Фундаменты сплошные: Область применения сплошных фундаментов — bmi-rus.ru – Устройство плитного фундамента своими руками: особенности и укладка

Содержание

Ленточные фундаменты. Сплошные фундаменты


⇐ ПредыдущаяСтр 4 из 6Следующая ⇒

Ле́нточный фундамент представляет собой замкнутый контур (ленту) – полосу из железобетона, укладываемую под всеми несущими стенами здания и распределяющую вес здания по всему своему периметру. Таким образом, оказывая сопротивление силам выпучивания почвы, избегая проседания и перекоса здания. Сплошные фундаментыПредставляют собой сплошную безблочную или ребристую железобетонную плиту «под всей площадью здания. Сплошные фундаменты устраивают в случаях когда нагрузка, передаваемая на фундамент, значительна, а грунт основания слабый.

Столбчатые и сплошные фундаменты

Сплошные фундаменты Представляют собой сплошную безблочную или ребристую железобетонную плиту «под всей площадью здания. Сплошные фундаменты устраивают в случаях когда нагрузка, передаваемая на фундамент, значительна, а грунт основания слабый. Столбчатый фундамент очень похож на свайный фундамент и представляет собой систему столбов, установленных в наиболее нагруженных точках — местах схождения стен, а также на углах строения. Возможна установка столбов под тяжёлыми внутренними стенами или в других местах с большим сосредоточением нагрузки. Для такого типа фундамента обязательно нужно устраивать армированный пояс — ростверк (рандбалки, обвязочные балки), позволяющий минимизировать вероятность опрокидывания или горизонтального смещения фундамента.

Свайные фундаменты

Свайный фундамент – это фундамент, в котором для передачи нагрузки от здания на грунт используются сваи. Фундамент на сваях целесообразно возводить в тех случаях, когда несжимаемый слой грунта находится настолько глубоко, что другие типы фундаментов строить невозможно, а именно в случае возведения дома на слабых грунтах (например, на торфяных грунтах или в болотистой местности).

Сваи — деревянные, металлические, или железобетонные стержни, которые заглубляют в грунт в основании зданий и сооружений для придания прочности фундамента.

Гидроизоляция фундаментов

Способы гидроизоляции принято делить на два типа. Выполняться они могут в различных плоскостях — в вертикальной, в горизонтальной.

Вертикальная гидроизоляция, как правило, выполняется с наружной стороны самого фундамента. Гидроизоляцию при этом лучше всего наносить до уровня тротуара или отмостки. Таким образом, фундамент будет идеально защищен от грунтовой воды.Горизонтальная же гидроизоляция предназначена скорее для защиты от воды стен подвалов (стен здания). Это та вода, которая может проникать от подошвы фундамента по капиллярам использованных при строительстве пористых материалов.

В обоих типах изоляции используется гидрозамок из глины, разница лишь в том, что в вертикальной гидроизоляции между замком и фундаментом есть еще прижимная стенка, выполненная из кирпича.

Плиточный фундамент

Гидроизоляция плиточного фундамента выполняется рулонным рубероидом. Минимум – два слоя, с нахлесткой от десяти до двадцати сантиметров. В качестве клеящей основы лучше всего взять горячую битумную мастику. Укладывается гидроизоляция непосредственно на фундаментную плиту, но если на ней есть неровности, то их выравнивают стяжкой. Утеплитель укладывается поверх гидроизоляции, и именно по нему выполняется стяжка.

Ленточный фундамент

Гидроизоляция ленточного фундамента может быть выполнена в несколько различных способов.

Самым экономным вариантом следует считать обмазку битумной мастикой. Также гидроизоляция может быть выполнена с использованием рулонных материалов. Самым простым из них считается рубероид, который кроме своей экономичности радует еще и прочностью (прочнее обмазки) и долговечностью. Метод проникающей гидроизоляции является одним из самых эффективных современных способов.

Свайный, столбчатый фундамент

Гидроизолировать сваи и столбы чрезвычайно сложно. Для фундаментов столбчатых чаще всего применяется гидроизоляция насыпного типа. Для фундаментов столбчатых и свайных может применяться гидроизоляция обмазочная или покрасочная. Представлены такие материалы, как правило, в виде битумных, латексно – битумных быстрозасыхающих составов. Есть также проникающая гидроизоляция, которая считается самым эффективным оптимальным способом гидроизоляции такого типа фундамента.

Стены. Классификация. Требования. Каменные стены

Вертикальные ограждающие конструкции зданий, расположенные над фундаментами, называются стенами. Они разделяются на наружные и внутренние. Внутренние стены, которые воспринимают нагрузки от перекрытий, ограждают лестничные клетки и разделяют помещения с различными температурно-влажностными условиями, называют капитальными. По виду материалов различают стены из кирпича, керамических, бетонных и; естественных камней, блочные, панельные, а также монолитные железобетонные. Кроме того, стены могут быть деревянными,, из асбестоцементных или стальных листов. В зависимости от конструктивной схемы здания стены могут быть: несущими, которые кроме массы стен воспринимают нагрузки от перекрытий, кровли, кранов, ветра и др.; самонесущими, воспринимающими нагрузки от собственной массы стен всех этажей здания, а также и ветровую нагрузку; ненесущими (навесными), которые воспринимают нагрузку только от собственной массы и от ветра в пределах одного этажа высотой не более 6 м.В зависимости от сложности архитектурного сооружения стены подразделяют на гладкие, простые, средней сложности и сложные. Например, к стенам средней сложности относят стену с содержанием архитуктурных деталей до 30% ее площади.Наружные стены должны удовлетворять требованиям прочности, теплозащиты, звукоизоляции, морозостойкости, атмосфероустой-чивости и архитектурной выразительности а внутренние — требованиям прочности и звукоизоляции. Конструкции и материалы стен должны отвечать определенной степени огнестойкости как самих стен, так и здания или сооружения в целом. Конструкции стен должны быть максимально индустриальными.

Каменные стены (кирпичные и блочные) долговечны, прочны, огнестойки, обладают хорошей звукоизоляцией, но массивны и трудоемки в возведении, медленно прогреваются, зато долго держат тепло.

В зависимости от вида применяемых каменных материалов каменную кладку подразделяют на кладку из естественных и искусственных камней.

К естественным материалам относят камень (известняк, песчаник, доломит). Он может быть рваным, неправильной формы или постелистым (имеет примерно две параллельные плоскости). По прочности камень бывает от 25 до 100 марок.

Искусственные каменные материалы — это сплошные бетонные блоки (могут быть с пустотами), обычно изготавливаемые из легкого бетона, и глиняный кирпич, обожженный, а также силикатный кирпич.

Каменные стены

Каменные стены (кирпичные и блочные) долговечны, прочны, огнестойки, обладают хорошей звукоизоляцией, но массивны и трудоемки в возведении, медленно прогреваются, зато долго держат тепло.

В зависимости от вида применяемых каменных материалов каменную кладку подразделяют на кладку из естественных и искусственных камней.

К естественным материалам относят камень (известняк, песчаник, доломит). Он может быть рваным, неправильной формы или постелистым (имеет примерно две параллельные плоскости). По прочности камень бывает от 25 до 100 марок.

Искусственные каменные материалы — это сплошные бетонные блоки (могут быть с пустотами), обычно изготавливаемые из легкого бетона, и глиняный кирпич, обожженный, а также силикатный кирпич.

При строительстве зданий и сооружений применяют следующие виды кладки: – кирпичную; – кладку из керамических камней; – кладку из искусственных крупных блоков, изготовляемых из бетона, кирпича или керамических камней; Ф кладку из керамического кирпича пластического прессования.

Элементы и детали стен

Элементы и детали стен в зависимости от назначения имеют различные наименования. Нижняя часть стены, расположенная непосредственно на фундаменте и выступающая из ее плоскости, называется цоколем. Он предназначен для защиты стены от увлажнения и от механических воздействий; отделывают его прочными влагоустойчивыми материалами. Верхняя выступающая часть стены называется карнизом (рис. 1).

Горизонтальные выступы в стенах (кроме венчающего карниза) называют поясками, вертикальные — пилястрами, или полуколоннами. Часть стены, расположенную между оконными проемами, называют простенком, а конструкцию, перекрывающую проем сверху, — перемычкой.

Проемы в капитальных стенах перекрывают железобетонными перемычками, а также рядовыми клинчатыми и арочными перемычками, выполняемыми из неармированной каменной кладки. Основным типом перемычек являются сборные железобетонные (ГОСТ 948—76).

К архитектурно-конструктивным элементам зданий, непосредственно связанным со стенами, следует также отнести балконы, эркеры и лоджии. Балконом называют открытую огражденную площадку, выступающую за плоскость наружной стены. Уровень пола балкона соответствует уровню междуэтажного перекрытия. Элементами балкона являются его несущая конструкция, пол и ограждение. Эркер является закрытым балконом, размещенным за внешней поверхностью наружной стены и огражденный стенами. Эркер составляет часть помещения. Лоджией называют встроенную внутри здания и открытую со стороны фасада площадку, огражденную с трех сторон стенами.

Деревянные стены

Деревянные стены — панельные, каркасные, бревенчатые (рубленые) и брусчатые не требуют устройства массивных фундаментов. Внутри них тепло и сухо. И хотя они хуже каменных сохраняют тепло и быстрее охлаждаются, зато при обогреве быстрее нагреваются (рис. 1).

Бревенчатые и брусчатые стены наиболее теплые, прочные, малозвукопроводные. Им свойственны недостатки кустарного строительства. Рубка углов и ручная выемка пазов непроизводительна, дает много отходов древесины, требует работы плотников высокой квалификации. Выгодны бревенчатые стены в том случае, если для них использованы бревна разбираемых строений.

Бревенчатые (рубленые) стены представляют собой конструкцию, в которой стены собирают из окоренных бревен (круглого леса).

Рубленые стены делают преимущественно в холодных районах, где много леса, а также при использовании круглого леса от сносимых строений. Эти стены представляют собой конструкцию из горизонтально уложенных одно на другое бревен, соединенных в углах врубками. Остов здания со стенами такой конструкции называют срубом, а каждый ряд бревен сруба — венцом.


Рекомендуемые страницы:

Тема 4 Столбчатые фундаменты, сплошные фундаменты, область применения, конструктивные решения

Прочитать учебный материал темы, составить конспект и подготовиться к закреплению.

 

Столбчатые фундаментыприменяются в основном для зданий каркасного типа, располагаются под каждой колонной и на прочных грунтах в основании.

Состоят сборные столбчатые фундаменты из следующих железобетонных элементов (рисунок 37а, б, в):

— плитной части, состоящей из одной или нескольких ступеней;

— подколонника стаканного типа, для установки колонны.

 

 

а, б, в — сборные столбчатые фундаменты стаканного типа; 1 – колонна; 2 – подколонник стаканного типа; 5 – плита; г – сборный столбчатый фундамент пенькового типа; 3, 4 – пенек для кирпичных столбов; 5 — плита

 

Рисунок 37 – Столбчатые фундаменты

 

Элементы фундамента укладываются на уплотнённый грунт, по щебёночной или песчаной подготовке, соединяются между собой слоем цементно-песчаного раствора.

Для зданий с неполным каркасом, когда применяются кирпичные столбы, столбчатый фундамент решается пенькового типа (рисунок 37г), т.е. состоит из:

— фундаментной плиты, сборной или монолитной;

— пенька (столба) – из кирпича, бутового камня или железобетона.

При большой нагрузке от здания, большой глубине заложения фундамента, не достаточно прочных грунтах в основании столбчатый фундамент устраивается монолитным (рисунок 38).

 

    1 – плита с уступами; 2 – подколонник; 3- колонна; 4 – стакан; 5 — горизонтальные бороздки на колонне для закрепления с бетоном; 6 – бетонная подготовка   Рисунок 38 – Монолитный столбчатый фундамент

Для опирания самонесущих стен каркасных зданий применяются фундаментные балки, которые передают нагрузку от стен на фундаменты.

Для предупреждения деформаций под балками от выпирания грунтов под фундаментом и пучения грунта, выполняют засыпку под фундаментной балкой из шлака или песка (рисунок 39).

 

    1 – столбчатый фундамент; 2 – фундаментная балка; 3 – кирпичная стена; 4 – засыпка   Рисунок 39 – Опирание самонесущей стены на столбчатый фундамент

 

При возведении малоэтажных зданий с несущими стенами на достаточно прочных грунтах фундаменты могут устраиваться столбчатыми в виде отдельных опор (рисунок 40), которые располагают в углах здания, пересечении наружных и внутренних стен, под простенками и при сплошных стенах по длине через 1,5; 3,0; 4,5; 6,0 м.

Отдельные опоры могут выполняться сборными из отдельных блоков, монолитными из бетона, бутобетона и бутового камня.



По обрезу фундамента укладывают железобетонные фундаментные балки, под которыми устраивают шлаковую или песчаную подсыпку для предупреждения деформации пучения и осадки основания (рисунок 40).

 

 

а – из сборных элементов с опиранием фундаментной балки: 1 – железобетонная фундаментная балка; 2 – подсыпка; 3 – отмостка; 4 – гидроизоляция; б – составной: 4 – сборные железобетонные плиты; 5 – кирпичный столб; в – неиндустриальный: 5 – кирпичный столб; 6 – ступени из бутовой кладки

 

Рисунок 40 – Столбчатые фундаменты под несущие стены

Сплошные фундаментыустраиваются под всей площадью здания в виде сплошной плиты при значительных нагрузках от здания, на слабых грунтах, неоднородных грунтах, при высоком уровне грунтовых вод. Сплошные фундаменты обеспечивают равномерное распределение нагрузки на основание и равномерную осадку их под нагрузкой.

 

Сплошные фундаменты подразделяются на:

— монолитные (рисунок 41), устраиваемые на месте;

— сборные (рисунок 42), изготавливаемые на заводах стройиндустрии и монтируемые на строительной площадке.

По конструктивному решению сплошные фундаменты могут быть в виде:

— сплошной плиты,

— плиты с рёбрами,

— скорлуп-оболочек.

 

 

 

а – сплошная гладкая плита; б – плита с ребрами

 

Рисунок 41 – Монолитные сплошные фундаменты

 

 

 

 

а – цилиндрическая оболочка; б – параболическая с затяжкой

 

Рисунок 42 – Сборные сплошные фундаменты

Материал для закрепления:

1 Назначение столбчатых фундаментов.

2 Объяснить название фундамента «столбчатый».

3 Назвать виды столбчатых фундаментов:

а) по конструктивному решению;

б) по способу изготовления;

в) по материалу.

4 Назвать элементы столбчатого фундамента и их назначение.

5 Объяснить область применения столбчатых фундаментов.



6 Объяснить название и область применения сплошных фундаментов.

7 Назвать виды сплошных фундаментов:

а) по способу изготовления;

б) по конструктивному решению.

 

Проверка степени усвоения материала:

1 Объяснить конструктивное решение фундаментов:

а) для каркасных зданий на прочных грунтах применяется фундамент….., который состоит из ….;

б) для здания на грунтах с высоким уровнем грунтовых вод применятся фундамент, состоящий из…..;

в) для здания с неполным каркасом под кирпичные столбы применяется фундамент……, имеющий .

 

2 Объяснить назначение фундаментных балок, мероприятия для защиты грунтов от выпирания.

 

3 Закончить фразу:

а) Фундаменты, возводимые на месте строительства, относятся к ……;

б) Фундаменты, в виде сборных железобетонных скорлуп, относятся к …;

в) Фундаменты, представляющие собой «стакан», относятся к …..

г) Все фундаменты должны устраиваться обязательно по……

 

3.2. Ленточные фундаменты

3.2.1. Общие сведения о ленточных фундаментах

Ленточные фундаменты устраиваются под внутренние и наружные несущие и самонесущие стены. По форме сечения (рис.3.4) ленточные фундаменты подразделяются на:

— прямоугольные;

— трапециевидные;

— ступенчатые;

— «с подушкой».

Толщина фундаментной стены определяется расчетом или принимается по конструктивным соображением. Расположение стены относительно ленточного фундамента может быть решено в нескольких вариантах (рис.3.5):

  • ширина фундамента больше толщины стены;

  • ширина фундамента равна толщине стены;

  • ширина фундамента меньше толщины стены.

Наружная стена может быть сдвинута внутрь или наружу относительно стены ленточного фундамента.

3.2.2. Глубина заложения фундаментов

Глубина заложения фундамента для здания без подвала зависит от назначения здания, конструктивных особенностей, величины и характера нагрузок, геологических и гидрогеологических условий, климатических условий района строительства (глубина промерзания грунтов) и ряда других факторов. Глубина заложения фундаментов под наружные стены и колонны должна быть не

Рис. 3.4. Форма поперечного сечения ленточных фундаментов:

а — фундамент прямоугольной формы ; б – то же «с подушкой», в — то же, ступенчатой формы; г – то же трапециевидной; 1 — подошва фундамента ; 2 — подушка ; 3 — обрез фундамента.

менее 0,5 м; На пучинистых грунтах глубина заложения должна быть не менее глубины промерзания грунта.

Глубина заложения фундамента под внутренние стены отапливаемых зданий не зависит от промерзания грунта и назначается не менее 0,5 м. от уровня поверхности земли или пола подвала.

3.2.3. Ленточные фундаменты из сборных железобетонных блоков

Ленточные фундаменты могут выполняться из сборных железобетонных блоков, из монолитного бетона или бутобетона, из бутового камня. Наиболее распространенными являются ленточные сборные фундаменты из крупных железобетонных блоков. Они наиболее индустриальны, их применение позволяет значительно сократить сроки строительства и уменьшить трудоемкость работ.

Сборный ленточный фундамент состоит из фундаментных блоков-подушек и фундаментных стеновых блоков. Фундаментные подушки могут быть прямоугольной или трапециевидной формы, а фундаментные блоки – прямоугольные параллелепипеды (рис.3.5). Фундаментные блоки изготавливаются на заводах ЖБИ определенных типоразмеров. Фундаментные блоки обычно делают без пустот, но могут выпускаться и с пустотами.

Рис. 3.5. Конструктивные схемы ленточных фундаментов:

1 – бутовый, шире стены; 2 – бутобетонный, равен ширине стены; 3 — из пустотелых блоков, равен толщине стены; 4 — из железобетонных блоков, тоньше ширины стены; 5 — из крупных панелей

Рис.3.6. Элементы сборных ленточных фундаментов:

1, 3 — блок-подушка с предварительно напряженной арматурой; 2 — укороченный стеновой блок; 4 – укороченная фундаментная подушка; 5 – стеновой фундаментный блок

Блоки — подушки укладываются на выровненную поверхность основания при песчаных грунтах и на песчаную подсыпку толщиной 100 мм при прочих грунтах. Под пустотелые подушки следует сделать бетонную подготовку.

27. Классификация железобетонных фундаментов. Отдельные, ленточные и сплошные фундаменты, области их применения.

Делятся на: отдельные — под каждой колонной; ленточные — под рядами колонн в одном или двух направлениях, а также под не­сущими стенами; сплошные — под всем сооружением. Фундаменты возводят чаще всего на естественных основаниях (они преимущественно и рассмотрены здесь), но в ряде случаев выполняют и на сваях. В последнем случае фундамент представляет собой группу свай, объединенную поверху распределительной железобетонной плитой — ростверком.

Отдельные фундаменты устраивают при относительно небольших нагрузках и достаточно редком размещении колонн. Ленточные фундаменты под рядами колонн делают тогда, когда подошвы отдельных фундаментов близко подходят друг к другу, что обычно бывает при слабых грунтах и больших нагрузках. Целесообразно применять ленточные фундаменты при неоднородных грунтах и внешних нагрузках, различных по значению, так как они выравнивают неравномерные осадки основания. Если несущая способность ленточных фундаментов недостаточна или деформации основания под ними больше допустимых, то устраивают сплошные фундаменты. Они в еще большей мере выравнивают осадки основания. Эти фундаменты применяют при слабых неоднородных грунтах, а также при значительных и неравномерно распределенных нагрузках.

По способу изготовления фундаменты бывают сборные и монолитные.

28. Железобетонные фундаменты неглубокого заложения. Расчет центрально нагруженных фундаментов.

В зависимости от размеров сборные фундаменты ко­лонн выполняют сборными и монолитными. Их выполняют из тяжелых бетонов классов В15…В25, уста­навливают на песчано-гравийную уплотненную подготов­ку толщиной 100 мм. В фундаментах предусматривают арматуру, располагаемую по подошве в виде сварных сеток. Минимальную толщину защитного слоя арматуры принимают 35 мм. Если под фундаментом нет подготовки, то защитный слой делают не менее 70 мм.

Необходимая площадь подошвы центрально-нагруженного фундамента при предварительном расчете

A=ab=(1,2…1,6)Ncol/(R-γmd) R – расчетное давление на грунт; γmусредненная нагрузка от веса фундамента и грунта на его ступенях; D – глубина заложения фундамента

Минимальную высоту фундамента с квадратной по­дошвой определяют условным расчетом его прочности на продавливание в предположении, что оно может проис­ходить по поверхности пирамиды, боковые стороны кото­рой начинаются у колонн и наклонены под углом 45°. Это условие выражается формулой (для тяжелых бето­нов)

P<=Rbt ho um

Продавливающую силу принимают согласно расчету по первой группе предельных состояний на уровне верха фундамента за вычетом давления грунта по площади основания пирамиды продавливания: P=N-A1 p.

P=N/A1; A1=(hc+2ho)(bc+2h0)

29. Железобетонные фундаменты неглубокого заложения. Особенности расчета внецентренно нагруженных отдельных фундаментов.

Внецентренно нагруженные фундаменты. Их целесообразно выполнять с прямоугольной подошвой, вытяну­той в плоскости действия момента.

Соотношение сторон b/a=0,6…0,8. При том размеры сторон округляем в большую сторону до значения кратного 30 см при использовании металлической инвентарной опалубки и 10 см при неинвентарной опалубки.

Максимальное и минимальное давление под краем подошвы определяют из предположения линейного распределения напряжений в грунте:

Pmax min=Ntot/A+-Mtot/W=Ntot/ab(1+-b*eo/a)

Ntot Mtot – нормальная сила и изгибающий момент при гамма ф =1 на уровне подошвы фундамента.

Ntot=Ncol+A гамма м Н

Mtot=Mcol+Qcol H

Eo – эксцентриситет продольной силы относительно центра тяжести подошвы фундамента. Eo= Mtot/ Ntot

Максимальное краевое давление на грунт не должно превышать 1,2R а среднее давление – R.

В промышленных здания с мостовыми кранами Q<75 т принимают pmin>0, не допускается отрыв фундамента от грунта.

Высоту внецентренно нагруженного фундамента определяют из условия:

Ho=-hcol/2+0,5(Ncol/Rbt+P)^0,5

И конструктивных требований

Hsoc=>(1-1,5)hcol+0.05

Hsoc=>lan+0.05

Hsoc – глубина стакана

Lan – длина анкеровки арматуры колонны в стакане фундаментаю

Определив высоту фундамента из расчета на продавливание и конструктивных требования принимают большую из них.

При h<450 мм фундамент выполняют одноступенчатым, при 450<h<900 мм двухстпенчатым, более 900 – 3ступенчатым.

Затем проверяют дно стакана на продавливание, проверяют высоту ступени на действие поперечной силы по наклонному сечению и подбирают арматуру.

30. Классификация одноэтажных производственных зданий по конструктивным признакам. Компоновка конструктивной схемы здания, привязка элементов к разбивочным осям. Устройство температурно-деформационных швов.

Одноэтажные промышленные здания делятся на:

По количеству пролетов – однопролетные и много пролтеные;

По наличию кранового оборудования: здания без кранового оборудования, здания с подвесными кранами, здания с мостовыми кранами;

Фонарные и бесфонарные здания;

Здания со скатной кровлей, здания с малоуклонной кровлей.

Современные одноэтажные производственные здания в большинстве случаев решаются по каркасной схеме.

Каркас может быть образован из плоских элементов, работающих по балочной схеме (стропильных конструкций), либо включать в себя пространственную конструкцию покрытия (в виде оболочек, опертых на колонны).

Пространственный каркас условно расчленяют на поперечные и продольные рамы, каждая из которых воспринимает горизонтальные и вертикальные нагрузки.

Основным элементом каркаса является поперечная рама, состоящая из колонн защемленных в фундаментах, ригелей (ферма балка арка), покрытия над ними в виде плит.

Поперечная рама воспринимает нагрузку от массы снега, кранов, стен, ветра и обеспечивает жесткость здания в поперечном направлении.

В продольную раму включают один ряд колонн в пределах температурного блока и продольные конструкции, такие как подкрановые балки, вертикальные связи, распорки по колоннам, конструкции покрытия.

Продольная рама обеспечивает жесткость здания в продольном направлении и воспринимает нагрузки от продольного торможения кранов и ветра, действующего в торец здания.

В задачу компоновки конструктивной схемы входят:

Выбор сетки колонн и внутренних габаритов здания

Компоновка покрытия

Разбивка здания на температурные блоки

Выбор схемы связей, обеспечивающих пространственную жесткость здания

В целях обеспечения максимальной типизации элементов каркаса приняты следующие привязки к продольным и поперечным координационным разбивочным осям:

1. Наружные грани колонн и внутренние поверхности стен совмещаются с продольными разбивочными осями (нулевая привязка) в зданиях без мостовых кранов и в зданиях, оборудованных мостовыми кранами грузоподъемностью до 30 т включительно при шаге колонн 6 м и высоте от пола до низа несущих конструкций покрытия менее 16,2 м.

2. Наружные грани колонн и внутренние поверхности стен смещаются с продольных разбивочных осей наружу здания на 250 мм в зданиях, оборудованных мостовыми кранами грузоподъемностью до 50 т включительно при шаге колонн 6 м и высоте от пола до низа несущих конструкций покрытия 16,2 и 18 м, а также при шаге колонн 12 м и высоте от 8,4 до 18 м.

3. Колонны средних рядов (за исключением колонн, примыкающих к продольному температурному шву, колонн, установленных в местах перепада высот пролетов одного направления, а также кроме колонн при поперечных температурных швах и колонн, примыкающих к торцам зданий) располагают так, чтобы оси сечения подкрановой части колонны совпадали с продольными и поперечными разбивочными осями.

4. Геометрические оси торцовых колонн основного каркаса смещаются с поперечных разбивочных осей внутрь здания на 500 мм, а внутренние поверхности торцовых стен совпадают с поперечными разбивочными осями (нулевая привязка).

5. Перепады высот между пролетами одного направления и продольные температурные швы в зданиях с железобетонным каркасом следует осуществлять, как правило, на двух колоннах со вставкой.

6. Поперечные температурные швы осуществляют на парных колоннах. При этом ось температурного шва совмещается с поперечной разбивочной осью, а геометрические оси парных колонн смещаются с разбивочной оси на 500 мм.

7. В зданиях, оборудованных электрическими мостовыми кранами грузоподъемностью до 50 т включительно, расстояние от продольной разбивочной оси до оси подкранового рельса принимается равным 750 мм.

8. Примыкание двух взаимно перпендикулярных пролетов следует осуществлять на двух колоннах со вставкой размером 500 и 1000 мм.

Высота здания определяется по технологическим условиям и назначается исходя из верха кранового рельса.

С изменением температуры железобетонные конст­рукции деформируются — укорачиваются или удлиня­ются; вследствие усадки бетона — укорачиваются. При неравномерной осадке основания части конструкций взаимно смещаются в вертикальном направлении. В большинстве случаев железобетонные конструкции представляют собой статически неопределимые системы и поэтому от изменения температуры, усадки бетона, а также от неравномерной осадки фундаментов в них возникают дополнительные усилия, что может привести к появлению трещин или к разрушению части конструк­ции. Чтобы уменьшить усилия от температуры и усадки, железобетонные конструкции делят по длине и ширине температурно-усадочными швами на отдельные части — деформационные блоки. Температурно-усадочные швы выполняют в назем­ной части здания—от кровли до верха фундамента, разделяя при этом перекрытия и стены. Ширина температурно-усадочного шва составляет 20-30 мм. Осадочные швы, служащие одновременно и темпе­ратурно-усадочными, устраивают между частями зданий разной высоты или в зданиях, возводимых на участке с разнородными грунтами; такими швами делят и фун­даменты. Осадочные швы устраивают с помощью вкладного пролета из плит и балок.

Наибольшее допустимое расстояние между температурно-усадочными швами в железобетонных конструкциях нормируется и составляет в отапливаемых одноэтажных зданиям из сборного железобетона 72 м, в неотапливаемых – 48 м..

В ряде случаев целесообразно рассчитать температуру Δt и усадочные деформации Δsh: Δt=αbt ltb Δto; Δsh= αsh ltb; αbt=1*10-5 1/град

Ф.9.22. Как устраиваются фундаменты в виде сплошных железобетонных плит?

Фундаменты в виде сплошных железобетонных плит (см. рис.Ф.9.12,н,о,п) устраиваются под всем зданием или сооружением и представляют собой плоскую, ребристую или коробчатую плиты (рис.Ф.9.22). В плане эти фундаменты имеют прямоугольное, круглое или кольцевое очертания.

Рис.Ф.9.22. Плитные фундаменты: а — со сборными стаканами; б — с монолитными стаканами;в — ребристая плита; г — плита коробчатого сечения: 1 — верхняя рабочая сетка; 2 — нижняя рабочая сетка;3 — вертикальная арматура

В отличие от рассмотренных ранее, сплошные фундаменты обладают способностью изгибаться под действием внешних нагрузок. Поэтому сплошные фундаменты армируются как в нижней, так и в верхней зонах сечения (рис.Ф.9.22). Армирование выполняется плоскими сварными сетками или отдельными стержнями, которые укладываются на поддерживающие каркасы.

Данный тип фундаментов имеет наибольшее преимущество при слабых грунтах, так как эти фундаменты нечувствительны к неравномерным осадкам.

Ф.9.23. Почему у некоторых фундаментов подошва выполняется наклонной?

Подобные фундаменты применяются в том случае, если на обрезе фундамента действует наклонная нагрузка. Наклонная нагрузка возникает от распорных конструкций без затяжки. Примером являются Г-образные рамы сельскохозяйственных зданий и арочные покрытия спортивных сооружений.

Фундаменты устраиваются в монолитном или сборном исполнении (рис.Ф.9.23) с углом наклона подошвы к горизонту не более 20. Устройство наклонной грани устраняет возможность сдвига фундамента по подошве, повышая тем самым его устойчивость.

Рис.Ф.9.23. Фундамент с наклонной подошвой: 1 — цокольная панель; 2 — полурама; 3 — раствор; 4 — фундамент; 5 — подготовка

Ф.9.24. Для чего под подошвой фундамента устраивается песчаная подготовка?

Основное назначение песчаной подготовки устранить неровности в плоскости контакта подошвы фундамента и грунта основания, образующиеся при разработке котлована. При этом устраняется возможность смятия грунта и тем самым выравниваются контактные напряжения по подошве фундамента.

Песчаная подготовка устраивается в глинистых грунтах. В песчаных грунтах при устройстве монолитных железобетонных фундаментов роль песчаной подготовки выполняет слой из тощего бетона, называемый подбетонкой. Толщина подбетонки принимается равной 100-150 мм.

Целесообразно возводить фундаменты на промежуточной подготовке переменной жесткости в плане (рис.Ф.9.24). В этом случае эпюра контактных давлений трансформируется таким образом, что наибольшие давления на грунт концентрируются под бетонной частью подготовки.

Рис.Ф.9.24. Фундамент на промежуточной подготовке: 1 — эпюра контактных давлений; 2 — рыхлый песок; 3 — бетон; 4 — фундамент

Ф.9.25. В чем отличие напряженного состояния под столбчатыми, ленточными и круглыми в плане фундаментами?

Характер распределения напряжений в грунтах зависит от вида нагрузки, приложенной на его поверхности.

Под подошвой столбчатых фундаментов, имеющей очертание в плане в виде квадрата или прямоугольника, напряжения и деформации, возникающие в грунте от нагрузки, передаваемой фундаментом, распределяются в основании в условиях пространственной деформации. Поэтому для определения напряжений и деформаций в основании в этом случае следует использовать решение Буссинеска для сосредоточенной силы с интегрированием по площади квадрата или прямоугольника.

Под ленточными фундаментами мы имеем условия плоской деформации, поэтому для определения напряжений используется решение Фламана, полученное для линейной нагрузки с его интегрированием по ширине фундамента.

Для круглых в плане фундаментов, массив грунта под которыми находится в условиях осесимметричной деформации, используется решение Буссинеска с интегрированием для нагрузки, равномерно распределенной по кругу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *