенной допустимая несущая способность определяется для обычной опоры.отдых на том же песке даст разумная и приемлемая сумма урегулирования.

Если уровень грунтовых вод находится на глубина равна или больше B, ширина плота, допустимая Несущая способность, определенная для сухих условий, не должна уменьшаться. Если есть вероятность, что уровень грунтовых вод поднимается, пока не затопит площадка, допустимая несущая способность следует уменьшить на 50%.Если уровень грунтовых вод находится на промежуточной глубине между B и основанием плот, следует сделать соответствующее уменьшение от нуля до 50%.

Несущая способность плотов по глине.

В глинах несущая способность не влияет на ширину фундамента. вместимость под плотом будет такая же, как и под обычным основанием.

Если предполагаемый дифференциал осадка под плотом более чем терпима или если вес здание, разделенное на его площадь, дает несущее напряжение больше, чем допустимая несущая способность, плавающий или частично плавающий фундамент должен быть на рассмотрении.

Выполнить плавающий фундамент, земляные работы должны проводиться до глубины D, на которой вес выкопанного Грунт равен весу конструкции, рисунок 2.В этом случае избыточное наложенное напряжение Δp на уровне фундамента равна нулю и, следовательно, здание не пострадает.

Если полный вес building = Q

и вес удаленной почвы = Ш с

и превышение нагрузки при уровень фундамента = Q e

\ Q e = QW s

В случае плавающего фундамента ;

Q = Ш с и, следовательно, Q e = Ноль

В случае частично плавающего фундамент, Q e имеет определенный значение, которое при делении на площадь основания дает допустимый подшипник емкость почвы;

Проектирование плотных фундаментов;

Плоты могут быть жесткими. конструкции (так называемый традиционный анализ), при которых давление грунта действует против плиты плота предполагается равномерно распределенным и равным общий вес постройки, деленный на площадь плота.Это правильно, если столбцы более или менее загружены и расположены на одинаковом расстоянии, но на практике выполнить это требование сложно, поэтому допускается чтобы нагрузки на колонны и расстояния варьировались в пределах 20%. Однако если нисходящие нагрузки на одних участках намного больше, чем на других, это желательно разделить плот на разные части и оформить каждую зону на соответствующее среднее давление. Непрерывность плиты между такими области обычно предоставляются, хотя для областей с большими различиями в давления рекомендуется выполнить вертикальный строительный шов через плита и надстройка, чтобы учесть дифференциальную осадку.

В гибком плотном фундаменте дизайн не может быть основан только на требованиях к прочности, но это необходимо подвергнуться из-за прогнозируемого заселения. Толщина и количество армирования плота следует подбирать таким образом, чтобы предотвратить развитие трещин в плите. Поскольку дифференциальный расчет не учтено в конструктивном дизайне, принято усиливать плот с вдвое большей теоретической арматурой.Количество сталь может быть принята как 1% площади поперечного сечения, разделенной сверху и Нижний. Толщина плиты не должна превышать 0,01 от радиус кривизны. Толщина может быть увеличена около колонн до для предотвращения разрушения при сдвиге.

Есть два типа плотных фундаментов:

1- Плоская плита перекрытия, которая представляет собой перевернутую плоскую плиту Рис.34-а. Если толщина плиты недостаточна, чтобы противостоять продавливанию под колонны, пьедесталы могут использоваться над плитой Рис. 34-.b или, ниже плиты, с помощью утолщение плоской плиты под колоннами, как показано на Рис. 34-c.

2- Плита и балка на плоту, есть. перевернутый R.C. пол, состоит из плит и балок, идущих вдоль колонны, рядами в обоих направлениях, Рис.34-d, он также называется ребристым матом. Если желателен сплошной пол в цоколь, ребра (балки) могут быть размещены под плитой, рис.34-е.

Конструкция плота плоской перекрытия

Плот, г. равномерной толщины, делится на полосы столбцов и средние полосы как показано на рис. 35-а. Ширина полосы столбцов равна b + 2d, где b = сторона колонки. Глубину плота d можно принять примерно равной 1/10 свободный промежуток между столбцами.Также ширину полосы столбца можно принять равно 3 б.

Планки колонн выполнены в виде неразрезные балки, нагруженные треугольными нагрузками, как показано на рис. 35-b. Сеть интенсивность равномерного восходящего давления f n под любой площадью, для Например, площадь DEFG можно принять равной одной четвертой общей нагрузки. на столбцах D, E, F и G, разделенных на площадь DEFG.

Суммарные нагрузки, действующие на планка колонны BDEQ, рис.35-a приняты в виде треугольных диаграмм нагружения, показанных на рис. 35-б. Общая нагрузка на деталь DE, P DE , принимается равной чистое давление, действующее на площадь DHEJ.

Конструкция жесткого плота (традиционный метод)

Размер плота устанавливается равнодействующая всех нагрузок и определяется давление грунта. вычисляется в различных местах под основанием по формуле.

Плот подразделяется на ряд непрерывных полос (балок) с центром в рядах колонн, как показано на Рис.37.

Диаграммы сдвига и момента могут быть установлены с использованием либо комбинированного анализа фундамента, либо балочного момента коэффициент Коэффициенты момента балки. Коэффициент момента балки PI 2 /10 для длинных направлений и Для коротких направлений может быть принят PI 2 /8.Отрицательный и положительные моменты будем считать равными. Глубина выбрана так, чтобы удовлетворить требования к сдвигу без использования хомутов и растягивающей арматуры выбрано. Глубина обычно будет постоянной, но требования к стали могут варьироваться от полосы к полосе. Аналогично анализируется и перпендикулярное направление.

Конструкция плиты перекрытия и фермы (ребристый мат)

Если столбец загружается и интервалы равны или меняются в пределах 20%, чистое восходящее давление f n действие на плот предполагается равномерным и равным Q / A.

где

Q = вес здания при на уровне земли, и

A = площадь плота (по за пределами внешних колонн).

Если это давление больше чем чистое допустимое давление на грунт, площадь плота должна быть увеличен до площади, достаточно большой, чтобы снизить равномерное давление на сетку допустимое значение. Этого можно добиться, выполнив выступ плиты за пределы внешняя грань внешних колонн.

Ссылаясь на Рис. 38, различные элементы плота могут иметь следующую конструкцию:

Конструкция плиты:

1-Расчет поперечных балок B 1 и B 2

Равномерно распределенная нагрузка / м ‘ на

Пусть R 1 и R 2 быть центральной реакцией балок B 1 и B 2 на центральная балка дальнего света В и 3 соответственно.Концевые балки B 1 несет только часть нагрузки, которую несет балка B 2 и, следовательно, центральная реакция R 1 принимается равной

KR 2 где K — коэффициент, основанный на сравнительной области, то

Также предполагается, что сумма центральных реакций от поперечных балок B 1 и B 2 равно суммарным нагрузкам от центральных колонн, таким образом,

2R 1 + 8R 2 = 2-пол. 1 + 2-пол. 2 (2)

Решение уравнений.(1) и (2), R 1 и R 2 может быть определен.

Изгибающий момент и сдвиг силовые диаграммы можно нарисовать, как показано на рис.39. Реакции R 1 и R 2 можно определить, приравняв сумму вертикальных сил до нуля. Центральное сечение балок при положительном изгибающем моменте может быть выполнен в виде Т-образной балки, так как плита находится на стороне сжатия. Разделы балки под центральной балкой B 3 должны иметь прямоугольную форму. раздел.

2- Конструкция центральной главной балки B 3

Нагрузка, усилие сдвига, диаграммы и диаграммы изгибающего момента показаны на рис. 40-а. Раздел может быть выполнен в виде Т-образной балки.

3- Конструкция центральной главной балки B 4

Нагрузка, усилие сдвига, диаграммы изгибающих моментов представлены на рис.40-б Разрез может быть спроектирован как тавровая балка

Ленточная опора

против опорной площадки | Новости строительства

Что такое фундамент

Центральным элементом строительной площадки является фундамент конструкции. Это часть структурной системы.Он фиксирует конструкции на почве и сопротивляется опрокидыванию. фундамент сохранит устойчивость конструкции. Фундамент обеспечивает точную поверхность для развития каркаса.

Назначение фундамента

1. Фундамент распределяет различные надстройки на очень большую площадь.
2. Фундамент поддерживает конструкцию здания.
3. Фундамент обеспечивает защиту от различных происшествий.
4. Фундамент обеспечивает поверхность надстройки.
5. Обеспечивает упругость конструкции.
6. Он также может передавать нагрузку через боковую фиксацию.
7. Фундамент предотвращает всевозможные трещины, сводит к минимуму.

Фундамент популярный

В строительстве доступны два популярных типа фундамента. Это два типа полосовой опоры и подкладки. В этой статье мы обсудим эти два типа фундамента и разницу между ними.

Ленточный фундамент

Этот тип фундамента представляет собой неглубокий фундамент, который используется для обеспечения непрерывной опоры линейной конструкции.Ленточный фундамент еще называют ленточным. Он имеет нижний уровень, который как минимум равен или ниже 3м. Ленточная опора помогает распределить весь вес по почве.

Ленточный фундамент подходит для большинства типов грунтов. Он также обеспечивает постоянную поддержку и помогает выдерживать несущие стены.

Ленточный фундамент лучше подходит для использования с частыми колоннами, чем с подушечным фундаментом. Ширина ленточного фундамента зависит от ширины конструкции стены. Минимальная прочность этого фундамента — 150 мм.Ленточный фундамент должен быть достаточно глубоким, чтобы предотвратить обмерзание. Ленточный фундамент — лучшее решение для поддержки линейной стены за счет распределения нагрузки.

Подушка

Этот тип фундамента также известен как подушечный фундамент. Это тоже неглубокий фундамент. Хотя по желанию грунт и тип почвы можно сделать намного глубже. и подушечка, и ленточный фундамент решают одни и те же проблемы. Подушки не ленточные. Подкладки изготавливаются из подкладок. Подушки могут быть прямоугольной, квадратной, круглой формы.Опорный способ подушечного фундамента отличается от ленточного.

Этот тип фундамента имеет большую толщину, а верхняя поверхность подушечного фундамента имеет уклон. Толщина подушечного фундамента достаточна для поддержания формы в плане. Подкладки — это самый популярный вариант, который нужно добавить в повестку дня клиентов. Часть опорной плиты может быть усилена для уменьшения добычи. Согласно проанализированной информации фундамент площадки используется в нескольких вариантах. слабость подушек связана с ветровой нагрузкой.

Разница между ленточным и подушечным фундаментом

1.Ленточный фундамент используется для выдерживания нагрузок, особенно в частых колоннах. С другой стороны, опорный фундамент выдерживает сосредоточенную нагрузку от колонны конструкции.
2. Ленточный фундамент применяется при уровне основания менее 3 мм. Если подкладной фундамент не используется, менее 3 мм.

Фундамент разный

В строительной сфере доступны различные типы фундаментов. Это:

1. Плотное основание : Этот тип фундамента также известен как матовый фундамент.Это плита, опирающаяся на почву.
2. Раздвижная опора : Этот тип опоры используется для поддержки колонны и стен. Он может передавать и распределять нагрузку на почву.
3. Свайное основание : Этот тип фундамента представляет собой ряд колонн, которые вставляются в почву для распределения нагрузки на нижний уровень.
4. Комбинированная опора : В этом типе опоры отдельная колонна должна объединять более двух колонн. Тогда это называется комбинированной опорой.
5. Фундамент колодца : Этот тип фундамента представляет собой глубокий фундамент.Обеспечивает строительство мостов ниже уровня моря.
6. Опора ростверка : Этот тип фундамента образует более двух шин из балок. Распределяет нагрузку на большую площадь.

Заключение

Основное назначение подушечных и ленточных фундаментов сильно различается. Хотя эти опоры использовались по той же причине. Ленточный фундамент намного лучше подушечного. Ленточный фундамент можно использовать на большинстве типов грунтов. Для лучшего понимания клиенты могут связаться с инженером.

В этой компактной статье мы обсудим различные типы фундаментов и определение ленточного и подушечного фундаментов. Мы также обсудим разницу между ленточным фундаментом и подушечным фундаментом.


Изображение предоставлено neumannsteel.com.au

Поведение мелкой полосы в двойных пустотах

  • Alsalieh MI (2004) Численное моделирование локализации деформации в зернистом материале с использованием теории Коссера, дополненной свойствами микротканей.Докторская диссертация, Университет штата Луизиана и Сельскохозяйственный и механический колледж, Департамент гражданской и экологической инженерии, Луизиана. США

  • Асакере А., Газави М., Тафреши СНМ (2013) Циклический отклик основания на песке, армированном георешеткой, с пустотами. Найденные почвы 53 (3): 363–374

    Статья Google ученый

  • Аткинсон Дж., Кэрнкросс А. (1973) Обрушение мелкого туннеля в материале Мора – Кулона. В кн .: Материалы симпозиума о роли пластичности в механике грунтов.Кембридж, Массачусетс, стр. 202–206

  • Аткинсон Дж., Поттс Д.М. (1977) Устойчивость неглубокого кольцевого туннеля в несвязном грунте. Геотехника 27 (2): 203–215

    Статья Google ученый

  • Аткинсон Дж., Браун Э., Поттс Д. (1975) Обрушение неглубоких туннелей без футеровки в плотном песке. Тунн Тунн 7 (3): 81–87

    Google ученый

  • Badie A, Wang MC (1984) Устойчивость раздвинутого основания над пустотами в глине.J Geotech Eng Div ASCE 110 (11): 1591–1605

    Статья Google ученый

  • Баус Р.Л. (1978) Устойчивость неглубокого сплошного фундамента, расположенного над пустотой. Кандидатская диссертация, Университет штата Пенсильвания, Юниверсити Парк, Пенсильвания, США

  • Баус Р.Л., Ван М.К. (1983) Несущая способность ленточного фундамента, расположенного над пустотой в связных грунтах. J Geotech Eng Div ASCE 109 (1): 1–14

    Статья Google ученый

  • Bolton MD (1986) Прочность и расширение песков.Геотехника 36 (1): 65–78

    Статья Google ученый

  • Cerato AB (2005) Масштабное влияние несущей способности неглубокого фундамента на сыпучий материал. Кандидатская диссертация, Департамент гражданской и экологической инженерии, Массачусетский университет, США

  • Эбрагимиан Б., Нурзад А. (2013) Численные исследования локализации деформации сдвига в эластопластическом коссертовом материале. В: Материалы 18-й международной конференции по механике грунтов и инженерно-геологическому проектированию, Париж, Франция, стр. 703–706

  • Газави М., Лавасан А.А. (2008) Эффект интерференции неглубоких фундаментов, построенных на песке, армированном геосинтетическим материалом.Geotext Geomembr 26 (5): 404–415

    Статья Google ученый

  • Heaney CE, Bonnier PG, Brinkgreve RBJ, Hicks MA (2013) Адаптивный алгоритм уточнения сетки, основанный на подразделении элементов с применением к геоматериалам. В: VI международная конференция по адаптивному моделированию и моделированию, Лиссабон, Португалия

  • Huang LC, Zhou CY, Cheng Y, Li WK (2013) Эффект размера сетки при моделировании порошкового геоматериала.AIP Conf Proc 1542 (205): 205–208

    Статья Google ученый

  • Jaky J (1944) Коэффициент давления земли в состоянии покоя (A nyugalmi nyomas tenyezoje). J Soc Hung Eng Arch (Magyar Mernok es Epitesz-Egylet Kozlonye) 355–358 (на венгерском языке)

  • Jao M, Wang MC (1998) Устойчивость ленточного фундамента над проложенными бетоном туннелями с мягким грунтом. J Tunn Undergr Space Technol 13 (4): 421–434

    Google ученый

  • Киёсуми М., Кусакабэ О, Охучи М., Пэн Флорида (2007) Давление растянутой опоры над множественными пустотами.J Geotech Geonevironm Eng 133: 1522–1531

    Статья Google ученый

  • Ли Дж., Сальгадо Р. (2005) Оценка несущей способности круговых опор на песках на основе теста конусного проникновения. J Geotechn Geoenviron Eng ASCE 131 (4): 442–452

    Статья Google ученый

  • Ли Дж., Сальгадо Р., Ким С. (2005) Несущая способность круговых опор с доплатой Использование анализа конечных элементов в зависимости от состояния.Comput Geotech 32: 445–457

    Статья Google ученый

  • Ли Дж. К., Чон С., Ко Дж. (2014) Неподренажная устойчивость наземных ленточных оснований над пустотами. Comput Geotech 62: 128–135

    Статья Google ученый

  • Осман А.С., Майр Р.Дж., Болтон М.Д. (2006) О кинематике обрушения двухмерного туннеля в недренированной глине. Геотехника 56: 585–595

    Статья Google ученый

  • Rodriguez-Roa F (2002) Проседание грунта из-за неглубокого туннеля в плотном песчаном гравии.J Geotech Geoenviron Eng ASCE 128 (5): 426–434

    Статья Google ученый

  • Schanz T (1998) Zur Modellierung des Mechanischen verhalten von Reibungsmaterialen. Штутгартский университет, Германия, Habilitationsschrift

    Google ученый

  • Слоун С.В., Ассади А. (1991) Непрочная устойчивость квадратного туннеля в грунте, прочность которого линейно увеличивается с глубиной.Comput Geotech 12: 321–346

    Статья Google ученый

  • Укритчон Б., Уиттл А.Дж., Клангвиджит М. (2003) Расчеты коэффициента несущей способности N γ с использованием анализа численных пределов. J Geotech Geoenviron Eng ASCE 129 (6): 468–474

    Статья Google ученый

  • Вакили К., Лавасан А.А., Шанц Т., Дачева М. (2014) Влияние конститутивной модели грунта на численную оценку механизированного проходки туннелей.В кн .: Материалы 8-й Европейской конференции по численным методам в геотехнической инженерии. Делфт, Нидерланды, стр. 889–894

  • Ван М.К., Баус Р.Л. (1980) Расчетное поведение опоры над пустотой. В кн .: Материалы 2-й конференции по наземным движениям и конструкциям. Кардифф, Великобритания, стр. 68–184

  • Ван М.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *