Нагрузка на почву от фундамента: Допустимая нагрузка на почву от фундамента в местах основания столбов – Расчет фундамента под дом из блоков: расход и масса материалов, вес здания с нагрузкой, расчет давления на грунт, вычисление опт | ofundamentah.com

Содержание

Нагрузка на фундамент расчет

нагрузка на фундамент

Нагрузка на фундамент — это суммарная масса всех элементов дома, включая снеговые, ветровые и эксплуатационные нагрузки, которая действует на площадь основания. Расчет нагрузок на фундамент необходимо производить после геологических изысканий участка. Зная тип и особенности грунта, можно соотнести рассчитанную нагрузку с допустимым давлением на конкретный тип грунта.

Для того, чтобы разобраться в методике расчета, рассмотрим пример.

Исходные данные для расчета нагрузки на фундамент

В качестве источника нагрузки на грунт возьмем двухэтажный дом 6 × 8 метров с внутренней силовой стеной.

исходные данные для расчета нагрузки на фундамент
Конструктивные элементы домаПлощадь элементов
Площадь кровли70 м²
Площадь чердачного перекрытия50 м²
Общая площадь перекрытия первого и второго этажа100 м²
Площадь внешних стен160 м²
Площадь внутренних силовых стен50 м²
Общий периметр фундамента34 м

В зависимости от конкретной планировки дома, конструкции фундамента и крыши, площади элементов будут различаться. Каждый проект дома необходимо тщательно анализировать и просчитывать элементы. Представленные расчеты носят рекомендательный характер и служат для раскрытия методики анализа.

Для расширения области расчетов рассмотрим два варианта перекрытий – на деревянных лагах и с бетонными пустотными плитами.

Расчет нагрузки на фундамент

Расчет веса каждого элемента производится с учетом параметров строительных материалов, из которых состоят эти элементы:

  1. 1 м² кровли с асбоцементными листами весит 50 кг. Соответственно, если площадь рассматриваемой крыши 70 м², то ее вес равен 70 × 50 = 3500 кг = 3,5 т.
  2. Вес 1 м² чердачного перекрытия из дерева 150 кг, соответственно общий вес 50 × 150 = 7500кг = 7,5 т
  3. Вес 1 м² бетонного чердачного перекрытия 350 кг, соответственно общий вес 50 × 350 = 17500 кг =
    17,5 т
    .
  4. Вес 1 м² межэтажного перекрытия из дерева 200 кг, соответственно общий вес 100 × 200 = 20000кг = 20 т
  5. Вес 1 м² бетонного межэтажного перекрытия 400 кг, соответственно общий вес 100 × 400 = 40000 кг = 40 т.
  6. 1 м² внешней стены весит 250 кг. Соответственно, если площадь внешних стен 160 м², то общий вес равен 160 × 250 = 40000 кг = 40 т.
  7. 1 м² внутренней стены весит 240 кг. Соответственно, если площадь внутренних силовых стен 50 м², то общий вес равен 50 × 240 = 12000 кг = 12 т.
  8. Примерный вес погонного метра ленточного фундамента 1700 кг. Учитывая, что периметр фундамента 34 м, то его общий вес равен 34 × 1700 = 57800 кг =
    57,8 т
    .
  9. Вес полезной нагрузки (люди, оборудование, мебель) 26 т.
  10. Вес снегового покрова 100 кг / м² кровли. Общий вес равен 50 × 100 = 5000 кг = 5 т. При расчете используется не площадь кровли, а площадь ее проекции (то есть площадь чердачного перекрытия). Также, величину снеговой нагрузки необходимо брать в зависимости от региона проживания.

Таблица определения снеговой нагрузки местности

Снеговой районIIIIIIIVVVIVIIVIII
Вес снегового покрытия Sg (кгс/м2)80120180240320400480560

Карта зон снегового покрова территории Российской Федерации:

карта снеговой нагрузки

Подсчитаем общий вес дома:

  • Вес дома с деревянными перекрытиями 171 т.
  • Вес дома с бетонными перекрытиями 201 т.

Для определения расчетной нагрузки увеличим общий вес на 30% и получим:

  • Вес дома с деревянными перекрытиями 220 т.
  • Вес дома с бетонными перекрытиями 260 т.

Теперь, зная тип грунта, можно определить и проанализировать площадь подошвы фундамента.

Важно помнить, что тип и глубина заложения фундамента должны определяться после проведения геологических изысканий. Вы должны четко представлять, какой тип грунта имеется на участке, каков уровень грунтовых вод и какова глубина промерзания грунта.

Таблица допустимого давления на грунт, кг/см²:

ГрунтГлубина заложения фундамента, м
1 — 1,52 — 2,5
Щебень, галька с песчаным заполнением4,56,0
Дресва, гравийный грунт из горных пород4,05,0
Песок гравелистый и крупный3,25,5
Глина твердая3,04,2
Щебень, галька с глинистым заполнением2,84,2
Песок средней крупности2,54,5
Песок мелкий маловлажный2,03,5
Суглинок1,72,0
Глина пластичная1,62,0
Супесь1,52,5
Песок мелкий очень влажный1,52,5

Возьмем для примера песок средней крупности с допустимым давлением на грунт 2,5 кг/см² = 25 т/м².

Получаем:

  • 220 т / 25 т/м² = 8,8 м² допустимая площадь подошвы фундамента дома с деревянными перекрытиями.
  • 260 т / 25 т/м² = 10,4 м² допустимая площадь подошвы фундамента дома с бетонными перекрытиями.

Площадь подошвы = длина фундаментной ленты × ширину ленты.

Зная периметр (длину) фундамента (в нашем случае 34 метра), можно определить минимально допустимую толщину ленты:

8,8 м² / 34 м = 0,26 м = 26 см (для дома с деревянными перекрытиями).

10,4 м² / 34 м = 0,31 м = 31 см (для дома с бетонными перекрытиями).

Допускается, если толщина ленты будет больше рассчитанных значений. Изменение в меньшую сторону недопустимо.

Спорная методика расчета нагрузки на фундамент

Методики расчета во многих источниках практически одинаковые. Но иногда попадаются некоторые противоречивые особенности. Цитата:

«Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.»

По такой же методике, где во внимание берутся только две стороны фундамента, предлагается просчитывать снеговые нагрузки и нагрузки от перекрытий. Но это не совсем верно:

  • Кровельная нагрузка (удельный вес материала) используется для определения оптимального шага и сечения стропил, обрешетки.
  • Нагрузка может распределятся на те участки стены или мауэрлат, где закреплены стропильные ноги, но далее, благодаря армированному поясу, стенам и фундаменту, она равномерно распределяется по всей подошве фундамента.

Поэтому, при определении нагрузок на фундамент, в том числе ветровых, снеговых и от перекрытий, нужно учитывать всю площадь опирания на грунт.

подписка на дзен

Нагрузка основания фундамента: правильный расчет

  • Монтаж фундамента
    • Выбор типа
    • Из блоков
    • Ленточный
    • Плитный
    • Свайный
    • Столбчатый
  • Устройство
    • Армирование
    • Гидроизоляция
    • После установки
    • Ремонт
    • Смеси и материалы
    • Устройство
    • Устройство опалубки
    • Утепление
  • Цоколь
    • Какой выбрать
    • Отделка
    • Устройство
  • Сваи
    • Виды
    • Инструмент
    • Работы
    • Устройство
  • Расчет

Поиск

Портал о фундаментах Портал о фундаментахФундаменты от А до Я.
  • Монтаж фундамента
    • ВсеВыбор типаИз блоковЛенточныйПлитныйСвайныйСтолбчатый

      Фундамент под металлообрабатывающий станок

      Устройство фундамента из блоков ФБС

      Заливка фундамента под дом

      Характеристики ленточного фундамента

  • Устройство
    • ВсеАрмированиеГидроизоляцияПосле установкиРемонтСмеси и материалыУстройствоУстройство опалубкиУтепление

      Устранение трещин в стенах фундамента

      Как армировать ростверк

      Необходимость устройства опалубки

      Как сделать гидроизоляцию цоколя

  • Цоколь

столбчатый, свайный и ленточный, что учесть

Любое строительство дома начинается с расчетных и проектных манипуляций. Чтобы здание прослужило верой и правдой долгие годы, его основание должно иметь достаточную прочность и способность выдерживать определенную нагрузку от стен, кровли, перекрытий и всех конструкционных особенностей постройки. В некоторых случаях с расчетной задачей успешно справляются всевозможные калькуляторы фундамента, представленные в сети. Но нередко они обрисовывают лишь общую картину, не учитывая нюансов строения. Отсюда используются механизмы, позволяющие самостоятельно провести расчет возможной нагрузки, либо доверить этот процесс квалифицированному проектировщику.

Оглавление:

  1. Ленточный фундамент
  2. Столбчатая и свайная основа
  3. Полезные рекомендации по расчету

Результатом качественных подсчетов являются данные по необходимой площади, конфигурации нулевого уровня и предельному давлению на грунт. Усредненного расчета для частного строительства обычно вполне достаточно, где условно принимается значение о равномерной нагрузке.

Расчет нагрузки на фундамент позволяет грамотно подойти к выбору того или иного вида основания. Для выполнения поставленной задачи необходимо оперировать следующими проектными данными:

  • вес самого здания;
  • вес и площадь нулевого уровня;
  • снеговая и ветровая нагрузка, характерная данному климатическому поясу;
  • площадь подошвы цоколя;
  • тип почвы и уровень расположения грунтовых вод;
  • планировка дома, этажность, вид кровли и ее покрытие.

Существуют некоторые различия в подсчетах для разных видов основания.

Ленточный вид

Применительно к ленточному основанию расчет производится с учетом несущей способности грунта. Если значение воздействия на почву несколько выше допустимого, то проблема решается раздвижением опорной площади нулевого уровня, то есть увеличивается ширина ленты.

С помощью ряда размерных конфигураций путем перемножения получается объем рабочей конструкции, который в свою очередь умножается на плотность бетона. Полученный результат покажет массу основания. Далее опорная площадь ленточного фундамента определяется умножением ширины цоколя на его длину.

Площадь подошвы нулевого уровня дома разделить на общую длину всех несущих стен. Полученное значение будет равно минимально допустимой ширине ленточного фундамента, которая в свою очередь не может быть меньше толщины стены.

Нагрузка для столбчатой и свайной основы

В случае фундамента из столбчатых свай, если расчетное давление на грунт превышает допустимые значения, то необходимо увеличить количество либо диаметр свай. В некоторых ситуациях могут потребоваться оба варианта. Число свай, требуемых для конкретного строения, узнается из общего веса строительства поделенного на несущую способность отдельного столба. При этом последнее отличается в зависимости от вида сваи. Важно не забыть и о коэффициенте запаса 1,3 при вычислении массы здания.

Расчет нагрузки на столбчатый фундамент определяется исходя из количества устанавливаемых свай. Для этого площадь основания делится на число опор. Из полученного значения извлекается квадратный корень и результатом будет необходимый размер сечения одной сваи. Отдельным пунктом рассчитывается ширина и несущая способность ростверка свайного фундамента. Вычисления производятся по аналогии с ленточным типом.

Стоит отметить, что сваи для столбчатого фундамента выполняются шагом не более 2 м и располагаются в углах строения, а также в местах пересечения несущих конструкций. На сегодняшний день это наилучший вариант для дома, так как сваи устанавливаются ниже уровня промерзания грунта, что снижает риск возникновения дальнейших деформаций.

Общие рекомендации

Первоначальным проектным этапом является определение типа грунта. От этого будет зависеть глубина заложения будущего основания. Современных способов исследования существует масса, но самый доступный из них – выкопать несколько ям на участке земли под застройку и внимательно рассмотреть состав на срезе.

Глубина заложения цоколя определяется как зависимость показателей уровня сезонного промерзания почвы и типа грунта.

Тип грунтаУровень промерзанияГлубина заложения
Скальныйлюбойлюбая
Пески крупные и средниелюбойне менее 0,5 м
Пески мелкие и пылевидныеболее 2 мто же
Супесименее 2 мне менее 0,7 м
Суглинок, глинаменее 1 мНе менее расчетной глубины промерзания

Например: для Московского региона уровень промерзания грунта измеряется примерно в 140 см. На глинистой почве глубина заложения допускается только не меньше расчетной глубины промерзания. Отсюда величина заглубления цоколя будет не менее 1,4 м.

Определение нагрузки на основание здания позволяет:

1. выбрать наилучшее местоположение постройки;

2. свести к минимуму риск возникновения деформаций цоколя и стен;

3. предотвратить возможность проседания грунта и дальнейших деструктивных разрушений;

4. снизить расход используемых материалов.

Общее напряжение на фундамент делится на:

  • постоянное – от всего строения;
  • временное – от погодных и климатических условий.

Вес здания определяется суммарным подсчетом массы всех предметов, входящих в конструкцию дома, перекрытий, кровли, предполагаемой мебели и техники. Отсюда же вычисляется нагрузка стен на фундамент путем умножения площади и толщины стен и перегородок на массу основного материала.

Давление от кровли вычисляется исходя из величины проекции крыши, размера нагруженных сторон фундамента и общей массы. При этом играют роль конструктивные особенности, угол наклона и тип покрытия. Перекрытия также дают свое напряжение на нулевой уровень и опираются на две равнозначные стены. Площадь плиты равна величине здания, при этом необходимо учитывать их количество и удельный вес материала, из которого они изготовлены.

Показатель снегового давления воздействует на основание через стены и кровлю. Его легко можно определить, используя объем крыши, размер нагруженных сторон фундамента и общую снеговую нагрузку. Вес того или иного материала, снеговая и ветровая нагрузка – такие параметры, как правило, берутся из справочной литературы.

Суммируя показатели массы всей конструкции, полезную нагрузку, снеговой и ветровой коэффициент, получают общее значение давления на цоколь. Отдельно для дальнейших вычислений производится подсчет веса и площади фундамента.

Стандартная несущая способность любого грунта составляет 2 кг/см2. Коэффициент необходимо учитывать при определении ширины фундамента и предельно допустимого давления на почву.

Нагрузка на почву – это отношение веса здания вместе с основой к опорной площади цоколя. Величина не должна превышать 2 кг/см2. При несоответствии расчетного показателя значению стандарта решается вопрос об увеличении опорной площади основания в зависимости от его типа. При изменении конфигурации цоколя необходимо произвести новый расчет. Резюмировать все вышесказанное и автоматизировать процесс подсчета поможет онлайн калькулятор, который учитывает снеговую нагрузку конкретного региона и примерное наполнение дома (мебель, техника).

Сбор нагрузок на фундамент — самая лучшая система расчета

 

Основание домаНа этапе планирования важным мероприятием является сбор нагрузок на фундамент. От точности произведенных измерений зависит надежность и долговечность как основания, так и всего сооружения. Все математические расчеты выполняются в четком соответствии с требованиями руководящих документов и нормативов. Для успешной реализации этого мероприятия нелишним будет предварительно изучить СНиПы и обратиться за советом к специалистам.

Блок: 1/6 | Кол-во символов: 430
Источник: https://fundamentaya.ru/dop/raschet/sbor_nagruzok_na_fundament_primer.html

Разделы статьи

Разновидность нагрузок

Конструкция фундамента находится под влиянием постоянных и временных нагрузок, значение которых зависит от многих факторов: климатического района застройки, видов грунтов основания, строительных материалов для основных конструкций стен, крыши, перекрытий.

Постоянные нагрузки

К постоянным видам нагрузок относятся:

  • Собственный вес конструкций здания.
  • Расчетные показатели давления грунтов на боковую поверхность ленточного фундамента.
  • Давление от грунтовых вод.

При выполнении расчетов усилия от постоянного веса считаются самым серьезным видом нагрузки.

Временная нагрузка

Конструкция здания может подвергаться периодическим временным нагрузкам, таким как:

  • Снеговая, показатель которой зависит от толщины снежного покрова в каждом конкретном регионе.
  • Ветровая, определяемая по таблице усредненных показателей розы ветров в данной местности.
  • Сейсмическая (для районов с повышенной сейсмичностью).
  • От веса мебели в помещениях и перемещения людей.

Блок: 2/4 | Кол-во символов: 1068
Источник: https://KakFundament.ru/raschet/sbor-nagruzok-na-fundament-primer

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

Таблица расчет веса перекрытий и их нагрузка на фундамент

Таблица расчет веса перекрытий и их нагрузка на фундамент

  1. Площадь перекрытий равна площади дома – 80 м2. В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м2.

Блок: 5/8 | Кол-во символов: 937
Источник: https://StroyVopros.net/fundament/raschet-nagruzki-na-fundament.html

Определение удельной нагрузки на 1 кв.м. почвы

В завершение находим сумму всех выполненных результатов, не забывая вычислить допустимую нагрузку на фундамент. Вместе с этим стоит учитывать, что давление, создаваемое стенами с кровельной системой на опору, будет выше своих рядом расположенных собратьев.

Посмотрите видео, как провести полный расчет давления на основание дома.

Фиксированный показатель сопротивляемости почвы вычисляем по таблицам, указанных в СНиП -83 и описываемых правила изготовления фундаментов зданий и построек.

  1. Находим сумму масс, создаваемых всеми элементами сооружения, в том числе и основания: 800 + 2399,04 + 7 000 + 4 200 + 2 000 = 16 399,04 = 16,5 т/кв.м.
  2. Определяем показатель сопротивляемости почвы, для супесей с коэффициентом пористости 0,7 составляет 17,5 т/ кв.м.

Из полученных расчетов можно сделать вывод о том, что давление, создаваемое выбранной для примера постройкой, располагается в рамках допустимой границы.

Блок: 5/6 | Кол-во символов: 946
Источник: https://fundamentaya.ru/dop/raschet/sbor_nagruzok_na_fundament_primer.html

Промежуточные подсчеты нагрузки основания на грунт

Общий показатель нагрузки, создаваемой ленточной опорой на почву, высчитывается следующим образом: объем фундамента умножается на плотность материала, заложенного в его первооснову, и делится на квадратный метр площади основания. Объем при этом следует вычислять как произведение глубины размещения на толщину слоя опоры.

Как правило, на этапе предварительных вычислений последний показатель принимается, как толщина боковых стен.

  1. Площадь основания – 20 кв.м., глубина размещения – 80 см, объем основания 20 х 0,8 = 16 м куб.
  2. Вес основания, выполненного из железобетона, равен: 16 х 2500 = 40 000 кг.
  3. Общая нагрузка на грунт: 40 000/20 = 2 000 кг/ кв.м.

Блок: 4/6 | Кол-во символов: 699
Источник: https://fundamentaya.ru/dop/raschet/sbor_nagruzok_na_fundament_primer.html

Заключение

Как можно заметить из примера, выполнение расчетов нагрузки не такое уж сложное мероприятие. Для успешного его выполнения необходимо четко следовать требованиям нормативных документов и придерживаться определенного ряда правил.

Блок: 6/6 | Кол-во символов: 238
Источник: https://fundamentaya.ru/dop/raschet/sbor_nagruzok_na_fundament_primer.html

Кол-во блоков: 8 | Общее кол-во символов: 4318
Количество использованных доноров: 3
Информация по каждому донору:

  1. https://StroyVopros.net/fundament/raschet-nagruzki-na-fundament.html: использовано 1 блоков из 8, кол-во символов 937 (22%)
  2. https://fundamentaya.ru/dop/raschet/sbor_nagruzok_na_fundament_primer.html: использовано 4 блоков из 6, кол-во символов 2313 (54%)
  3. https://KakFundament.ru/raschet/sbor-nagruzok-na-fundament-primer: использовано 1 блоков из 4, кол-во символов 1068 (25%)

Несущая способность оснований фундаментов: расчет

Последствия неправильного расчета несущей способности фундаментаПоследствия неправильного расчета несущей способности фундамента

Сразу же после сдачи любого сооружения в эксплуатацию, происходит процесс медленного опускания фундамента за счет прикладываемых нагрузок. Фундамент всегда опускается на расчетную глубину, это значение всегда учитывается и закладывается при проведении расчетов.

Большие, неравномерные осадки оснований влекут за собой деформацию конструкций с дальнейшим разрушением здания. Как правило причина кроется в неправильном расчете несущей способности фундаментов, а также из-за ошибок в расчетах допустимых нагрузок на грунты.

Необходимость геологических исследований

Для определения типа фундаментов, а также в расчете ориентировочной просадки грунтов зоны строительства, в обязательном порядке проводятся геологические исследования. С их помощью определяется тип почвы, глубина промерзания, уровень залегания грунтовых вод, структура грунта и прочие параметры. Поэтому несущая площадь фундамента должна быть такой, чтобы ее масса вместе с будущим зданием не превышала расчетное сопротивление грунта на строительной площадке.

Только тогда получится качественный, надежный фундамент, способный выдерживать горизонтальные и вертикальные нагрузки. При этом строить дополнительные этажи без укрепления существующего фундамента запрещено, так как в таком случае резко увеличивается масса объекта в целом.

Что подразумевают под расчетной способностью грунтов?

Данные о несущей способности различных типов грунта для расчета фундаментаДанные о несущей способности различных типов грунта для расчета фундамента

Несущую способность грунтов оценивают в комплексном порядке при расчете фундаментов и сооружений. Главная цель такого расчета – это обеспечить прочность, устойчивость грунтов под подошвой фундамента, не допустить сдвиг здания по подошве в любую сторону.

Нарушение правильного состояния здания может привести не только к накоплению осадок, но впоследствии к нарушению конструкции самого основания. На фундамент также влияют вертикальные, горизонтальные нагрузки со стороны почвы и самого здания, поэтому грунт может просто не справиться с такой массой. Именно по этой причине особое внимание уделяют расчетам несущей способности оснований фундаментов, чтобы максимально определить допустимую зону нагрузки и защитить грунт от полного разрушения.

Какие факторы влияют на состояние грунта и основания?

Таблица с указанием допустимой нагрузки на грунт для расчета несущей способности основанияТаблица с указанием допустимой нагрузки на грунт для расчета несущей способности основания

На несущую способность влияет огромное количество различных факторов, среди которых стоит отметить:

  • вид и характер нагрузок − вертикальная, наклонная, горизонтальная или, непосредственно, нагрузка под подошвой;
  • распределение центра тяжести площади фундамента относительно эксцентричной нагрузки;
  • размеры, характеристики, габариты и материал выполнения подошвы;
  • структура грунта;
  • форма подошвы;
  • глубина погружения основания в грунт, а также наличие под подошвой мягких осадочных пород с малой сопротивляемостью;
  • насколько ровно расположена подошва относительно горизонтали;
  • степень однородности почвы;
  • наличие внешних факторов, которые могут нанести вред подошве, такие как вибрация, сейсмические сдвиги, сезонный подъем грунтовых вод.

Все расчеты несущей способности оснований нужно делать по СНиП 2.02.01-83. Поэтому, обеспеченная несущая способность вычисляется по формуле:   F ≤ YcFu/Yn, где:

  • F – это равнодействующая сила, она должна быть разнонаправлена к основной нагрузке;
  • γс – коэффициент условий работы;
  • Fu— это максимальное сопротивление основания всем нагрузкам;
  • γn— коэффициент надежности по назначению сооружения, принимается равным 1,2; 1,15; 1,10 для сооружений I, II и III классов соответственно.

Когда нужно делать расчет оснований на несущую способность

Чертеж расчета фундамента по несущей способностиЧертеж расчета фундамента по несущей способности
  1. Если на существующее или новое основание воздействуют значительные горизонтальные нагрузки, особенно от строящихся по соседству домов или регулярные вибрации от автомагистралей, промышленных предприятий.
  2. Сооружение было построено на уклоне или откос образовался со временем, обнажив внешнюю часть основания.
  3. Если подошва фундамента установлена на влагонасыщенных почвах.
  4. Когда на основание может воздействовать выталкивающая сила различного происхождения.
  5. Если нужно проверить устойчивость естественных и искусственных склонов.

Если на строительной площадке или в фундаменте существующего здания уже появились видимые деформации конструкций, всегда сначала обращают внимание на состояние почвы под подошвой и определяют их состояние. Поэтому, по нормативам существует сразу несколько различных видов деформаций почвы, которые зависят от внутренних и внешних факторов.

Этапы деформаций грунтов в классическом виде

Схема развития деформаций и возможных перемещений грунта при неправильном расчете несущей способностиСхема развития деформаций и возможных перемещений грунта при неправильном расчете несущей способности

В современной литературе принято различать три основных фазы деформирования грунтов:

  1. Начальная. Это этап уплотнения почвы под влиянием внешних факторов, происходит из-за уменьшения пор между частицами почвы под подошвой. Фаза отличается тем, что сейчас не происходит сдвига фундамента, ведь все касательные нагрузки равноценные и компенсируются нагрузкой. Но нагрузка всегда возникает спонтанно, она распределяется неравномерно. В результате, в одной точке деформация может быть незначительной, а в другой – сильной. Как итог – происходят сдвиги основания.
  2. Вторая стадия – фаза сдвига подошвы основания. По мере увеличения нагрузок грунт сжимается все сильнее, захватывает новые районы, происходит значительный сдвиг подошвы в сторону большей нагрузки. Нарушается стандартное равновесие, под подошвой образуется плотный шар почвы, а по сторонам – пустое пространство. Материал фундамента стремится занять освободившееся место за счет естественных сил тяготения, поэтому возникают трещины и разрывы в основании, а затем в несущих стенах дома.
  3. Третья фаза – это разрушение подошвы. Тут уже материал подошвы выпирает плотный шар грунта и сразу деформируется.

Такая ситуация возникает с теми фундаментами, которые заложены выше граничной глубины промерзания почвы или сверху над горизонтами грунтовых вод. Немного иная картина происходит с глубоко заложенными основаниями. В таких случаях под подошвой также образуется плотный слой грунта, но его не выпирает на поверхность из-за большой площади перекрытия подошвы. Поэтому такой фундамент обладает лучшими несущими способностями, чем мелкозаглубленный.

Если начинается процесс деформации грунтов, то его порой остановить уже нет возможности. Единственный выход, это устраивать специальные защитные конструкции, способные нивелировать нагрузки или по максимуму снизить их воздействие.

Влияние размеров фундамента на несущую способность основания

Графическое изображение зависимости осадки основания фундамента от несущей нагрузкиГрафическое изображение зависимости осадки основания фундамента от несущей нагрузки

Некоторые строители вынуждены для одного сооружения использовать сразу несколько различных видов фундаментов. Причем расчеты нужно делать для каждой подошвы индивидуально. Также возможно применение оснований с длиной, значительно превышающих их ширину.

Графики указывают, что с увеличением ширины фундамента увеличивается объем грунта, способного привести к разрушению подошвы. Поэтому при абсолютно одинаковых условиях и составу грунта, узкие фундаменты менее склонны к деформации, чем широкие.

Также несущая способность оснований зависит от их формы и используемых строительных материалов. Если два фундамента имеют абсолютно одинаковые размеры, одинаково заглублены в грунт, но один имеет длину и ширину практически одинаковую, а другой – более длинный, тогда первая конструкция будет создавать большую нагрузку на грунт, чем другая.

Причина кроется в особенностях подошвы. Для деформации и сдвига квадратного или круглого фундамента нужно затратить больше энергии, чем для ленточного длинного. Также необходимо учесть, что на песчаное основание размеры и форма фундамента влияет больше, чем на глинистые грунты.

Как влияет глубина заложения фундамента на несущую способность оснований

Эскиз неравномерного поднятия дна котлована из-за неправильного расчета несущей способности основанияЭскиз неравномерного поднятия дна котлована из-за неправильного расчета несущей способности основания

Почему глубоко погруженные основания менее склонны к разрушениям, чем мелкозаглубленные? Ведь мелкие основания нужно обязательно укреплять, подбирать оптимальную конструкцию свай и делать сложные расчеты. Причина здесь кроется в характере поведения грунтов на различных глубинах.

Так для песчаных оснований увеличение глубины погружения фундамента ведет за собой снижение осадки, а вот несущая способность резко увеличивается. Аналогичная ситуация наблюдается с любыми иными почвами, в составе которых есть песок в больших количествах.

Поэтому в зависимости от глубины заложения, различают мелкие и глубокие основания. Понятно, что для каждого типа приходится использовать свои строительные материалы и технику, но при этом надежность конструкций отличается в несколько раз.

Как происходит деформация песчаных грунтов под подошвой фундаментов мелкого заглубления? Сначала происходит укрупнение почвы под подошвой, затем она клиньями поднимается по разные стороны конструкции и формирует свободную полость под подошвой. Поэтому даже незначительные сдвиги и подвижки почвы, повлекут за собой частичное разрушение несущих конструкций. Часто наблюдаются сдвиги и провалы.

А вот фундаменты глубокого заложения разрушить значительно сложнее. Смещение почвы будет практически полностью нейтрализовано вертикальным перемещением почвы по сторонам поверхности основания, и в данном случае могут быть только локальные уплотнения почвы. Разрушение фундамента в третьей фазе деформации почвы имеет спокойный характер. Зависимость глубины фундамента от осадки на глинистых почвах практически не проявляется.

Таким образом, несущая способность оснований – это важный показатель состояния грунтов и пренебрегать им нельзя. Если правильно сделать расчет и учесть все факторы, то уже по готовому результату можно подобрать не только оптимальные размеры и форму будущего фундамента, но и обнаружить скрытые проблемы в уже существующем. И в дальнейшем оперативно принять меры по срочному ремонту или усилению конструкций, чтобы они не деформировались от внешнего воздействия.

Строите дом? про Расчет нагрузки на фундамент не забыли?

Расчет нагрузки на фундаментРасчет нагрузки на фундамент

Для того, чтобы правильно построить фундамент при индивидуальном жилищном строительстве прежде всего необходимо произвести расчет его характеристик.

Ключевыми параметрами, необходимыми для расчета фундаментного основания являются нагрузки, то есть то давление, которое ваше строение будет оказывать на фундамент и то давление, которое фундамент вместе со строением будут оказывать на грунт. При нахождении равновесного показателя площади фундаментного основания, его прочности вы можете быть уверены, что ваш фундамент не разрушится от веса строения и не погрузиться в землю.

Необходимые исходные данные для расчета нагрузки на фундамент

Для того, чтобы приступить к расчету фундамента, вам придется вычислить следующие исходные данные:

  • определить климатические условия региона строительства.
  • Выяснить характеристики почвы на участке и уровень подъема и расположения грунтовых вод.
  • Совокупный вес строительных материалов, которые пойдут на строительство здания.
  • Планировку сооружения, размеры всех его конструктивных элементов.

Приведем пример вычисления нагрузки на фундамент строящегося здания.

Предположим, что мы собираемся строить одноэтажный жилой дом. Размеры дома по его основанию будут составлять 10 на 8 метров. Стены дома будут выкладываться из сплошного кирпича и их толщина составит 40 сантиметров.

Над подвальным помещением будет расположено перекрытие из железобетонных плит, а между жилым помещением и чердаком перекрытие будет построено на основе стальных балок из дерева. Над домом будет двухскатная крыша, в качестве кровельного материала будет использована металлочерепица, угол уклона скатов крыши составит 25 градусов. Дом будет строиться в подмосковном регионе на влажном суглинистом грунте, имеющим коэффициент пористости «0.25». Предполагается, что ленточный фундамент дома будет строиться из бетонабез щебенки и его ширина будет совпадать с шириной кирпичной стены.

Глубину заложения фундамента устанавливаем исходя от климатических условий и типа грунта под домом. Для этого воспользуемся справочными таблицами.

Первая таблица покажет нам среднюю величину промерзания грунта в зависимости от места расположения дома. Она основана на многолетних климатических наблюдениях.

Средняя величину промерзания грунтаСредняя величину промерзания грунта

 В большинстве случаев глубина заложения фундамента должна находиться ниже линии промерзания грунта. Однако в зависимости от характеристики грунта глубина заложения фундамента может быть скорректирована. Для корректировки воспользуемся следующей таблицей.

Таблица для расчета нагрузки на фундаментТаблица для расчета нагрузки на фундамент

Вычисляем глубину заложения фундамента для нашего дома. Исходя из региона строительства – Подмосковье – глубина промерзания составит 1,4 метра. Согласно второй таблице на суглинистой почве фундамент должен быть заглублен не выше, чем линия промерзания. Таким образом, расчетная величина залегания нашего фундамента составит 1,4 метра.

Рассчитываем вес кровли дома

Отметим, что кровля дома может опираться не на все его стены. Так, двускатная крыша опирается только на две противоположных несущих стены нашего строения, в отличии от четырехскатной, которая опирается на периметр стен. Таким образом расчетный вес крыши (стопила вместе с кровлей) будет распределяться на определенные стены дома.

Для вычисления веса кровли воспользуемся таблицей.

Определяем вес кровли для расчета нагрузкиОпределяем вес кровли для расчета нагрузки
  1. Площадь проекции крыши нашего дома будет совпадать с площадью его основания и составит 80 кв.м. (основание дома составляет 10 на 8 метров).
  2. Двускатная крыша будет опираться на две длинных наружных стены дома. Таким образом давление крыши на фундамент будет передаваться только по двум стенам и составит 20 метров.
  3. При ширине фундаментной ленты в 0,4 метра площадь, на которую будет оказываться давление крыши  составит 8 кв.м.
  4. Кровля, изготовленная из металлочерепицы с уклоном в 25 градусов будет оказывать давление около 30 кг на один кв.м.
  5. Таким образом суммарная нагрузка. Оказываемя крышей на нагруженную часть фундамента составляет 300 кг на кв.м.

Рассчитываем снеговую нагрузку

В зимнее время помимо собственно веса крыши – на фундамент будет оказывать давление и снег. В разных регионах нашей страны средняя величина зимнего среднего покрова варьируется в зависимости от климатических условий. Для уточнения снеговой нагрузки можно воспользоваться специальной картой, составленной на основе климатических наблюдений.

Чтобы выяснить нагрузку на фундамент от снега – умножаем предельную величину снежного покрова на площадь кровли и делим на площадь той части фундамента, на которую будет оказываться нагрузка.

Производим расчет снеговой нагрузки на фундамент в зависимости от региона - таблицаПроизводим расчет снеговой нагрузки на фундамент в зависимости от региона — таблица

Произведем примерный расчет:

  1. С помощью геометрических формул вычисляем общую площадь кровли. Она составит 72 кв.м.
  2. Для Подмосковья максимальная снеговая нагрузка составит 126 кг на один кв.м.. Умножаем этот показатель на площадь кровли и делим на площадь нагруженной части фундаментного основания. Полученная величина составляет 1134 кг на один кв.м.

Рассчитываем нагрузку от перекрытий

Перекрытия, также, как и крыша могут опираться на две противоположных стороны фундаментного основания. Наше перекрытие над подвалом изготавливается из железобетонных плит, которые будут опираться на две стороны.

Для вычисления веса перекрытия также воспользуемся таблицей.

Рассчитываем нагрузку от перекрытийРассчитываем нагрузку от перекрытий

Произведем примерный расчет

  1. Площадь каждого из перекрытий в нашем доме составляет 80 кв.м. перекрытие подвала строится из железобетонных плит, а перекрытие чердака – из дерева на основе металлических балок.
  2. Вес железобетонного перекрытия согласно таблице составит 40 тонн.
  3. Вес деревянного перекрытия согласно таблице составит 16 тонн.
  4. Общий вес перекрытий составит 56 тонн. Делим эту величину на нагруженную площадь фундаментного основания и получаем около 7000 кг на один кв.м.

Рассчитываем нагрузку от стен

Давление, которое будут оказывать стены на фундаментное основание рассчитывается как объем стен, умноженный на плотность использованного строительного материала и деленный на площадь нагружаемого основания.

Плотность различный строительных материалов также получаем из справочной таблицы.

Нагрузка от веса стенНагрузка от веса стен

Производим расчет.

  1. Объем стен будет равен произведению высоты, ширины и толщины и составит 98 куб.м.
  2. Умножаем объем стен на плотность кирпича и получаем общий вес в 172,8 тонны.
  3. Этот вес будет опираться на площадь основания фундамента (его длину по периметру, умноженную на ширину бетонной ленты). Площадь опору составит 14,4 кв.м.
  4. Итого нагрузка на фундаментное основание от стен составит около 12000 кг на один кв.м.

Рассчитываем давление фундаментного основания на грунт

Рассчитываем давление фундаментного основания на грунтРассчитываем давление фундаментного основания на грунт

Сам фундамент тоже имеет определенный вес, которым он будет давить на грунт. Его вес вычисляется как произведение объема на плотность использованного строительного материла. Плотность материалов, использованных для постройки фундаментов получаем в справочной таблице.

Производит расчет нагрузки.

  1. Общий объем фундамента равен его площади в проекции, умноженной на высоту и составит 20,2 куб.м.
  2. Таким образом масса фундамента с учетом использования при строительстве мелкозернистого бетона составит 36,4 тонны
  3. Таким образом сам фундамент будет оказывать давление на грунт в размере 2525 кг на один кв.м.

Суммируем расчетные нагрузки

На заключительном этапе суммируем все нагрузки, при этом определяем максимальную нагрузку, которая будет приходиться у нас на те участки фундамента, на которые будет передаваться давление крыши.

Итого вес крыши с кровлей, возможного снега, масса перекрытий и кирпичных стен, и вес самого фундамента будут давить на грунт с силой 23000 кг на один кв.м.

Согласно таблицам, приведенным в стандарте СНиП 2.02.01—83 предельная нагрузка на влажный суглинистый грунт составит не более 25000 кг на один кв.м.

Таким образом мы вплотную приблизились к показателю предельной нагрузки. Для того, чтобы подстраховаться нам необходимо увеличить ширину основания фундаментной опоры примерно на 20 сантиметров.

Таблица несущей способности грунтов

Несущая способность грунта определяется на основе ряда характеристик почвы. Для того чтобы получить все необходимые показатели, потребуется выполнить ряд тестов. Они дадут возможность узнать точную несущую способность грунта на конкретном участке. Соответствующие эксперименты проводятся с почвой, полученной непосредственно на запланированном месте строительства.

Что такое несущая способность грунта?

Несущая способность грунта — это показатель давления, которое может выдерживать грунт. Его указывают либо в Ньютонах на квадратный сантиметр (Н/см²), либо в киолграмм-силе на 1 сантиметр квадратный (кгс/см²), либо в мегапаскалях (МПа).

Данная величина используется при проектировании фундаментов для сравнения нагрузки, которую оказывает на почву конструкция здания с учётом возможного слоя снега на крыше и давления ветра на поверхность стен. Даже при точном подсчете влияния каждого из указанных факторов на соотношение несущей способности поверхности земли на участке к совокупной нагрузке от конструкции здания, эту цифру берут с запасом.

К содержанию ↑

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²
  • 1 кгс/см² = 9.8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

К содержанию ↑

Уточнённая таблица с поправками на текучесть и пористость грунта

Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.

Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.

Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.

Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).

Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.

  • ОВ1 = М/О1
  • ОВ2 = М/О2

Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)

Теперь, зная коэффициент текучести и пористость грунта, можно исходя из табличных цифр с определенной точностью сказать, какая именно несущая способность является расчетной именно для вашего участка. Если вы использовали экспериментальное выявление пористости, то убедитесь, что было проведено хотя бы 3 опыта, чтобы получить нужную величину с достаточно высокой точностью. При желании получить максимально близкие к реальности данные, используйте специальный калькулятор, где есть возможность указывать все влияющие на конечную цифру коэффициенты вот здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *