Арболит пропорции: ГОСТ, пропорции, химдобавки, технология изготовления

Содержание

состав и пропорции на 1м3, видео технологии изготовления

В 30-е годы прошлого столетия голландские строители попробовали смешать цемент со старыми опилками. Свойства деревобетона оказались вполне приличными, но технология не выстраивалась. Блоки не хотели застывать, их поверхность шелушилась, а спустя пару лет, особенно на улице, они начинали потихоньку разрушаться. Однако энтузиасты не оставляли попыток и придумали новые схемы.

Оглавление:

  1. Технические параметры
  2. Нюансы изготовления и добавки
  3. Инструменты и приспособления
  4. Ингредиенты и пропорции

Дерево и камень

Арболитовые блоки сочетают простоту обработки дерева с прочностью каменных изделий. Основной состав смеси – опилки и цемент? yо кроме «классики» его готовят и на основе других древесных материалов, порой самых неожиданных: песок, древесные стружки (ЦСП), резаная солома, шкурки семечек подсолнуха, шелуха риса и даже высушенные водоросли.

Диапазон прочности – М5-М50, варианты от М5 до М15 относят к утеплителям, с маркой от 15 кг/см2 и выше называют конструкционными. Применяют в виде готовой продукции (блоки, плиты, перемычки, подоконные доски), а также в монолитном варианте. Практически полное отсутствие подвижности и малый объемный вес не позволяет выполнять полноценную заливку. Рыхлый и рассыпчатый раствор уплотняют трамбовкой либо укатывают.

Характеристики арболита

Готовые, даже высокомарочные конструкции легко обрабатываются. Их можно резать даже обычной ножовкой, строгать рубанком. Материал отлично держит шурупы, в него хорошо вбиваются гвозди. Еще одно полезное свойство: в отличие от обычного бетона сопротивляется растяжению немногим хуже, чем сжатию, что позволяет порой обходиться без армирования.

ГОСТ 19222-84 регламентирует технологию изготовления, расписывает соотношения ингредиентов.  Согласно этому документу наружные стены требуется укрывать от влаги оштукатуриванием, либо облицовкой (плитка, сайдинг). Стальные изделия и арматуру необходимо защитить от коррозии. Неплохой эффект дает применение стеклопластика, но их свойства на достаточно долгий временной промежуток толком не изучены, а регламенты носят поверхностный характер.

Еще одно важное требование технологии: работа в отличие от обычного бетона разрешена при температуре не ниже +15°С.

Изнанка процесса

Изготовить арболит своими руками несложно. Просто насыпав в ведро цемент, воду и опилки, мы его не получим. Он не будет торопиться затвердеть, а если все же схватится, вскоре начнет разрушаться. Причина – наличие в древесине особых веществ, которые химики относят к классу сахаров. Они негативно влияют на цемент, сильно замедляют, а иногда даже совсем останавливают процесс твердения.

Чтобы этого не происходило, поступают одним из двух способов:

1. Дают опилкам «вылежаться» под открытым небом, периодически перемешивая. Процесс небыстрый, занимает полтора-два года. За это время все ненужные вещества вымываются либо переходят в нерастворимое состояние.

2. В рецептуру арболитовой смеси вводят специальные нейтрализующие сахара составы: гашеную известь с жидким стеклом (силикат натрия) или хлористый кальций плюс сульфат алюминия (сернистый глинозем). Есть и другие варианты, но эти две пары наиболее популярны.

Добавки и их подборка

Вариант хлорида кальция с глиноземом имеет приятный бонус в виде ускорения схватывания, что немаловажно при производстве своими силами. Что касается сочетания извести с жидким стеклом, оно заметно дешевле, но главное менее чувствительно к качеству исходного сырья. То, что щепа и опилки имеют разброс по влажности – еще полбеды. Содержание пресловутых сахаров сильно зависит от породы дерева, его возраста, времени и даже места где оно было срублено.

Чтобы выдержать технологию и пропорции для смешивания смеси, приходится уточнять ее подбором при каждой перемене заполнителя. Поэтому если вы самостоятельно решили заняться изготовлением, сырье желательно завозить по принципу «больше — лучше», чтобы не делать замеры и не пересчитывать соотношения каждый раз при завозе очередной партии. Тем более, что уходит на это как минимум неделя.

Готовим оснастку

Привлекает арболит еще тем, что открыть производство можно самостоятельно буквально «на коленке». Для небольшого цеха, рассчитанного на изготовление до полутысячи стандартных (19х19х40 см) блоков за смену понадобится:

  • Гравитационная или лопастная мешалка с рабочим объемом 140-180 литров.
  • Пластиковые емкости, ведра для обработки, переноски и дозирования сырья.
  • Весы, рассчитанные не менее чем на 10 кг.
  • Лопаты.
  • Формы. Их можно изготовить из тонкой листовой стали или сколотив из гладких досок. Чтобы раствор не лип к опалубке, ее смазывают эмульсией из воды, мыла и машинного масла.

Состав и пропорции компонентов

Для варианта хлорид кальция + сульфат алюминия на м3 готовой смеси: 500 кг цемента М400, столько же по весу или чуть больше опилок, по 6,5 кг каждого вида химиката, около 300 литров воды.  Если вы планируете использовать известь с силикатом натрия, соотношение соответственно будет 9 + 2,5 кг при прочих равных.

Для удобства пересчитаем на 1 м3 эти пропорции для замеса в ведрах по 10 л: цемент – 80; опилки – 160; добавки – хлор и кальций чуть больше половины ведра, глинозем – треть. Перемешав все это, получим чуть больше кубометра мокрых опилок, а после того как уплотним их в опалубке и дадим схватиться — куб арболита марки 25.

Технология производства организована по схеме:

  • Разводим реактивы в приблизительно третьей части (0,1 м3) всего количества воды.
  • Перемешиваем с опилками, даем вылежаться пару дней, укрыв пленкой.
  • Начинаем перемешивать, постепенно добавляя цемент.
  • Вымешиваем как минимум 5-7 минут. Вываливаем, раскладываем по формам, хорошо уплотняем.

На следующий день опалубку аккуратно снимаем.

Через неделю блоки уже можно использовать для кладки. При тех пропорциях, что мы привели выше, их марочная прочность составит порядка 25-28 кг/см2. Изделиям дают полностью схватиться и высохнуть в течение трех-четырех недель.


 

Монолитный арболит своими руками: состав и пропорции замеса

Монолитный арболит своими руками приготовить не сложно. Главное удобство в том, что это делается непосредственно на стройплощадке. По составу и пропорциям, а также по своим характеристикам и свойствам он ничем не отличается от блочного.

Номенклатура монолитного арболита

Номенклатура арболита монолитного такая же, как и у блочного — существует 2 вида:

  • Конструкционный. Имеет плотность от 500 до 850 кг/куб. м. Соответствует классу прочности В1, В1,5, В2, В2,5. Используют для возведения несущих стен и перегородок зданий до 2-х этажей.
  • Теплоизоляционный. Его плотность от 300 до 500 кг/куб. м. Класс прочности — В0,35, В0,5, В0,75. Применяют для заливки пазух и межстеных пустот для теплоизоляции и звукоизоляции.

Прочность заливного арболита зависит от используемой марки цемента и качества уплотнения смеси. При недостаточной прочности выполняют армирование арболита.

Готовим монолитный арболит: состав и пропорции смеси

Монолитный арболит на 80-90% состоит из щепы, как заполнителя, цемента, воды и химических добавок, ускоряющих твердение раствора и для устранения влияния сахаров древесины.

Щепа для арболита по ГОСТу должна иметь определенный размер и форму. Желательно использовать хвойные породы древесины, кроме лиственницы. В лиственных породах содержится немного больше древесных ядов, их также можно использовать.

В качестве цемента выступает портландцемент марок М400, М500 (европейские марки: CEM I 32,5, CEM I 42,5, CEM II/A 32,5, CEM II/A 42,5, CEM III 32,5).

Пропорции минеральной добавки

В качестве минеральных добавок для ускорения твердения раствора, обработки щепы, увеличения подвижности раствора можно использовать различные химические компоненты описанные в статье «Химические добавки для арболита». Самые распространенные и в то же время эффективные добавки это – хлористый кальций (технический CaCl2), жидкое стекло, сернокислый алюминий, известь-пушенка.

Соответственно существует много рецептов приготовления монолитного арболита. В одних рецептах подготавливается и обрабатывается древесина, в других – добавляют химический компонент непосредственно в смесь.

По одному из рецептов щепу вымачивают в извести (80 кг извести на куб древесины), отжимают. Затем сверху посыпают порошком негашеной извести (80 кг), перемешивают, разравнивают, высушивают и добавляют в смесь. Таким образом, избавляются от древесных сахаров, влияющих на прочность монолитного арболита.

Возиться со щепой, да тем более с такими объемами для строительства – дело достаточно затратное по времени, требующее площадей для этого процесса. Поэтому быстрым вариантом приготовления монолитного арболита будет применение хлористого кальция или сульфата алюминия (сернокислого алюминия). В этом случае щепу можно не обрабатывать, но будет лучше, если она отлежится на открытом воздухе, под солнцем и дождем, пару месяцев (не в куче!). Также, если есть возможность, ее можно замочить в воде, а перед приготовлением смеси высушить. Замачивание и вылеживание – это своего рода элементарная подготовка древесины, позволяющая частично устранить сахара.

На этапе приготовления состава монолитного арболита добавляется хлористый кальций или сульфат алюминия 2-5% от массы цемента. Так какая же все-таки пропорция химической добавки для арболита, 2% или 5%? Это зависит от марки и от качества цемента. Состав одной и той же марки (например, М500) но разных производителей на самом деле может отличаться качеством. Поэтому рекомендуют сделать тестовый замес. Если при добавлении хлористого кальция 5% от массы вяжущего на отвердевшем материале появятся «высолы» (белого цвета соляные выцветы), то процент содержания химического компонента нужно уменьшать. Высолы говорят о том, что цемент хороший и 5% для состава многовато. В то же время 2% может быть мало. Пару тестовых замесов стоит сделать.

Важно знать! Конкретной пропорции химического компонента для монолитного арболита нет! Ее всегда нужно определять в зависимости от качества используемого цемента и щепы (качество, порода древесины, размеры).

Некоторые не хотят заниматься подборкой пропорции хлористого кальция. И, чтобы не образовывались соляные выцветы, добавляют в состав жидкое стекло. Например, 2% хлористого кальция и 3% жидкого стекла от массы цемента. Но жидкое стекло достаточно дорогое, поэтому для многих экономичнее сделать пару тестовых замесов и определить пропорцию хлористого кальция.

Пропорции щепы, цемента и воды на 1м3 заливного арболита

Пропорция зависит от того, какой вид монолитного арболита вы готовите: конструкционный или теплоизоляционный.

Рассмотрим пропорции состава на 1м3 заливного монолитного арболита при использовании вяжущего марки М400 и абсолютно сухой щепы хвойных пород древесины:

Конструкционный монолитный арболит

В2,5(М25) – 380 кг цемента, 250кг древесного заполнителя, 440 литров воды;

В2,0(М20) – 350 кг, 230кг, 400 литров;

В1,0(М15) – 320 кг, 210кг, 360 литров;

Теплоизоляционный монолитный арболит

В0,75(М10) – 300 кг цемента, 190кг древесного заполнителя, 430 литров воды;

В0,35(М5) – 280 кг, 170кг, 300 литров;

Корректировка состава

Если вы используете другую марку цемента, то пропорция высчитывается с применением коэффициента: для М300 коэффициент 1,05, для М500 – 0,96, для М600 – 0,93.

Пропорция щепы дана для абсолютно сухого материала. Обычно это редкость. Поэтому ее количество нужно скорректировать в зависимости от ее влажности – добавить некоторое количество. Для подсчета дополнительного количества умножаем вышеприведенную массу на коэффициент, который рассчитывается как %влажности щепы деленная на 100%.

Например, древесный заполнитель имеет влажность 20%. Получить нужно монолитный арболит класса прочности В2,0. Следовательно: 20%/100%=0,2. Умножаем коэффициент 0,2 на количество сухой щепы 230 кг для В2,0 – 0,2*230=46 кг. В состав дополнительно нужно добавить 46 кг древесного заполнителя.

Процесс замеса

Щепа и хлористый кальций (или другая хим. добавка) перемешиваются в сухом виде, потом добавляется цемент. Достигают однородности состава. Затем из лейки струей добавляется вода с постоянным перемешиванием, до тех пор, пока весь древесный заполнитель со всех сторон не будет покрыт смесью.

Смешивать удобно при помощи строительного миксера или смесителя. Обычно на это затрачивается 5 – 7 минут.

Готовая смесь монолитного арболита – это умеренно влажная масса. Если взять в руку щепу, то из нее не должна вытекать вода!

Если в состав не вводилась химическая добавка, а выполнялась предварительная обработка заполнителя в извести, то процесс перемешивания длиться минут 25, чтобы известь успела погаситься.

Так можно приготовить монолитный арболит своими руками для последующей заливки в возведенную опалубку или несъемную опалубку стен и перегородок, а также заливки полов и перекрытий.

Подбор состава арболитобетона для производства качественных арболитовых блоков

Подбор состава арболита для изготовления арболитовых блоков на вибростанках Вибромастер производится в лабораторных условиях  любым проверенным  на  практике способом. Производственный   состав

 арболита  утверждается  главным  инженером  предприятия  и контролируется  лабораторией.

На подбор состава арболита дается задание, в котором указывается заданная средняя плотность (марка по средней плотности) и марка по прочности на сжатие (класс по прочности при сжатии). Могут быть указаны дополнительные требования  к стеновым  строительным блокам по морозостойкости и теплопроводности.

Предварительно, перед подбором состава арболита, устанавливают характеристики всех используемых материалов.

Для цемента устанавливают марку и активность, нормальную густоту, минералогический состав, среднюю плотность, истинную плотность р0.  Для заполнителя определяют насыпную среднюю плотность р3, плотность в куске рх, водопоглощение по массе W.  Качество химических добавок (ХД) устанавливается паспортом или на основании данных их непосредственного испытания.

Наиболее распространенным и удобным способом  подбора и назначения исходного состава арболитовой смеси является способ подбора по разработанным таблицам.

Средняя плотность арболита в высушенном состоянии в зависимости от класса (марки) и вида используемых органических заполнителей должна находиться в пределах, указанных в таблице.

Заполнитель Расход цемента кг/м3, в зависимости от класса (марки) арболита
Дробленка из отходов: 80,35(5) В,75(10) В1  (15) В2 (25) 82,5(35)
— лесопиления и деревообработки хвойных пород 260
280
300 330 360
— лесозаготовок хвойных пород 280 300. 320 350 380
— лесопиления и деревообработки смешанных пород 290 310 330 360 390
— лесозаготовок смешанных пород 310 330 350 380
— дробленка рисовой соломы 300 370 400
— костра конопли и льна 220 310 360 450
— дробленые стебли хлопчатника 260 290 320 360

Примечание: приведенные расходы цемента рекомендуются лишь для приготовления первого исходного замеса при подборе состава арболитовой смеси и не могут служить нормами расхода цемента в производственных условиях.

При применении цемента иных марок (отличного от марки 400) величина расхода цемента умножается на коэффициенты,  приведенные в таблице.

Коэффициенты изменения расходов цемента в арболите при изменении марки цемента (расход цемента марки 400 принят за 1)
Марка цемента Коэффициенты изменения расхода цемента для арболита класса (марки)
  В0,35(5) В,75(10) B1(15) В2 (25) В2,5(35)
300
1,05
1,05
1,05
1,10
1,16
400 1 1 1 1 1
500 0,96 0,96 0,95 0,95 0,94
600 0,93 0,93 0,92 0,92 0,9

Расход органического  заполнителя  в  сухом  состоянии и назначается по следующей таблице. .

Расход сухого органического заполнителя на 1 м3 арболита (цемент марки 400)
Заполнитель Расход сухого органического заполнителя, кг/м, арболита класса (марки)
  В0,35(5) В,75(10) В1(16) В2(26) В2,5(35)
Дробленка из отходов:          
— лесопиления и деревообработки хвойных пород 160 180 200 220 240
— лесозаготовок хвойных пород 170 190 210 230 250
— лесопиления и деревообработки смешанных пород 180 200 220 240 250
— лесозаготовок смешанных пород 160 180 200 220 240
— дробленка рисовой соломы 180 220 250
— костра конопли и льна 200 190 180 170
— дробленые стебли хлопчатника 200 210 220 230

Расходы воды определяются по по следующей таблице.

Расходы воды на 1 м3 арболитовой смеси при сухих, органических заполнителях
Заполнитель Расход воды, л/м в смеси при классе (марке) арболита
В0,35(5) В,75(10) В1  (15) В2 (25) В2,5(35)
Дробленка из отходов:          
— лесопиления и деревообработки хвойных пород 280 300 330 360 400
— лесозаготовок хвойных пород 300 330 360 400 440
— лесопиления и деревообработки смешанных пород 330 360 390 430 460
— лесозаготовок смешанных пород 330 360 390 430 460
— дробленка рисовой соломы 350 400 450
— костра конопли и льна 400 470 450 420
— дробленые стебли хлопчатника 400 460 480 510

Расходы цемента, воды и органических заполнителей при производстве арболитовых блоков зависят от многих факторов и, в первую очередь, от способа уплотнения арболитовой смеси. Их необходимо устанавливать опытным путем в зависимости от производственных условий.

Предварительный расход химических добавок  назначается по следующей таблице.

Расход химических добавок в пересчете на сухое вещество
Химическая добавка Расход химической добавки, кг/м3, в зависимости от вида заполнителя
древесная дробленка костра конопли или льна дробленые стебли хлопчатника
Кальций хлористый технический 8 6 11
Стекло натриевое жидкое 8 9
Комплексная добавка:  сернокислый алюминий + известь-пушенка 20
25
15
20

Рассчитанные составы проверяют в лабораторных или производственных условиях , путём изготовления и испытания контрольных образцов. Опытные образцы для определения класса (марки) арболита по прочности при сжатии твердеют в течение 28 суток при температуре при температуре 20 +/- 2°С и относительной влажности воздуха 70 +/- 10%. Для установления распалубочной и отпускной прочности изготавливают и испытывают образцы в возрасте 1-х, 3-х и 7-и суток.

Рабочий состав арболитобетона назначается по результатам испытания контрольных образцов.

Пример подбора состава арболита

Требуется подобрать состав конструкционно-теплоизоляционного арболита класса В2 для производства арболитовых блоков, средней плотностью не более 650 кг/м3 (в высушенном состоянии) для стеновых строительных блоков.

Имеется заполнитель — дробления из отходов деревообработки хвойных пород. Зерновой состав дроблеики удовлетворяет требованиям стандарта. Насыпная средняя плотность дробленки в сухом состоянии 120 кг/м3, влажность по массе — 50%. Вяжущее — портландцемент марки 400. Подбор состава арболита производим расчетно-экспериментальным методом. Расход цемента определяем по табл.1, Ц=330 кг/м3.  По табл.3 расход сухой дробленки Дсух.=220кгД|3, с учетом влажности — расход дробленки составит 330 кг/м3. Для назначенного расхода цемента по табл.6 определяем предварительный расход воды  В=360 л/м3.

Расход химической добавки (ХД) устанавливаем по табл.5 — это 8 кг/м3 хлорида кальция. Хлорид кальция берется 10%-ной концентрации. Содержание соли в 1 л. такого раствора (с плотностью 1,084) составляет 0,108 кг. Следовательно, для введения в арболит необходимого количества соли в виде 10%-ного раствора на 1 м3 арболитовой смеси его потребуется: 8:0,108=74,07 л. В найденном количестве раствора соли воды содержится 1,084×74,07-8=72,3 л.

С учетом воды, содержащейся в древесной дробленке и в растворе добавки, количество воды для приготовления 1 м3 арболитовой смеси будет равно 360-72,3=217,7 л. Средняя плотность свежеуложенной арболитовой смеси составит: 330+220+360+8=918 кг/м3.

Средняя плотность арболита в сухом состоянии определяется по формуле:
1,15Ц — масса цементного камня с учетом химически-связанной воды, кг на 1 м3 арболита.

Для установления оптимального расхода цемента необходимо изготовить и испытать три серии образцов с разным расходом цемента: одну с намеченным исходным расходом 330 кг/м3 и две дополнительные серии с расходом цемента на 15% меньше и больше принятого, т.е. 280 и 380 кг/м3.

Для каждого расхода цемента принимаем три предварительных расхода воды — установленный по табл.4 (360 л/м3) и на 5% больше и меньше, т.е. с учетом воды в растворе ХД и заполнителе. Расход древесного заполнителя оставляем неизменный. Для проведения опытных замесов для всех трех составов определяем расходы материалов на 15 литров по формулам, для первого состава (исходного):

Расход цемента Ц1 = (Ц*15)/1000=(380+15)/1000=4.96кг

Расход дробленки Дсух1=(Дсух*15)/1000=(220*15)/1000=3.30кг

Расход воды В1 = (В*15)/1000=(360*15)/1000=5,4кг

Расход химической добавки ХД1= (ХД*15)/1000=(8*15)/1000=0.12кг

Для остальных двух составов расходы материалов рассчитываются аналогично. Химические добавки растворяются в воде затворения опытного замеса.
Проводятся опытные замесы, в процессе которых проверяется жесткость арболитовой смеси по техническому вискозиметру. Жесткость арболитовой смеси должна соответствовать — 60 сек. и регулируется предварительным расходом воды. Если рассчитанное количество воды не обеспечивает получение требуемой жесткости, его увеличивают или уменьшают. Подогнав жесткость арболитовой смеси под требуемую, определяют среднюю плотность смеси, для этого заполняют стандартный мерный цилиндр объемом 5 л. Мерный цилиндр вместе с насадкой устанавливают на вибростол и закрепляют, а затем заполняют арболитовой смесью до половины насадки, устанавливают сверху на поверхность смеси пригруз, обеспечивающий давление, равное принятому при производстве стеновых строительных блоков, но не менее 0,004 МПа и вибрируют в течение 30-60 сек. до прекращения оседания пригруза. После этого снимают пригруз и насадку, срезают избыток смеси и заглаживают поверхность. Затем взвешивают. Среднюю плотность арболитовой смеси в кг/м3, вычисляют как среднюю двух определений по формуле:

Pcm= (m-m1)/V,

где         m — масса мерного сосуда с бетонной смесью, гр;
m1 — масса мерного сосуда без смеси, гр;
V — объем мерного сосуда, см3.

Определив  среднюю   плотность, определяем  объем приготовленной арболитовой смеси — Vсм по формуле:

Vom= СуммаP/pm,

где  SР=Ц1  +Дсух 1  +В1 +ХД1 сумма   материалов используемых при опытном  замесе.
Определив     объем      приготовленной     смеси,      вычисляю фактические расходы материалов в кг/мпо формулам:    

Фактический расход цемента Цф = (Ц1/Vcm)*1000

Фактический расход дробленки ДсухФ= (Дсух1/Vom)*1000

Фактический расход воды Вф = (В1/Vom)*1000

Фактический расход ХД = ХДср=(ХД1/Vom)*1000

Для остальных двух составов средняя плотность и фактические расходы   материалов   определяются   аналогично.   Из   подобранных смесей изготавливаются контрольные кубы размером 15x15x15 см в количестве 3 шт. для каждого состава. Укладка арболитобетонной смеси в формы   производится   так   же,   как   и   при   определении   средней плотности смеси.  Отформованные кубы в течение 1-х суток твердеют в формах и еще 27 суток  (при  температуре  20 +/- 2С и относительной влажности воздуха 70 +/- 10%) после распалубки.  После твердения на кубах определяют среднюю плотность и прочность при сжатии в Мпа.

Средний предел прочности при сжатии образцов для каждого из трех расходов цемента с оптимальным для каждого из них расходом воды наносим на график. По оси абсцисс откладываем расходы цемента на 1 м арболита, по оси ординат — предел прочности образцов арболита при сжатии в МПа. Проводим через полученные точки прямую и получаем зависимость прочности арболита при сжатии от расхода цемента. По графику определяем требуемый расход цемента для получения арболита заданного класса В2 при принятых условиях уплотнения и твердения. Расходы остальных материалов определяются по фактическим расходам трех составов арболита по интерполяции. После проверки подобранного состава в производственных условиях он рекомендуется для массового производства.

Вы также можете посмотреть следующие разделы

  1. Вяжущие вещества
  2. Заполнители
  3. Микрозаполнители
  4. Химические добавки
  5. Вода для бетонов
  6. Условия твердения строительных стеновых блоков
  7. Способы определения жесткости бетонной смеси
  8. О цементно-грунтовых строительных стеновых блоках
  9. Основные характеристики грунтов для производства стеновых строительных блоков
  10. Цементы для изготовления стеновых строительных блоков
  11. Подбор составов цементогрунта
  12. Основные требования к строительным стеновым блокам из грунтобетона
  13. Об арболитовых блоках
  14. Классификация арболитовых стеновых блоков
  15. Материалы для производства строительных арболитовых блоков: Органический целлюлозный заполнитель
  16. Материалы для производства строительных арболитовых блоков: Вяжущие вещества
  17. Материалы для производства строительных арболитовых блоков: Химические добавки
  18. Твердение и тепловая обработка стеновых арболитовых блоков
  19. Требования к стеновым блокам из арболита
  20. Арболитовые блоки и опилкобетонные блоки – отличия
  21. Дом из арболитовых блоков или дерева: что выбрать?
  22. О саманных блоках
  23. Основные требования к блокам из самана
  24. Материалы для производства саманных стеновых блоков: Вяжущее — глинистые грунты
  25. Материалы для производства саманных стеновых блоков: Заполнители
  26. Методы испытания глинистых грунтов для производства самана: Методика определения содержания глинисты
  27. Методы испытания глинистых грунтов для производства самана: Методика определения содержания глинисты
  28. Методы испытания глинистых грунтов для производства самана: Методика определения вязкости глинистого
  29. Подготовка грунта к производству саманных строительных блоков
  30. Сушка и хранение саманных строительных блоков
  31. Мероприятия по повышению прочности и водостойкости стеновых саманных блоков
  32. Особенности производства саманных строительных блоков в зимнее время
  33. Изготовление блоков из бесцементных бетонов
  34. Про шлакощелочной бетон
  35. Требования к материалам для изготовления шлакощелочного бетона
  36. Подбор состава шлакощелочного бетона
  37. Рекомендуемые ориентировочные составы тяжелых шлакощелочных бетонов
  38. Изготовление стеновых бетонных блоков из легких шлакощелочных бетонов
  39. Изготовление стеновых бетонных блоков из мелкозернистых шлакощелочных бетонов
  40. Изготовление стеновых бетонных блоков из арболита на шлакощелочном вяжущем
  41. Изготовление блоков с декоративным слоем
  42. Приготовление и нанесение декоративных растворов
  43. Составы декоративных растворов

Арболит своими руками: состав, пропорции на 1м3

Вы не найдёте один идеальный и четко обозначенный нормами ответ. Арболит, состав и пропорции на 1м3 этого материала подбираются в зависимости от типа органического наполнителя (см. п. 5.1.2 ГОСТ Р 54854-2011) и косвенных факторов.

Делается это в лабораториях производителя. Но при соблюдении общих технологических требований можно сделать и в домашних условиях арболит, состав и пропорции которого будут выверены и надёжны.

На примере марки 35, арболит имеет следующие пропорции замеса на куб: вода- 480 л; цемент- 400 кг; щепа- 250 кг. И улучшающие добавки, 2-4 % от общей массы. Это конструкционный арболит, пригодный для строительства стен.

Ну а подробности в статье далее.

Из чего состоит арболит

Другое название материала — деревобетон.

Состав арболита.

  1. Вяжущее вещество. Используется сульфатостойкий (кроме пуццоланового) или портландцемент. С целью повышения морозостойкости может применяться материал со специальными добавками. По ГОСТ 19222-84 арболит изготавливают из цемента следующих марок: для теплоизоляционного — не ниже М300, для конструкционного — М400 или выше.
  2. Вода. Вступает в реакцию с вяжущим компонентом, что приводит к образованию прочной кристаллической структуры.
  3. Наполнитель. Применяются древесная щепа или растительные остатки.
  4. Химические добавки.

Компоненты должны соответствовать ряду требований.

Древесная щепа

Сырьем для производства наполнителя служат:

  • отходы деревообрабатывающей промышленности;
  • горбыль, сучья, верхушки, тонкие ветки и прочая некондиционная древесина.

Применяется т.н. игольчатая щепа со следующими размерами:

  • длина — 15-25 мм;
  • ширина — 5-10 мм;
  • толщина — 3-5 мм.

При указанных геометрических параметрах нивелируется разница по впитыванию влаги вдоль и поперек волокон, что требуется для качественной обработки наполнителя.

Опилки не используют: материал с таким наполнителем изготавливается по другой технологии.

Для изготовления щепы лучше использовать хвойные деревья (пихту, сосну, ель) по причине низкого содержания сахаров.

Сахар в древесине, если оставить его как есть, значительно снизит прочность блоков.

Допускается применять и некоторые лиственные деревья:

  • березу;
  • осину;
  • тополь;
  • дуб.

Однако, в этих породах уровень сахаров выше, значит, увеличится расход химреагентов на стадии подготовки наполнителя.

Лиственницу и бук не используют совсем, т.к. для их минерализации придется увеличить расход добавок вдвое.

Более подробно про щепу для арболита есть отдельная статья на сайте, расположена тут

Химические вещества

Крайне важны. Арболит, состав которого химически чист, крайне сложно довести до необходимого качества.

Выполняют они комплексную функцию.

  1. Расщепляют углеводы, содержащиеся в органическом наполнителе. Без этого они в условиях щелочной среды цементной смеси распадаются на водорастворимые сахара (химия процесса имеет вид гидролиза), делающие бетон рассыпчатым.
  2. Уничтожают споры грибов, бактерии и прочую биоту, способную вызвать гниение органики.
  3. Закупоривают поры растительных остатков, вследствие чего те не впитывают воду из раствора. Без этого наполнитель разбухал бы, приводя к появлению трещин в материале (вспучиванию блока).

Основными добавками являются.

  1. Сернокислый алюминий. Расщепляет сахара в органическом наполнителе за 1 неделю и ускоряет созревание бетона (но время схватывания остается тем же). Применяется в большинстве случаев.
  2. Хлористый кальций. Подмешивается к сернокислому алюминию в качестве антисептика. Уничтожает бактерии в наполнителе и предотвращает их появление в щепе на гранях блока. Ускоряет отвердение. Допускается его замена на хлористый алюминий.
  3. Силикат натрия или калия (жидкое стекло). Закупоривает поры в органике, предотвращая впитывание влаги с последующим разбуханием. Применяется после расщепления сахаров.

Вместо сульфата алюминия и хлористого кальция, если те недоступны, можно использовать гашеную известь. Она расщепляет сахара и уничтожает микроорганизмы с меньшей скоростью, поэтому время обработки сырья увеличивается до 2 месяцев — при пересыпке сухим реагентом, и 1 месяца — с применением известкового молока.

Известковое молоко- удобный и надёжный способ обработки щепы. Для его приготовления 50 кг извести разводят в 200 л воды. Таким объемом обрабатывают 4 куб.м щепы.

Сахара расщепляются и естественным образом, но для этого измельченный наполнитель следует сушить на открытом воздухе в течение 3 месяцев.

В состав арболита по ГОСТ, кроме основных добавок, включаются дополнительные.

  1. Ускоритель отвердения — нитрат кальция. Стимулирует схватывание раствора.
  2. Пенообразователь из жидкого стекла на основе канифоли и едкого натра. Снижает плотность материала и его теплопроводность.
  3. Воздухововлекающие — смола древесная омыленная. Повышают морозостойкость и пластичность смеси, снижают риск ее расслоения.
  4. Гидрофобизатор — этилсиликонат натрия или полигидросилоксан. Снижает водопроницаемость.

Органика в составе

Кроме щепы, в качестве наполнителя применяют следующие растительные остатки:

  1. Измельченную кору (не более 10% массы раствора).
  2. Хвою (до 5%).
  3. Солому риса.
  4. Одревесневшие части стеблей прядильных растений (костру). В основном используют лен, коноплю и хлопчатник. Допускается содержание пакли и очесов не более 5% от массы раствора.
  5. Сухие листья и мелкие ветки (в соотношении 1:10).

Сырье измельчают до размеров, указанных в ГОСТ 19222-84: длина фрагмента менее 40 мм, ширина — 2-5 мм.

Требуется точно соблюдать процедуру подготовки органического наполнителя, иначе в нем остаются сахара, придающие бетону рассыпчатость. Особенно богат углеводами лен.

Для замеса используется чистая вода (из централизованной сети, скважины или колодца).

Вот, собственно и всё, из чего делают арболитовые блоки.

Далее немного нормативов.

Требования по ГОСТу

Норматив регламентирует состав смеси, размеры блоков и технические характеристики материала.

Арболит, изготовленный с соблюдением технологии, имеет следующие параметры.

  1. Плотность — 400-850 кг/куб. м (зависит от марки).
  2. Прочность на сжатие — 0,5-1,0 МПа.
  3. Коэффициент теплопроводности — 0,08-0,17 Вт/м*С.
  4. Прочность на изгиб — 0,7-1,0 МПа.
  5. Морозоустойчивость — 25-50 циклов.
  6. Водопоглощение — 45-80%.
  7. Упругая деформация — 0,4-0,5%.
  8. Классификация по биостойкости — 3-я группа.
  9. Огнеупорность — 0,75-1,5 часа.
  10. Коэффициент звукопоглощения для частот 126-200 Гц — 0,17-0,80.

Концентрация химии в составе

В 1 кубометре арболита содержится в среднем от 6 до 12 кг химических реагентов, что составляет 2-4% от общей массы.

Химические добавки можно комбинировать.

  1. Сернокислый алюминий и хлорид кальция. Берутся в равных количествах (1:1). Общая концентрация не превышает 4% от массы цемента.
  2. Хлористый кальций и сернокислый натрий. 1:1, не более 4%.
  3. Хлористый и сернокислый алюминий. 1:1, не более 2%.
  4. Хлористые кальций и алюминий. 1:1, не более 2%.

Для повышения прочности материала жидкое стекло тоже смешивают с хлористым кальцием в соотношении 1:4.

Отклонения в размере и форме блоков

ГОСТ предусматривает следующие допуски:

  • по длине — +/- 5 мм для модулей размером до 3 м и +/- 7 мм для диапазона 3-6 м;
  • по высоте и толщине — +/- 5 мм;
  • по размерам конструктивных элементов (выемок, ребер, полок и т.д.) — +/- 5 мм.

Отклонения указанной величины могут быть нивелированы изменением толщины шва.

Преимущества и недостатки самодельного арболита

Изготовление строительного материала в домашних условиях дает следующие выгоды.

  1. Блоки обходятся значительно дешевле покупных.
  2. Изделия могут иметь любые размеры и геометрию, какие удобны мастеру, в т.ч. нестандартные.
  3. Состав арболитовых блоков заведомо качественен: свежий цемент, правильно обработанная и потому не подверженная гниению щепа и т.д.

Недостатки.

  1. Большие затраты труда и времени.
  2. Потребность в специальном оборудовании. Его аренда или приобретение для производства небольшой партии могут быть нецелесообразны.

Кроме того, по прочности и долговечности домашний деревобетон уступает заводскому, если тот произведен с соблюдением технологии и из качественных материалов.

Компромиссным вариантом является изготовление арболитовых блоков из покупной щепы, что позволяет обойтись без дорогих станков.

Необходимое оборудование

Для производства потребуются:

  • щепорез дисковый;
  • молотковая дробильная машина;
  • бункеры для органического наполнителя и цемента;
  • емкости для химреагентов;
  • чистая бочка для воды;
  • формы для блоков;
  • вибростол;
  • сушильная камера.

Выпускают 2 вида щепорезов:

  • бытовые;
  • промышленные.

Первые оснащены маломощным двигателем и узкими ножами, потому способны перерабатывать только мелкие отходы и ветки. Более крупный материал придется предварительно измельчать.

Промышленные щепорезы работают с древесиной любого размера. Наиболее качественный наполнитель производят станки-шредеры, нарезающие доски на узкие полосы.

В сочетании со щепорезом может использоваться молотковая дробильная машина. Нанося удары по деревянной пластине, она расщепляет ее вдоль волокон на игольчатую щепу.

Если арболит изготавливается для собственных нужд, станки можно попробовать сделать своими руками по опубликованным в интернете чертежам.

Пропорции смеси на 1 м3

Состав арболита, пропорции составляющих подбираются с учетом желаемой прочности блоков.

В среднем применяют следующие пропорции арболита:

  • вяжущее вещество — 1,5 объемной части;
  • наполнитель — 1 часть;
  • вода с растворенными химическими добавками — 2 части.

Вычислить объем необходимых материалов поможет нижеприведенный состав блоков, возьмём пропорции арболита на 1 куб:

  • химические добавки — 8-10 кг;
  • цемент — 400 кг;
  • щепа — 250 кг.

Более конкретно арболит, состав пропорции на 1 м3, зависит от марки конечного продукта.

Арболит делится на 2 разновидности:

  1. теплоизоляционный — марки М5-М15;
  2. конструкционный (пригоден для строительства несущих стен зданий высотой до 3 этажей) — М25-М50.

Рецепт приведен в таблице:

Класс/маркаПортландцемент М400, кгЩепа, кгВода, л
Теплоизоляционный
В0,35/М5280170300
В0,75/М10300190430
В1,0/М15320210360
Конструкционный
В2,0/М25380230440
В2,5/М35400250480

Как корректировать состав

Изменения в рецептуру вносят в случае несоответствия стандарту марки цемента или влажности щепы.

Перерасчет вяжущего вещества осуществляют с применением коэффициентов для:

  • 1,05 -М300;
  • 0,96 — М500;
  • 0,93 — М600.

В таблице приведены нормы сухого древесного наполнителя. В реальности щепа поступает в работу влажной. Значит, табличное значение надо увеличить.

Для этого надо:

  1. % влажности разделить на 100%.
  2. К полученному числу прибавить 1.
  3. Норму щепы умножить на расчетный коэффициент.

Пример:

Влажность щепы составляет 30%.

30%:100%=0,3

0,3+1=1,3

В случае с арболитом М35 наполнителя потребуется 250х1,3=325 кг.

Рецептура

Изготовление деревобетона начинают с обработки щепы.

  1. Химреагенты, например сернокислый алюминий и хлористый кальций, берут в нужном количестве в соотношении 1:1 и смешивают.
  2. Полученный объем разделяют на 2 части в пропорции 2:3.
  3. Меньшее количество растворяют в воде из расчета 300 г на литр и увлажняют этой смесью щепу, тщательно перемешивая. Оставшийся порошок хранят в емкости. В процессе приготовления арболита его нужно будет высыпать в воду, подаваемую в раствор.
  4. Выдерживают материал положенное время. При обработке сульфатом алюминия — 1 неделю, известковым молоком — 1 месяц. Периодически щепу перемешивают, обеспечивая вентиляцию всех слоев.
  5. Смачивают наполнитель жидким стеклом.

Далее приступают к приготовлению раствора. Ввиду относительно небольшого количества воды он является густым, поэтому рекомендуется использовать бетономешалку.

Компоненты загружают в следующем порядке:

  1. щепа;
  2. сухой цемент с добавками;
  3. после тщательного перемешивания — вода с растворенными в ней химреагентами. Ее температура должна быть не менее +15°С.

Массу перемешивают в течение 1 минуты.

Очень подробно описано, как самому сделать арболит, состав, пропорции на 1м3 в видео ниже.

Как подготовить арболит к использованию

Материал применяют 2 способами:

  1. отливают из него монолитные стены;
  2. формуют блоки, затем из них складывают конструкции.

В первом варианте на этапе приготовления раствора в воду рекомендуется добавить суперпластификатор, например полипласт. Он делает смесь более подвижной, в результате все узкие места опалубки будут заполнены.

Конструкцию армируют стальными прутьями по аналогии с железобетоном. В качестве несъемной опалубки рекомендуется применять фибролитовые плиты. Стена получится паропроницаемой, что позволит снизить кратность вентиляции, а значит, и теплопотери.

Для изготовления блоков и перемычек используют формы. Рекомендуется разборный вариант, облегчающий выемку готового изделия. Оптимальный размер — 20х40х60 см.

Придерживаются правил.

  1. Форму ориентируют вертикально, чтобы уменьшить площадь трамбовки.
  2. Весь раствор загружают за 1 прием с небольшой горкой. При поэтапной загрузке с послойной трамбовкой блок будет состоять из нескольких частей, мало связанных одна с другой. Хаотичное расположение щепы во всем объеме обеспечивает монолитную структуру изделию.
  3. Трамбовку осуществляют деревянным брусом.

Наилучший результат дает формовка на вибростоле.

Распалубку производят через 2-3 дня. Далее блоки сушат на воздухе в течение 2 недель при температуре не ниже +10°С. Использовать блоки в строительстве можно через месяц после их формовки. При необходимости размеры блоков корректируют ножовкой.

Деревобетон чувствителен к влаге, поэтому сразу после строительства его оштукатуривают. А в остальном, это довольно прочный, теплый и недорогой материал.

Качество и долговечность зависят от соблюдения технологии, особенно при обработке органического наполнителя. Размеры щепы строго регламентируются, этим определяются характеристики блока.

Напоследок ещё одно видео про состав арболита и работу с ним от толкового парня.

состав, арболит своими руками, пропорции смеси на 1 куб, из чего делают арболитобетон, рецепт из соломы и цемента

Арболитовые блоки – это популярный строительный материал, который применяют при строительстве домов, внутренних ограждений, гаражей и прочих построек. Такая востребованность арболитовых блоков связана с тем, что он имеет массу преимуществ, среди которых долговечность, простота укладки и отличные технические свойства.

Состав

При изготовлении арболитовых блоков применяют натуральные и химические компоненты. При их грамотном соединении с соблюдением пропорции можно получить изделие необходимой марочной прочности, которое в последующем можно будет использовать для возведения одноэтажных или двухэтажных построек.

Древесина

Дерево относится к органическим материалам, так что в его клетках содержится вода. Кроме воды, дерево содержит сахар, от которого необходимо избавиться. Процесс изготовления начинается с того, что щепку нужно нарубить.

Для этого используют сырую древесину. Затем она должна побыть рядом с химическими реагентами, чтобы весь сахар покинул ее. Как известно, дерево – это материал, имеющий низкие адгезивные свойства. Если не соблюдать технологии, то это станет причиной разрушения блока непосредственно в руках.

На фото-щепки в арболитовых блоках:

Размер щепки оказывает влияние на количество используемого цемента для получения 1 м3 арболита. Если задействовать щепки из сухой древесины, то фракция получится мелкой. Она будет иметь игольчатую структуру, а это потребует использование большего количества цемента. Щепка игольчатой формы должна присутствовать только в определенном количестве.
На 1 м3 арболита потребуется

Всего на 1м3 арболита необходимо:

  • 8-10 кг химических составляющих;
  • 250 кг цемента;
  • 250 г щепы.

При замесе щепки ее нужно хорошенько смочить, чтобы вся свободная влага не выделялась, а сама щепка была укрыта слоем цемента. Именно он при трамбовки блока сможет соединить щепки между собой.

Сернокислый алюминий

Этот компонент используют при изготовлении арболита, а относится он к химическим составляющим. Его задача – это расщеплять сахара.

На фото – арболитовые блоки с алюминием

При добавлении сернокислого алюминия в смесь удается сократить время, которое требуется для набора прочности. При этом на схватываемость это не влияет.

Хлористый кальций

При использовании его в сочетании с сернокислым алюминием удается побороть всех микроорганизмов в дерево. Еще этот компонент оказывает противогнилостные свойства и не дает возникать очагам внешнего поражение готовых блоков.

На фото- арболитовые блоки с хлористым калием

Если хлористый кальций отсутствует, заменить его может хлористый алюминий.

Жидкое стекло

При помощи этого компонента можно закрыть поры в древесине и избежать проникновения влаги внутрь щепы. Применять жидкое стекло рекомендуется после того, как были устарнены все сахара и есть необходимость в защите от проникновения влаги. Жидкое стекло могут применять в качестве модификатора для схватывания строительной массы, но только делать это предельно осторожно.

А вот какой зимний клей для газосиликатных блоков самый популярный и чаще всего используемый, рассказывается в данной статье.

Какие блоки для внутренних перегородок самые подходящие, рассказывается в данной статье.

Какие плюсы и минусы дома из газоблока существуют и стоит ли использовать такой строительный материал, рассказывается в данной статье: https://resforbuild.ru/beton/bloki/gazobloki-plyusy-minusy.html

Возможно вам так же будет интересно узнать о том, какие технические характеристики газоблоков существуют.

Известь гашеная

Этот вариант станет отличной заменой первым двум химическим составляющим, если существуют сложность в их приобретении. Гашеная известь имеет уникальные способности выводить сахар и бороться с различными микроорганизмами, которые содержаться в древесине.

Как сделать своими руками

Изготовить арболитовые блоки совершенно несложно своими руками. Для этого не нужно использовать особое оборудование. Главное в этом деле, это четко придерживаться необходимых пропорций.

Рецепт смеси и пропорции

При изготовлении арболита важно строго придерживаться соотношениямежду всеми компонентами.

Расход каждого материала составит:

  • соотношение наполнителей 80-90%;
  • приблизительный объем цемента в общей смеси – 10-15%;
  • объем воды – 60-70%;
  • химические составляющие – 2-4%.

Чтобы получить 1 м3 материала, необходимо использовать следующие пропорции: 300 г наполнителей и 400 л воды. При обработке наполнителей применяют известковый раствор.

На видео – как сделать арболитовые блоки своими руками:

Для его приготовления необходимо воспользоваться следующей пропорцией:

  • известь – 2,5 кг
  • ,вода – 200-300 л на 1 м3 древесной щепы.

Для ускорения процесса затвердевания смеси и улучшения ее свойств применяют указанные выше химические компоненты. Для производства 1 м3 арболита уйдет до 10 кг химических компонентов. Если четко соблюдать пропорции, то состав смеси получается классическим. При смене пропорций вы рискуете получить некачественный строительный продукт.

Как залить блоки

Перед тем как переходить к заливке подготовленного материала, нужно позаботиться про оснащение:

  • емкость для замешивания смеси или бетономешалку;
  • формы съемного типа;
  • лопату;
  • сито;
  • поддон из металла.

Что касается форм для заливки материала, то их можно сделать своими руками или купить готовый вариант в строительном магазине. Если вы решили выбрать первый способ, то тогда нужно взять доски толщиной до 2 с. Скрепить их по необходимым размерам. С наружной стороны оббить их пленкой.

На видео – дом из арболитовых блоков своими руками:

Процесс заливки сводится к соблюдению следующих действий:

  1. Очищенный наполнитель отправить в воду. Добавлять жидкое стекло и все перемешать. Для этих целей можно использовать бетономешалку или миксер.
  2. Для приготовления смеси необходимо взять наполнитель, песок и цемент в пропорции 6:2:1. Во время замешивания не стоит сразу вес компоненты помещать в бетономешалку. Это приведет к образованию комочков, что в итоге снизит качество готового материала.
  3. Подготовить формы. Их внутреннюю сторону обработать известковым молоком. Чтобы смесь не прилипала к стенкам, можно отделать их линолеумом.
  4. Залить приготовленную смесь в форме. Чтобы отсутствовали пузырьки воздуха, стоит после заполнения всю массу взбалтывать, а стенки простукивать.
  5. Для уплотнения смеси применять трамбовку или вибропресс. Ждать 1 сутки.

На видео – станок для производства арболитовых блоков своими руками:

Формы установить в темное место, накрыть пленкой и ждать примерно 21 день. Держать форму на воздухе при показателях температуры не менее 15 градусов. Если вы впервые занимаетесь изготовлением арболитовых блоков, то первая партия должна быть небольшой. Таким образом, вы сможет оценить качество и правильность пропорций используемых компонентов.

А в данной статье можно прочесть про отрицательные отзывы о арболитовых блоках.

Так же будет интересно узнать о том, что лучше газоблок или пеноблок, поможет понять видео из статьи.

А вот что дешевле пеноблок или газоблок и что всё таки лучше использовать, очень подробно рассказывается в данной статье.

Так же будет важно узнать о том, какие размеры бетонных стеновых блоков существуют и как правильно их подобрать. Для этого стоит перейти по ссылке.

А вот какие существуют плюсы и минусы бани из шлакоблока, рассказывается в данном видео.

Арболитовые блоки – это широкоприменяемый строительный материал при взведении домов различного назначения. Изготовить блоки можно самостоятельно, если знать состав материала и пропорции всех компонентов. При четком соблюдении всех правил и рекомендаций можно получить качественные и прочнее арболитовые блоки, ни чем не хуже от тех, которые изготовлены промышленным путем.

каркас и заливка своими руками

Деревобетон или монолитный арболит широко известен в строительстве. Материал обладает хорошими техническими характеристиками. Его применение при возведении зданий имеет свои достоинства и недостатки. Что представляет собой арболитовый состав, и какие особенности монолитных сооружений?

Свойства материала и особенности его применения

Монолитный арболит представляет собой смесь измельченной древесины и цемента. В качестве дополнительных компонентов в материал добавляют рисовую дробленую солому, стебли хлопчатника и химические вещества, которые расщепляют древесные сахара.

Благодаря своему составу арболит обладает хорошей тепловой и звуковой изоляцией. Материал достаточно огнестойкий и легко поддается обработке. Одной из основных особенностей монолитного арболита является его небольшой вес. За счет этого фундамент под сооружения выстраивается облегченного типа.

При строительстве домов учитывается высокое влагопоглощение материала. Поэтому применение деревобетона предусматривает хорошую гидроизоляцию всех стен:

  • поверхность фасада защищается облицовкой или штукатуркой;
  • сверху на фундамент укладывается гидроизоляционное покрытие;
  • навес карниза над стенами должен быть не менее пятидесяти сантиметров.

От нижней части стены до высшей точки грунта следует соблюдать дистанцию в пятьдесят сантиметров.

Виды

Монолитный арболит изготавливается двух типов:

  1. Конструкционный. Применяется для несущих конструкций здания и перегородок. За счет невысокой прочности используется только в строительстве малоэтажных сооружений. Конструкционный материал согласно прочности имеет классификацию  В3,5, В3, В2,5,В2, В1,5 и В1, что соответствует пределу плотности от 500 до 850 килограмм на метр кубичный.
  2. Теплоизоляционный.  Таким раствором заливают стенные проемы. По прочности делится на классы В0,75 и В0,5. Плотность материала составляет не более 500 килограмм на метр кубичный.

На степень прочности заливки из арболитной смеси  влияет марка используемого цемента и уровень уплотнения состава. Для повышения износостойкости сооружений материал обязательно армируют.

Способы монолитного строительства

Строительство монолитных зданий осуществляется двумя основными методами:

  1. Непрерывная поэтажная заливка. При таком варианте возведения домов для фундамента сооружается несъемная опалубка. Состав для заливки подается из локальной бетонно-растворной установки или автоматического миксера.
  2. Заливка поясов. Опалубка монтируется для всего периметра дома. Изначально выставляется необходимая ширина деревянной формы, которую постепенно продвигают снизу вверх для формирования следующего пояса.

Нередко при монолитном строительстве используют сегментную заливку, при которой за один раз заливается определенного размера стена с боковыми ограничениями.

Технология монолитного строительства

Для монолитных зданий из арболита нет необходимости сооружения железобетонного пола. Легкий деревобетон устанавливают на ленточный фундамент. Ширина его должна соответствовать толщине стен.

Технология строительства монолитных зданий не имеет особой сложности. Часто такого типа дома возводят своими руками:

  1. При заливке фундамента выставляются стержни арматуры до уровня пола следующего этажа здания. Чем больше планируется выстроить этажей, тем толще подбираются детали армирующей конструкции.
  2. Сбитая необходимого размера опалубка укладывается на фундамент так, чтобы нижняя ее часть была внахлест ленточному основанию. Детали формы для заливки соединяются шпильками из металла. Все боковые щели закрываются деревянными обрезками. После полного застывания арболита опалубка снимается, а крепежные детали обрезаются, чтобы не было ненужных отверстий.
  3. В правильно установленную опалубку заливается раствор арболита. Состав смеси готовится согласно типу стены – внутренняя или наружная. Форма должна быть наполнена так, чтобы края ее от верхнего среза оставались на пять сантиметров свободными.
  4. Залитый раствор тщательно утрамбовывают по всей поверхности. Для этого используют металлический штырь. Такое уплотнение позволит устранить воздушные пузырьки из материала, способствуя повышению его прочности.
  5. Опалубка снимается только после полного застывания части стены. После этого ее очищают, пропитывают маслянистым веществом и выставляют для заливки следующего участка. Перемещение формы проводится в одной плоскости, пока не замкнется периметр. Далее выполняется подъем на верхние участки.
Монолитный арболит, вид внутри опалубки при засыпки и трамбовании

Когда нижние стены будут полностью залиты, выполняется установка пола следующего этажа. Для этого специально монтируется опалубка, которая заполняется арболитовой смесью или выкладываются для перекрытия плиты из железобетона. Затем аналогично первому этажу заливаются верхние стены.

Теплоизоляционным арболитным раствором заполняют проемы между стенами из двойного кирпича. Такая конструкция значительно снижает теплоотдачу кирпичных сооружений и намного упрощает строительство здания.

Приготовление арболитовой смеси

Качество раствора из арболита для монолитного строительства зависит от соблюдения пропорций смеси и правильного ее изготовления.

Подготовка компонентов

В состав раствора для заливки из арболита входит более 80 процентов щепы хвойной древесины. Она имеет определенные размеры и форму. Стандартная величина сырья – 25*5*10 миллиметров. Если древесные частицы имеют больший объем, то прочность материала снижается. При меньших размерах требуется большее количество цементной смеси и при этом уровень теплоизоляционных свойств понижается.

В состав раствора для заливки из арболита входит более 80 процентов щепы хвойной древесины

Для цементной основы используется портландцемент. В основном используют марки М500 или М400. Для быстроты твердения смеси вносятся минеральные добавки, такие как сернокислый алюминий, хлористый кальций или жидкое стекло. Также хорошо зарекомендовала себя гашеная известь.

Для заливки монолитных сооружений арболитовый раствор готовится в зависимости от его типа. Для конструкционного деревобетона на 1 метр кубический требуется такие пропорции основных компонентов:

  • для плотности В1 – на 360 литров воды используется 210 килограмм цемента и 210 килограмм измельченной древесины;
  • В2 – соединяется 350 килограмм цемента, 230 килограмм щепы и 400 литров воды;
  • класс В2,5 требует 250 килограмм хвойного наполнителя, 440 литров жидкости и 380 килограмм портландцемента.

Для замеса арболита, который используют в теплоизоляционных целях на 1 кубический метр в зависимости от плотности необходимо от 280 до 300 килограмм цемента, 300- 430 литров води и от 170 до 190 килограмм щепы древесины.

Все расчеты используются при условии добавления цемента марки М400. Если применяется сухой раствор М 500, то для пропорции берется во внимание коэффициент 0,96.

Технология изготовления раствора

Процесс замеса состоит из таких этапов:

  1. В сухом виде смешивается щепа и минеральная или химическая добавка. После этого добавляется портландцемент. Все компоненты размешиваются до однородного состояния.
  2. В подготовленный состав небольшой струей льется вода. При этом следует беспрерывно перемешивать раствор строительным миксером или бетономешалкой. В готовом арболитовом материале для заливки вся щепа должна быть покрыта цементной смесью. Процесс смешивания компонентов занимает не менее 5 минут.

Правильно сделанный раствор должен быть влажным, но не сильно мокрым. При добавлении в качестве добавки извести для ее полного погашения раствор смешивается в течение 20 минут.

Роль каркаса в монолитном строительстве

Технология строительства монолитных зданий включает установку каркаса. От вида и размеров таких опор зависит прочность здание и возможность возведения более двух этажей. Также с помощью каркаса устанавливается форма будущей постройки.

Для монолитных сооружений из арболита используется два типа несущей конструкции:

  1. Деревянная. Такой вариант применяется только для малоэтажных домов. Рамки из дерева монтируются в вертикальном положении на расстоянии от 120 до 150 сантиметров друг от друга.  При этом обязательно включаются оконные и дверные проемы. Деревянный каркас повышает прочность зданий. С помощью досок равномерно распределяется вся нагрузка при усадке.
  2. Металлическая. Такая каркасная основа выстраивается из сальных стержней и сеток. Для оконных проемов применяются металлические балки. Данный вид основы более надежен и позволяет сооружать этажные монолитные здания из арболита.

Деревянный каркас перед установкой обрабатывается специальными антисептическими веществами. К такой основе можно монтировать стропила и удобно устанавливать оконные и дверные конструкции.

Деревянный каркас перед установкой обрабатывается специальными антисептическими веществами

Детали металлического каркаса требуют предварительной защиты антикоррозийными средствами. Бескаркасное возведение зданий из арболита в монолитном строительстве не применяется. Такой вариант подходит только для сооружений из деревобетонных блоков.

Преимущества и недостатки монолитного арболита

Достоинством монолитного строительства из арболита является хорошие технические характеристики материала. Среди преимуществ деревобетона можно выделить:

  1. Огнестойкость.  Невзирая на легковоспламеняющийся древесный состав арболит не горит. Такое свойство материалу придает цементная смесь и предварительная обработка щепы антипиренами.
  2. Высокая теплоизоляция.  Деревобетон сохраняет тепло в помещении в пять раз лучше, чем кирпич из глины. Степень теплоизоляционных характеристик монолитных строений зависит от класса материала.
  3. Легкий вес. Такое свойство деревобетона позволяет возводить облегченные виды фундамента.
  4. Несложная обработка материала. Арболит можно без особых усилий разрезать или распилить. Все крепежные элементы установить достаточно просто, что значительно экономит время на выполнение внутренних работ в здании.
  5. Хорошие шумоизоляционные свойства. Коэффициент поглощения звука достигает 0,6 при наибольшей частоте 2000 герц.
  6. Морозостойкость.  Деревобетон имеет устойчивость к низким температурам порядка 50 циклов.
  7. Длительный срок эксплуатации. Монолитный арболит сохраняет свою структуру и не дает трещин и расколов на протяжении сорока пяти лет.
  8. Биостойкость материала.  Деревобетонные конструкции не подвержены грибковым поражениям, плесени и гниению.

Наряду с многочисленными достоинствами монолитный арболит имеет свои недостатки:

  • высокая степень поглощения влаги.
  • неустойчивость к агрессивному химическому воздействию.

Материал быстро промокает и разбухает. Поэтому при сооружении зданий обязательно применяется защита стен. Строительство монолитных домов из деревобетона проводится только в условиях пониженной влажности воздуха. Также для установки арболитовых стен требуется надежная гидроизоляция основания.

Деревобетонные конструкции достаточно привлекательны для грызунов, которые легко проделывают в нем хода и норы.

Достоинства монолитного арболита намного превышают недостатки. Правильное сооружение конструкции для заливки и соблюдение пропорций при замесе раствора намного повысит технические качества материала, а надежная защита от влаги увеличит его эксплуатационный срок.

Арболитовые блоки своими руками: технология, пропорции, состав (+видео)

Благодаря современным экономичным материалам, постройка своего дома уже не кажется несбыточной мечтой. Арболит считают одним из самых выгодных и надежных вариантов. Арболитовые блоки сочетают в себе лучшие характеристики камня и дерева. Их реально сделать своими руками в домашних условиях без помощи профессиональных мастеров.

Свойства арболитовых блоков

Арболит – это легкий бетон с крупными порами. Технология производства предусматривает, что в его состав входит органический целлюлозный заполнитель (рисовая солома, древесная дробленка, сечка тростника), минеральное вяжущее вещество (цемент М500), вода и химдобавки – пластификаторы, ингибиторы коррозии стали, парообразователи. Блоки используют во время строительства жилых, промышленных зданий для покрытия, перекрытия, создания пространственных конструкций, несущей основы.

Этот материал стойкий к механическим повреждениям, имеет хорошую паропроницаемость – 0,11 мг/м·ч·Па. Он позволяет сделать расход материалов, раствора намного меньше. Дом из арболита своими руками будет прочным, легким, дешевым, защищенным от гниения. Важно, что при повышенной нагрузке изделия не трескаются, а сжимаются.

Совет прораба: замена кирпичной кладки арболитом позволит снизить массу здания в 7-8 раз.

В зависимости от плотности, арболитовые блоки изготавливаются как теплоизоляционный (класс В0,35; В0,75, В1), конструкционно-теплоизоляционный (класс В1,5; В2; В2,5) и конструкционный материал  (В3,5).

Преимущества арболитовых блоков

  1. Высокий уровень теплоизоляции (теплопроводность – 0, 07 – 0, 17 Вт/мК), огнестойкости (не поддерживает горение в течение 0,75-1,5 часа), морозостойкости.
  2. Быстрая кладка и хорошая плотность до 600 кг/м3.
  3. Экологичность (на 80-90% состоит из древесной щепы).
  4. Низкая гигроскопичность (плохо впитывает влагу).
  5. Отсутствие необходимости в дополнительном утеплении.
  6. Нет лишней нагрузки на фундамент, так как снижается масса здания, низкий уровень усадки (0,4-0,5).
  7. Состав изделий обеспечивает хорошую сцепляемость с отделочными материалами.
  8. Изделия отлично поддаются моделированию (резка, фиксация крепежей).

Совет прораба: себестоимость 1 м² стены жилого дома из арболита обойдется в несколько раз дешевле, чем при использовании других материалов с похожими техническими характеристиками.

Технология создания арболитовых блоков своими руками

Сделать арболитовые блоки своими руками в домашних условиях вполне реально. Но нужно учитывать, что их технические характеристики могут отличаться от тех, которые будут у заводской продукции согласно ГОСТу19222-84, СН 549-82.

Первый этап производства блоков – это изготовление деревянных опилок, щеп. Оптимальные размеры:

  • длина 30-60 мм;
  • ширина 2-10 мм;
  • толщина до 10 мм.

Для нейтрализации сахара в древесине в заводских условиях используют сернокислый алюминий, а в нашем случае опилки высушивают на солнце не меньше 40-80 дней. Для ускорения процесса их спрыскивают 1,5% раствором хлористого кальция с расчетом 200 л раствора на один куб щепы.

Затем, для того чтобы очистить от мусора, заготовку пропускают через сито. Ее нужно замочить в смеси воды и жидкого стекла (как вариант: смешать портландцементом и пластификатором). Альтернативный способ – замочить стружку в гашеной извести (5:10%) на 3 часа. После того как стечет жидкость, ее можно использовать для замеса. Изготовление состава происходит в бетономешалке в пропорции 1:2:6 (цемент, песок, опилки). Сначала соединяют опилки с водой, потом добавляют жидкое стекло и цемент. Масса должна быть пластичной и однородной.

Для того чтобы у блоков была правильная геометрическая форма, смесь заливают в металлические формы (20 см*20 см*50, 30 см*20 см*50 см), смазанные петромином, оббитые линолеумом или обтянутые пленкой и смазанные жидким мылом. Мастера советуют выкладывать массу поэтапно, каждый раз, хорошо трамбуя слой.

Раствор после помещения в форму встряхивают для устранения воздуха. Сэкономит время и улучшит результат в домашних условиях использование специального станка для производства арболитовых блоков. Одну сторону блока можно декорировать: залить сверху цементным раствором, зафиксировать фрагменты плитки, создать рельеф. Через сутки изделия можно вынимать из формы. Потом блоки должны сушиться несколько недель при температуре не менее 15° (это важное условие). Если поверхность будет иметь изъяны, ее дополнительно шлифуют. При необходимости проводится армирование. Цены на арболитовые блоки колеблются от 50 до 200 р. за штуку.

Форма для арболитовых блоков

Арболит – это один из лучших стеновых материалов для строительства малоэтажных зданий, возведения высотных строений каркасной конструкции. Рецепт его состава не очень сложен, и при соблюдении технологии процесса, нужных пропорций, изделия получатся прочными и надежными, даже если они сделаны своими руками.

Видео

Экспериментальное исследование добавления древесной стружки в раствор и статистическое моделирование отдельных эффектов

В рамках расширенной программы исследований по использованию древесных стружек в строительном растворе был разработан набор процедур для проверки влияния древесных стружек на определенные свойства строительного раствора. Были приготовлены смеси, содержащие древесную стружку, заменяющую мелкие заполнители на 0, 30, 50 и 70% их объема. Технологичность, вес единицы свежего строительного раствора, скорость ультразвуковых импульсов (UPV), а также прочность на изгиб и сжатие были определены на основе измерений при разном возрасте отверждения.Результаты измерений и анализа показывают, что снижение прочности на сжатие, вызванное добавлением древесной стружки, может быть предсказано. Результат был стандартизирован в форме многофакторной сигмоидальной модели. Также стало очевидным, что доля цемента в смеси увеличивается, когда древесная стружка используется как объемная замена обычных мелких заполнителей, из-за низкого значения удельного веса древесины по сравнению с обычными заполнителями. Предлагается другая процедура, основанная на измерениях массы и объема, с целью проверки пропорций смеси в окончательной растворной смеси.

1 Введение

Было проведено множество исследований по использованию сельскохозяйственных или промышленных отходов в бетоне. В связи с тем, что бетон широко используется и имеет длительный срок службы, использованные в нем отходы надолго удаляются из потока отходов. Поскольку количество заполнителей, необходимых в строительной отрасли, велико, экологические выгоды от замены природных заполнителей отходами связаны не только с их безопасным удалением, но и со смягчением воздействия на окружающую среду, возникающего в результате добычи заполнителей, т.е.е. визуальное вторжение и потеря сельской местности. Исследования [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] были проведены для оценки физико-механических свойств бетона, содержащего стружку или опилки в качестве заполнителей. Стружка и опилки — это отходы деревообрабатывающей промышленности, образующиеся при резке, фрезеровании и сверлении в процессе подготовки изделий из дерева. Свойства древесной стружки и опилок могут значительно различаться в зависимости от таких факторов, как географическое происхождение древесины, тип древесины, часть дерева, тип производственного процесса, в результате которого получается стружка, и т. Д.Как и в большинстве случаев легких заполнителей, замена обычных заполнителей древесной стружкой или опилками в основном производится на основе критерия замещения «по объему». Замена обычных крупных или мелких заполнителей таким же объемом древесной стружки или опилок [1], [6] обычно выражается в процентах (%).

Из-за (а) изменчивости заменяемых материалов, (б) их значительных отличий от природных заполнителей и (в) изменчивости параметров, влияющих на свойства бетона или самого раствора, данные, полученные в результате испытаний механических свойств образцов бетона или раствора. содержащие стружку, основаны на многофакторном процессе.Когда эти результаты поступают из совершенно разных лабораторных процессов, их метрологическая прослеживаемость имеет большое значение для достижения взаимной сопоставимости. Необходим стандартизированный протокол для экспериментального плана и ссылки на все существенные относительные данные (как предложено в [12] для традиционной замены заполнителя пластиком), чтобы облегчить любую попытку составить результаты исследований, когда древесная стружка различного происхождения и характеристик используются, и процент замены заполнителя варьируется.Различное представление общей экспериментальной процедуры вызывает трудности при сравнении результатов, полученных из разных лабораторий, и статистических выводов о влиянии замены природных заполнителей древесной стружкой.

Настоящее исследование посвящено изучению использования древесной стружки как части обычных заполнителей в строительном растворе, и особенно созданию статистических моделей для прогнозирования механических свойств раствора, содержащего древесную стружку, в качестве частичной замены обычных мелких заполнителей.Результат стандартизирован, поэтому любой, кто использует этот протокол, даст результаты, которые будут сопоставимы с другими аналогичными исследованиями.

2 Материалы и методы

Цемент типа IV / B (P-W) 32,5 N и щебень известняка с максимальным размером 4,5 мм использовались во всех смесях. Объемная плотность мелких заполнителей составляла 1740 кг / м 2 3 (стандартная неопределенность 2,7%, основанная только на стандартной ошибке среднего). Древесная стружка, использованная в этом исследовании, была произведена на фабрике путем механической обработки двух видов необработанной древесины, айуса (рис. 1А) и бука (рис. 1В).Бук — древесина, широко используемая в мебельной промышленности. Ayous был выбран как совершенно другая, более легкая порода дерева. Насыпная плотность стружки бука составила 43 ± 1 кг / м 3 , а насыпная плотность стружки бука — 64 ± 2 кг / м 3 . Процедуру измерения объемной плотности повторяли 10 раз, что обеспечивало точность метода в условиях повторяемости [13]. Было обнаружено, что эта стандартная неопределенность типа А является репрезентативной для всех вносящих вклад параметров неопределенности; его сравнивали с результатом относительной стандартной неопределенности типа B, основанной как на разрешающей способности мерной трубки, так и на интервале поверочной шкалы (e) используемых весов (все термины определены в JCGM 200: 2012 [14]).Наблюдаемая погрешность измерения объемной плотности объясняется сильной зависимостью этой характеристики от метода обработки древесины, используемого для производства стружки. Ожидается, что это будет внутренняя характеристика этого материала. Если древесная стружка предназначена для использования в качестве строительного материала, атрибут насыпной плотности должен быть строго учтен в любом соответствующем исследовании. В качестве суперпластификатора использовался суперпластификатор на основе простого поликарбонового эфира второго поколения.

Рисунок 1:

Древесная стружка, использованная в исследовании: (A) Айюс, (B) бук.

Обычно распределение частиц в материалах оценивается ситовым анализом. В случае стружки возникает важный вопрос, какой реальный размер соответствует номинальному размеру сита. Чтобы оценить это, образец, который был взят для анализа с помощью ситового анализа, также изначально был измерен совершенно другим методом. С помощью этого метода приблизительно все стружки длиной более 3 мм (фактически подлежащие оптическому различению) были измерены с помощью высокоточного цифрового штангенциркуля.Для каждого бритья измеряли два размера: длину, которая принималась за максимальный размер, и ширину, которая принималась за размер бритья на оси, перпендикулярной длине. Как показано на рисунке 2, ширина бритья статистически не связана с его длиной (Ayous: r = 0,04, бук: r = 0,20). Стружки размером менее 3 мм были выбраны, чтобы не измерять их штангенциркулем, потому что (а) их измерение было невозможно из-за их очень маленького размера и очень большой популяции, и (б) было замечено, что при таких размерах стружки не было значительной дискриминации между длиной и шириной бритья.Существенный вопрос заключался в том, проходит ли стружка через сито в зависимости от ее длины или ширины, что, очевидно, является избыточным для такой мелкой стружки. Затем на тех же образцах, которые были частично измерены штангенциркулем, был проведен ситовый анализ, как и для мелких агрегатов. Результаты анализа гранулометрического состава двух типов древесной стружки и мелких заполнителей представлены на рисунке 3. Как видно из этого рисунка, почти вся стружка проходит через сито 5 мм.Поскольку в обоих образцах было измерено, что большая популяция имеет длину более 5 мм, можно сделать вывод, что во время ситового анализа критическим размером стружки является ширина, а не длина. Это также подтверждается (Рисунок 2) тем фактом, что только небольшая часть самых больших стружек была измерена и имела ширину более 5 мм, что означает, что можно сказать, что распределение ширины стружки сильно связано с результатом ситового анализа. . Следует также отметить, что этот результат ситового анализа следует использовать только в качестве критерия для качественной оценки бритвенного материала перед смешиванием [2], поскольку нет доказательств того, что эта геометрия бритья остается неизменной даже после того, как этот материал добавлен в смесь.

Рисунок 2:

Зависимость ширины от длины для двух типов стружки.

Рисунок 3:

Результаты ситового анализа.

Сначала была приготовлена ​​эталонная смесь с отношением заполнителя к цементу, равным 3, отношением воды к цементу, равным 0,5, и 1% по массе суперпластификатора цемента.Затем были использованы три уровня замены мелкого заполнителя: 30, 50 и 70% по объему. Испытания на удельную массу (плотность) были выполнены после смешивания и перед заливкой строительного раствора в формы. Удельный вес ( D ) был определен путем измерения массы строительного раствора ( м u ), содержащегося в известном объеме ( V u ) образца свежего строительного раствора, как описано в ASTM. C138:

Расчет был использован, чтобы проиллюстрировать изменения доли цемента в смеси и то, остается ли это практически постоянным.Этот расчет использовался также для оценки влияния степени уплотнения древесной стружки, поскольку воздух в исходном количестве этого «рыхлого» материала (перед смешиванием) был вытеснен всеми другими составляющими смеси (во время смешивания). Это особенно необходимо в случае древесных стружек, поскольку этот материал представляет собой легкий материал с типичной изогнутой формой (рис. 1), отличной от обычных заполнителей. После измерения удельного веса свежего строительного раствора использовались соотношения начальных масс смешиваемых компонентов, чтобы оценить пропорцию смеси каждого компонента.Распределение измеренной массы единицы между составляющими составляющими было рассчитано на основе разумного предположения, что конечная смесь была однородной по всему объему. Массовое соотношение для каждого компонента равно первоначально определенному для свежего раствора, приготовленного путем смешивания (отношение заполнителя к цементу 3, отношение воды к цементу 0,5 и 1% по массе суперпластификатора цемента) (уравнение 2).

(2) м я , в этом / ∑ я м я , в этом знак равно м я / ∑ я м я

, где m i , init — масса составляющей i , первоначально определенная перед смешиванием, а m i — масса составляющей i в любом образце (части) свежего строительного раствора. .В любом случае для образца свежего раствора м u соответствует ∑ я м я как в формуле. 1. Пропорция в смеси компонентов i (MP i ) определяется как:

(3) ( Депутат ) я знак равно м я / V ты знак равно м я / ( м ты / D ) знак равно D ⋅ ( м я / ∑ я м я ) знак равно D ⋅ ( м я , в этом / ∑ я м я , в этом )

Рассчитанные пропорции смеси приведены в таблице 1.После регрессии для подгонки кривой для значений изменения пропорции цементной смеси (CMPC) в зависимости от замены мелких заполнителей в соответствии с формулой. (4) установлено, что для древесины айос h 1 = 0,49 ± 0,11 и h 2 = 0,0053 ± 0,0017 (R 2 = 0,9997), а для древесины бука h 1 = 0,51 ± 0,04 и ч 2 = 0,00041 ± 0,0007 (R 2 = 0,999).

Таблица 1:

Пропорции смешивания.

Образцы Порода дерева Замена Цемент (кг / м 3 ) Мелкие заполнители (кг / м 3 ) Вода (кг / м 3 ) Суперпластификатор (кг / м 3 )
% кг / м 3
Арт. 0 0 481 1444 241 4,8
А30Ш Ayous 30 13 578 1214 289 5,8
А50Ш 50 20 659 989 330 6.6
А70Ш 70 35 772 695 386 7,7
Б30Ш Бук 30 21 572 1201 286 5,7
Б50Ш 50 37 656 983 328 6.6
Б70Ш 70 60 750 675 375 7,5

(4) CMPC знак равно час 1 · Икс + час 2 · Икс 2

Согласно рассчитанным пропорциям смеси, доля цементной смеси значительно увеличивается по мере увеличения процентной доли замены обычных заполнителей по объему (Рисунок 4).Ожидается, что этот результат будет более значительным, когда заменяющий материал имеет более низкий удельный вес и / или является более «пушистым». Это следует учитывать каждый раз, когда легкий и / или «пушистый» материал используется для замены обычных заполнителей.

Рисунок 4:

Процент изменения пропорции цементной смеси (CMPC) по сравнению с процентом замены мелких заполнителей.

Из-за высокого водопоглощения древесных стружек они впитывают часть воды из смеси, оставляя недостаточно воды для удобоукладываемости и схватывания цемента.По этой причине в некоторых исследованиях [1], [2], [4], [6], [7] используются водонасыщенные стружки или дополнительная вода. В обоих этих случаях окончательное и фактическое отношение воды к цементу неизвестно, поскольку используемое избыточное количество воды нелегко оценить по тому, остается ли она внутри пористости древесины или не абсорбируется для вышеуказанных случаев, соответственно. В качестве альтернативы, в рамках этого исследования было решено использовать древесную стружку в необработанном виде, и в смесь не добавляли лишнюю воду. Предполагалось, что преимущество этого варианта состоит в том, что даже если часть воды абсорбируется древесной стружкой во время смешивания, она будет в виде водоцементной подсмеси, которая гарантирует, что вероятность взаимодействия этой воды с цемента было максимум.

Компоненты смешивали в смесителе на медленной скорости для достижения хорошей гомогенизации. Сначала происходило перемешивание цемента и заполнителей. Затем добавляли воду с разведенным в ней суперпластификатором. Испытание раствора на текучесть проводилось согласно ASTM C 1437 [15]. Образцы из каждой смеси были отлиты размерами 40 × 40 × 160 мм для проведения всех испытаний. Неразрушающий контроль скорости ультразвуковых импульсов (UPV) проводился в возрасте 28 и 365 дней с использованием метода, описанного в ASTM C 597 [16], в частности, с использованием портативного ультразвукового неразрушающего цифрового индикаторного тестера (PUNDIT).Испытания на прочность проводились через 7, 14, 28 и 365 дней отверждения. Испытание на прочность при изгибе проводилось путем нагружения в центральной точке, как описано в ASTM C 293 [17]. Концевые части призм, которые остались нетронутыми после разрушения при изгибе, использовали для проведения эквивалентного кубического испытания путем приложения нагрузки через квадратные стальные пластины размером 40 мм. Приведенные результаты испытаний на изгиб и неразрушающие испытания соответствуют среднему значению для трех испытанных образцов. Результаты эквивалентного куба на сжатие — это среднее значение шести испытанных образцов.

3 Результаты

3.1 Свежий раствор

Обычно древесная стружка впитывает больше воды по сравнению с обычными мелкими заполнителями. По этой причине удобоукладываемость смеси снижается по мере увеличения процентного содержания мелких заполнителей по объему (Таблица 2). Эталонная смесь, а также A30Sh и A50Sh, были самоуплотняющимися смесями, и измеренный диаметр был не после 25 капель таблицы, как указано в ASTM C 1437 [15]. Из-за разницы в объемной плотности двух типов древесины (айуса и бука) одинаковые мелкие заполнители по процентному содержанию объемного замещения приводят к разным пропорциям смеси для каждого вида древесины.Это означает, что при использовании бука пропорция смеси для древесных стружек для определенного процентного содержания замены по объему имеет большее значение, чем при использовании ayous. Возможно, это приводит к большему водопоглощению древесной стружкой и, как следствие, к снижению удобоукладываемости свежего раствора.

Таблица 2:

Результаты теста потока.

Арт. А30Ш А50Ш А70Ш Б30Ш Б50Ш В70Ш
Поток без опускания стола 24.8 22,3 21,8 н.с н.с н.с н.с
Поток с опусканием стола оф. оф. оф. 22,4 22,2 21,1 20,1

Удельный вес уменьшился по мере увеличения объема замещения мелких заполнителей (Рисунок 5).Это снижение объясняется тем, что древесная стружка имеет меньший удельный вес, чем обычные заполнители.

Рисунок 5:

Удельный вес свежего строительного раствора в сравнении с заменой обычных заполнителей в% по объему.

3,2 Затвердевший раствор

Результаты испытаний на изгиб и эквивалентную прочность на сжатие куба приведены в таблице 3.Прочность на изгиб и сжатие раствора, содержащего стружку, уменьшалась по мере увеличения замены мелких заполнителей. Это снижение объясняется более слабым сцеплением цементного раствора и стружки по сравнению со сцеплением цементного раствора и обычных заполнителей.

Таблица 3:

Результаты испытаний механических свойств.

Образцы Прочность на изгиб (МПа) Прочность на сжатие (МПа)
7 дней 14 дней 28 дней 365 дней 7 дней 14 дней 28 дней 365 дней
Арт. 10,1 ± 0,4 9,3 ± 2,2 9,1 ± 0,9 12,3 ± 0,9 43,7 ± 0,9 49,2 ± 0,9 58,1 ± 2,1 74,4 ± 2,7
А30Ш 7,8 ± 0,1 8,5 ± 1,0 6,8 ± 0,9 9,9 ± 0,8 31,7 ± 0,6 39,4 ± 0,4 45.0 ± 0,9 53,5 ± 0,3
А50Ш 6,5 ± 0,1 7,3 ± 0,8 7,6 ± 1,4 9,3 ± 1,7 26,2 ± 0,3 32,9 ± 0,5 41,5 ± 0,3 46,0 ± 0,7
А70Ш 6,2 ± 1,0 7,2 ± 0,7 7,7 ± 0,1 9.2 ± 0,1 20,8 ± 1,1 23,8 ± 0,6 29,1 ± 0,8 32,2 ± 0,8
Б30Ш 7,7 ± 0,1 7,9 ± 0,8 8,4 ± 2,6 9,9 ± 1,7 29,2 ± 0,7 34,9 ± 2,4 41,1 ± 0,4 46,3 ± 3,6
Б50Ш 7.1 ± 1,7 8,0 ± 0,9 7,5 ± 1,5 8,4 ± 0,9 21,7 ± 1,8 26,8 ± 2,0 31,3 ± 1,5 33,7 ± 4,6
Б70Ш 5,1 ± 0,1 7,1 ± 0,1 6,6 ± 0,9 7,3 ± 0,2 14,8 ± 1,3 21,7 ± 1,2 28,0 ± 0.8 26,9 ± 3,3

Показано, что результирующее снижение прочности раствора, содержащего древесную стружку, не связано только с влиянием замены мелких заполнителей древесной стружкой. Ожидается, что в результате значительное увеличение удельной доли цемента в готовой смеси положительно повлияет на значение прочности. Следовательно, результатом снижения значения прочности является сочетание одновременного и неблагоприятного воздействия двух вышеуказанных явлений.Кажется, что решение о замене мелкого заполнителя древесной стружкой не должно основываться только на расчетах в соответствии с объемами этих двух материалов в том виде, в каком они появляются до смешивания. Этот расчет должен производиться в соответствии с кажущимся объемом каждого составляющего объема смеси как условиями, в которых он появляется в смеси.

Как показано на Рисунке 6, во всех случаях прочность на сжатие раствора, содержащего стружку, была выше, чем прочность на сжатие раствора, содержащего буковую стружку.Средняя разница, рассчитанная для 12 групп по шесть образцов, каждая из которых имеет одинаковое значение для фракции мелких агрегатов и возраста образца, составила 20 ± 7%. Этот результат не имеет значимой статистической связи ни со значениями фракции замещения мелких агрегатов (Pearson r = 0,255, значимость p = 0,423), ни со значениями возраста образца (Pearson r = 0,217, значимость p = 0,498).

Рисунок 6:

Сравнение результатов испытаний на прочность при сжатии для групп из шести образцов с заданной долей мелких заполнителей и возрастом образцов (каждая группа соответствует одной цифре).

Согласно результатам экспериментов и согласно уравнению, основанному на уравнении, первоначально предложенном Фрейслебеном Хансеном и Педерсеном [18], прочность на сжатие дается как функция доли замещения мелкозернистого заполнителя ( W ) и возраста образца ( t ) по формуле Уравнение (5):

(5) C S ( т , W ) знак равно ( C S ∞ , 1 — k W п ) exp [ — ( τ / т ) а ]

, где CS ( т , W ) — прочность на сжатие при возрасте т (дни), когда доля замены мелких заполнителей составляет W , CS , 1 — предельное значение сжатия прочность для эталона (максимальное асимптотическое значение прочности для функции, которая соответствует данным), n — параметр формы для функции прочности на сжатие, когда доля замены мелких заполнителей составляет W , k — снижение прочности на сжатие такой параметр, что кВт n равняется снижению предельной прочности образца из-за замены мелкозернистого заполнителя, равному Вт , τ является постоянной времени, а a является параметром формы для сигмоидального функция прочности на сжатие с возрастом образца т , CS , 1 кВт n co r соответствует предельной прочности на сжатие образца с долей замещения мелкозернистого заполнителя, равной W .

Это означает, что для данного возраста образца соотношение между прочностью на сжатие и заменой мелкого заполнителя является функцией доли замены мелкого заполнителя в степени n (рис. 7A). Одновременно для данной фракции замены мелких заполнителей прочность на сжатие является функцией возраста, что соответствует сигмоидальной кривой (рис. 7B).

Рисунок 7:

(A) Прочность на сжатие в зависимости от фракции замещения мелких заполнителей, (B) прочность на сжатие в зависимости от возраста образца.

Процедура регрессии с использованием уравнения. (2) на основе экспериментальных результатов настоящего исследования предоставили статистически значимую модель (Пирсон r = 0,96) со значениями параметров: CS , 1 = 74 ± 3 МПа, k = 55 ± 4 МПа, n = 0,8 ± 0,1, a = 0,7 ± 0,2 и τ = 3,1 ± 0,6 суток.

В формуле. (5) параметр типа древесной стружки не исследовался, хотя статистическая значимость этого результата была достаточно удовлетворительной, чтобы его можно было использовать в качестве общей модели для прогнозирования потери предельной прочности при использовании любого вида древесной стружки для мелкозернистого заполнителя. замена.Сделав еще один шаг, параметр типа древесной стружки был введен в формулу. (5), образуя уравнение. (6):

(6) C S ( т , W ) знак равно [ C S ∞ , 2 — ( k 1 м 1 + k 2 м 2 ) W п ] exp [ — ( τ / т ) а ]

, где м 1 , м 2 равно единице, если тип стружки — айус или бук, соответственно, в противном случае каждый равен нулю.Комбинация м 1 = 0 и м 2 = 0 соответствует случаю контрольных образцов (без использования стружки). k 1 и k 2 — параметры формы, аналогичные k в уравнении. (5).

Это уравнение было опробовано только для одного вида древесины на смесь, а не для двух типов вместе в одной и той же строительной смеси. Когда два или более типа древесных стружек должны использоваться одновременно в одной и той же строительной смеси, тогда использование уравнения.(5) предлагается, но также предлагается провести дальнейшие исследования для нескольких видов древесных стружек в одной и той же строительной смеси, в основном для того, чтобы исследовать значимость, в которой этот фактор вносит вклад в неопределенность уравнения. (5) параметры. Любая комбинация значений м 1 или м 2 , кроме значений 0 и 1, не изучалась, и предлагается изучить ее в будущем.

Процедура регрессии с использованием уравнения. (6) на основе экспериментальных результатов настоящего исследования предоставили статистически значимую модель (Пирсон r = 0.976) со значениями параметров: CS , 2 = 74 ± 3 МПа, k 1 = 48 ± 3 МПа, k 2 = 60 ± 3 МПа, n = 0,76 ± 0,07, a = 0,7 ± 0,1 и τ = 3,1 ± 0,5 суток (рисунок 8).

Рисунок 8:

Предел прочности на сжатие в сравнении с долей замены мелких заполнителей (A) только для стружки из древесной стружки и (B) только для стружки из бука.

Результаты тестов UPV показаны на Рисунке 9.

Рисунок 9:

Скорость ультразвукового импульса в сравнении с долей замещения мелких агрегатов.

УПВ линейно уменьшается по мере увеличения доли замещения мелких агрегатов. Это объясняется различными свойствами древесины по сравнению со свойствами обычных мелких заполнителей.Важность УПВ заключается в том, что он в значительной степени коррелирует с эластичными свойствами строительного раствора. Модель регрессии была применена к экспериментальным данным с использованием уравнения. (7):

(7) УПВ ( т , W ) знак равно [ УПВ ∞ + ( л 1 м 1 + л 2 м 2 ) W ] [ 1 — exp ( — т / т 0 ) ]

, где UPV — это ограничивающее UPV для эталона, которое является максимальным асимптотическим значением UPV для функции, которая соответствует данным, UPV · [1 − exp (- t / t 0 )] является UPV эталона ( W = 0) для указанного возраста отверждения ( т ), м 1 и м 2 равно единице при стружке древесины. type — ayous или beech соответственно, в противном случае равняется нулю, l 1 , l 2 — параметры формы и t 0 — постоянная времени.

Процедура регрессии с использованием уравнения. (4) на основе экспериментальных результатов настоящего исследования для UPV предоставили статистически значимую модель (Pearson r = 0,981) со значениями параметров UPV = (5,33 ± 0,08) · 10 3 м / с, l 1 = (- 1,73 ± 0,17) · 10 3 м / с, l 2 = (- 2,18 ± 0,16) · 10 3 м / с, т 0 = 11,4 ± 0,7 сут.

Наблюдение с помощью стереоскопа показывает однородную смесь, в которую хорошо намотаны стружки (рис. 10).

Рисунок 10:

Стереоскопические изображения строительного раствора с (A) 70% -ной заменой мелких заполнителей твердой стружкой по объему и (B) 20% -ной заменой мелких заполнителей буковой стружкой.

4 Выводы

На основании представленных результатов можно сделать следующие выводы:
  • Прочность на сжатие и изгиб уменьшается по мере увеличения процентной доли замены обычных заполнителей по объему, но конструкция смеси может компенсировать это снижение прочности.

  • Удельный вес свежего раствора, содержащего стружку, уменьшается с увеличением содержания стружки.

  • Поскольку доля цемента в смеси увеличивается, когда древесная стружка используется в качестве замены обычных мелких заполнителей по объему, стоимость смеси следует тщательно контролировать.

  • Сделан вывод, что сигмоидальная кривая (модель) очень хорошо соответствует результатам для прочности на сжатие как функции возраста отверждения.

  • Сигмоидальная кривая без учета типа стружки, используемой в качестве замены мелкого заполнителя, является важным показателем прочности на сжатие. В зависимости от географического региона любого, кто желает использовать эту кривую, дальнейшее уточнение значений параметров кривой может быть выполнено путем повторения той же экспериментальной процедуры, что и в рамках настоящего исследования, с использованием типов древесины, в основном используемых в промышленных процессах в конкретном регионе. .В качестве дальнейших исследований можно было бы провести дополнительные исследования для получения комбинированных результатов относительно механических свойств, а также долговечности или термических свойств раствора, содержащего древесную стружку, и замены обычных заполнителей смесями различных типов древесины.

Ссылки

[1] Коринальдези В., Маццоли А., Сиддик Р. Констр. Строить. Матер. 2016, 123, 281–289. Искать в Google Scholar

[2] Bederina M, Marmoret L, Mezreb K, Khenfer MM, Bali A, Queneudec M. Constr. Строить. Матер. 2007, 21, 662–668. Искать в Google Scholar

[3] Taoukil D, El bouardi A, Sick F, Mimet A, Ezbakhe H, Ajzoul T. Constr. Строить. Матер. 2013, 48, 104–115. Искать в Google Scholar

[4] Coatanlem P, Jauberhie R, Rendell F. Constr. Строить. Матер. 2006, 20, 776–781. Искать в Google Scholar

[5] Paramasivam P, Loke YO. Внутр. J. Lightweight Concr. 1980, 2, 57–71. Искать в Google Scholar

[6] Mohammed BS, Abdullahi M, Hoong CK. Constr. Строить. Матер. 2014, 55, 13–19. Искать в Google Scholar

[7] Bederina M, Laidoudi B, Goullieux A, Khenfer MM, Bali A, Queneudec M. Constr. Строить. Материал . 2009, 23, 1311–1315. Искать в Google Scholar

[8] Ganiron TU. Внутр. J. Adv. Sci. Technol. 2014, 63, 73–82. Искать в Google Scholar

[9] Bederina M, Gotteicha M, Belhadj B, Dheily RM, Khenfer MM, Queneudec M. Constr. Строить. Матер. 2012, 36, 1066–1075.Искать в Google Scholar

[10] Taoukil D, El-bouardi A, Ezbakhe H, Ajzoul T. Res. J. Appl. Sci. Англ. Tech. 2011, 3, 113–116. Искать в Google Scholar

[11] Belhadj B, Bederina M, Montrelay N, Houessou J, Queneudec M. Constr. Строить. Матер. 2014, 66, 247–258. Искать в Google Scholar

[12] Гавела С., Пападакос Г., Касселури-Ригопулу В. В Термопластические композиты: новые технологии, использование и перспективы , 1-е изд., Риттер Э, под ред., Nova Publications: New York, 2017, стр. 143–164. Поиск в Google Scholar

[13] JCGM / WG1, JCGM 100: 2008 (GUM 1995 с небольшими исправлениями): Оценка данных измерений — Руководство по выражению неопределенности измерения, Первое издание, 2008 г. Поиск в Google Scholar

[14] JCGM / WG1, JCGM 200: 2012 (версия 2008 г. с небольшими исправлениями): Международный словарь метрологии — Основные и общие концепции и связанные термины (VIM), Третье издание, 2012 г. Поиск в Google Scholar

[15] ASTM C 1437-15, Стандартный метод испытания гидравлического цементного раствора, 2015.Искать в Google Scholar

[16] ASTM C 597-16, Стандартный метод испытания скорости импульса через бетон, 2016. Искать в Google Scholar

[17] ASTM C 293 / C293M — 16, Стандартный метод испытания прочности на изгиб Бетон (использование простого луча с загрузкой в ​​центральную точку), 2016. Поиск в Google Scholar

[18] Freiesleben Hansen P, Pedersen J. Информационный бюллетень CEB 1985, 166, 42. Искать в Google Scholar

Опубликовано в сети: 2017-8-31

Опубликовано в печати: 2017-4-25

© 2017 Walter de Gruyter GmbH, Берлин / Бостон

Эта статья распространяется в соответствии с условиями некоммерческой лицензии Creative Commons Attribution, которая разрешает неограниченное некоммерческое использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

Сталь, дерево и бетон: сравнение

ширина: 80%;
}
]]>

Какие материалы чаще всего используются в строительстве?

Конструктивное проектирование зависит от знания материалов и соответствующих им свойств, чтобы мы могли лучше предсказать поведение различных материалов при нанесении на конструкцию. Как правило, три (3) наиболее часто используемых строительных материала — это сталь , бетон и древесина / древесина . Знание преимуществ и недостатков каждого материала важно для обеспечения безопасного и экономичного подхода к проектированию конструкций.

Конструкционная сталь

Сталь — это сплав, состоящий в основном из железа и углерода. Другие элементы также примешиваются к сплаву для получения других свойств. Одним из примеров является добавление хрома и никеля для создания нержавеющей стали. Увеличение содержания углерода в стали имеет предполагаемый эффект увеличения прочности материала на разрыв. Увеличение содержания углерода делает сталь более хрупкой, что нежелательно для конструкционной стали.

Преимущества конструкционной стали

    Сталь
  1. отличается высоким соотношением прочности и веса.Таким образом, собственный вес металлоконструкций относительно невелик. Это свойство делает сталь очень привлекательным конструкционным материалом для высотных зданий, длиннопролетных мостов, сооружений, расположенных на земле с низким содержанием грунта и в районах с высокой сейсмической активностью.
  2. Пластичность. Перед разрушением сталь может подвергаться значительной пластической деформации, что обеспечивает большой резерв прочности.
  3. Прогнозируемые свойства материала. Свойства стали можно предсказать с высокой степенью уверенности.На самом деле сталь демонстрирует упругие свойства до относительно высокого и обычно четко определенного уровня напряжения. В отличие от железобетона свойства стали существенно не меняются со временем.
  4. Скорость возведения. Стальные элементы просто устанавливаются на конструкцию, что сокращает время строительства. Обычно это приводит к более быстрой окупаемости в таких областях, как затраты на рабочую силу.
  5. Простота ремонта. Стальные конструкции в целом можно легко и быстро отремонтировать.
  6. Адаптация заводской сборки.Сталь отлично подходит для заводского изготовления и массового производства.
  7. Многократное использование. Сталь можно повторно использовать после разборки конструкции.
  8. Расширение существующих структур. Стальные здания можно легко расширить, добавив новые отсеки или флигели. Стальные мосты можно расширять.
  9. Усталостная прочность. Металлоконструкции обладают относительно хорошей усталостной прочностью.

Недостатки конструкционной стали

  1. Общие расходы. Сталь очень энергоемкая и, естественно, более дорогая в производстве.Строительство стальных конструкций может быть более дорогостоящим, чем строительство других типов конструкций.
  2. Противопожарная защита. Прочность стали существенно снижается при нагревании до температур, обычно наблюдаемых при пожарах в зданиях. Сталь также довольно быстро проводит и передает тепло от горящей части здания. Следовательно, стальные конструкции в зданиях должны иметь соответствующую противопожарную защиту.
  3. Техническое обслуживание. Сталь, подвергающаяся воздействию окружающей среды, может повредить материал и даже привести к загрязнению конструкции из-за коррозии.Стальные конструкции, подверженные воздействию воздуха и воды, такие как мосты и башни, регулярно окрашиваются. Применение устойчивых к атмосферным воздействиям и коррозионно-стойких сталей может устранить эту проблему.
  4. Склонность к короблению. Из-за высокого отношения прочности к весу стальные сжимающие элементы, как правило, более тонкие и, следовательно, более подвержены короблению, чем, скажем, железобетонные сжимающие элементы. В результате необходимы дополнительные конструктивные решения для улучшения сопротивления продольному изгибу тонких стальных компрессионных элементов.

Программное обеспечение SkyCiv Steel Design

Рис. 1. Обзор стальных конструкций

Бетон железобетон

Бетон представляет собой смесь воды, цемента и заполнителей. Пропорция трех основных компонентов важна для создания бетонной смеси желаемой прочности на сжатие. Когда в бетон добавляют арматурные стальные стержни, эти два материала работают вместе с бетоном, обеспечивающим прочность на сжатие, и сталью, обеспечивающей прочность на растяжение.

Преимущества железобетона

  1. Прочность на сжатие. Железобетон имеет высокую прочность на сжатие по сравнению с другими строительными материалами.
  2. Прочность на разрыв. Благодаря предусмотренной арматуре железобетон также может выдерживать значительную величину растягивающего напряжения.
  3. Огнестойкость. Бетон обладает хорошей способностью защищать арматурные стальные стержни от огня в течение длительного времени. Это выиграет время для арматурных стержней до тех пор, пока пожар не будет потушен.
  4. Материалы местного производства. Большинство материалов, необходимых для производства бетона, можно легко найти на месте, что делает бетон популярным и экономичным выбором.
  5. Прочность. Система здания из железобетона более долговечна, чем любая другая система здания.
  6. Формуемость. Железобетон, изначально как текучий материал, можно экономично формовать в практически неограниченном диапазоне форм.
  7. Низкие эксплуатационные расходы. Железобетон является прочным, с использованием недорогих материалов, таких как песок и вода, которые не требуют обширного обслуживания.Бетон предназначен для того, чтобы полностью покрыть арматурный стержень, так что арматурный стержень не будет нарушен. Это делает стоимость обслуживания железобетонных конструкций очень низкой.
  8. По конструкции, такой как фундаменты, плотины, опоры и т. Д., Железобетон является наиболее экономичным строительным материалом.
  9. Жесткость. Он действует как жесткий элемент с минимальным прогибом. Минимальный прогиб хорош для удобства эксплуатации зданий.
  10. Удобство в использовании. По сравнению с использованием стали в конструкции, при строительстве железобетонных конструкций может быть задействована менее квалифицированная рабочая сила.

Недостатки железобетона

  1. Долгосрочное хранение. Бетон нельзя хранить после смешивания, так как цемент вступает в реакцию с водой и смесь затвердевает. Его основные ингредиенты нужно хранить отдельно.
  2. Время отверждения. Бетон выдерживает тридцать дней. Этот фактор сильно влияет на график строительства здания. Это снижает скорость возведения монолитного бетона по сравнению со сталью, однако ее можно значительно улучшить с помощью сборного железобетона.
  3. Стоимость форм. Стоимость форм, используемых для отливки ЖБИ, относительно выше.
  4. Поперечное сечение большее. Для многоэтажного здания секция железобетонной колонны (RCC) больше, чем стальная секция, так как в случае RCC прочность на сжатие ниже.
  5. Усадка. Усадка вызывает развитие трещин и потерю прочности.

Программное обеспечение SkyCiv RC для проектирования

Рис. 2. Типичный пример железобетона

Древесина

Древесина — это органический, гигроскопичный и анизотропный материал.Его тепловые, акустические, электрические, механические, эстетические, рабочие и т. Д. Свойства очень подходят для использования, можно построить комфортный дом, используя только деревянные изделия. С другими материалами это практически невозможно. Очевидно, что дерево — это и распространенный, и исторический выбор в качестве конструкционного инженерного материала. Однако в последние несколько десятилетий произошел отход от дерева в пользу инженерных продуктов или металлов, таких как алюминий.

Преимущества древесины

  1. Прочность на разрыв.Поскольку дерево является относительно легким строительным материалом, он превосходит даже сталь по длине разрыва (или длине самонесущей конструкции). Проще говоря, он может лучше выдерживать собственный вес, что позволяет использовать большие пространства и меньше необходимых опор в некоторых конструкциях зданий.
  2. Электрическое и тепловое сопротивление. Он обладает естественным сопротивлением электропроводности при сушке до стандартного уровня содержания влаги (MC), обычно от 7% до 12% для большинства пород древесины. Его прочность и размеры также не подвержены значительному влиянию тепла, обеспечивая устойчивость готового здания и даже безопасность при определенных пожарных ситуациях.
  3. Звукопоглощение. Его акустические свойства делают его идеальным для минимизации эха в жилых или офисных помещениях. Дерево поглощает звук, а не отражает или усиливает его, и может помочь значительно снизить уровень шума для дополнительного комфорта.
  4. Из местных источников. Дерево — это строительный материал, который можно выращивать и повторно выращивать с помощью естественных процессов, а также с помощью программ пересадки и лесного хозяйства. Выборочная уборка и другие методы позволяют продолжить рост, пока собираются более крупные деревья.
  5. Экологически чистый. Одна из самых больших проблем для многих строительных материалов, включая бетон, металл и пластик, заключается в том, что, когда они выброшены, они разлагаются невероятно долго. В естественных климатических условиях древесина разрушается намного быстрее и фактически пополняет почву.

Недостатки бруса

Усадка и разбухание древесины — один из ее основных недостатков.

Дерево — гигроскопичный материал.Это означает, что он будет поглощать окружающие конденсируемые пары и терять влагу в воздух ниже точки насыщения волокна. Еще один недостаток — его износ. Агенты, вызывающие порчу и разрушение древесины, делятся на две категории: биотические (биологические) и абиотические (небиологические). Биотические агенты включают гниющие и плесневые грибы, бактерии и насекомые. К абиотическим агентам относятся солнце, ветер, вода, некоторые химические вещества и огонь.

Программное обеспечение SkyCiv Wood Design

Рисунок 3.Деревянный конструкционный каркас

Сводка

Для лучшего описания стали, бетона и дерева. Обобщим их основные характеристики, чтобы выделить каждый материал.

Сталь очень прочна как на растяжение, так и на сжатие и, следовательно, имеет высокую прочность на сжатие и растяжение. Сталь имеет предел прочности от 400 до 500 МПа (58 — 72,5 тыс. Фунтов на квадратный дюйм). Это также пластичный материал, который поддается или прогибается перед разрушением. Сталь выделяется своей скоростью и эффективностью в строительстве.Его сравнительно легкий вес и простота конструкции позволяют сократить рабочую силу примерно на 10-20% по сравнению с аналогичной строящейся структурой на бетонной основе. Стальные конструкции также обладают отличной прочностью.

Бетон чрезвычайно прочен на сжатие и, следовательно, имеет высокую прочность на сжатие от 17 МПа до 28 МПа. С более высокой прочностью до 70 МПа или выше. Бетон позволяет проектировать очень прочные и долговечные здания, а использование его тепловой массы, удерживая его внутри оболочки здания, может помочь регулировать внутреннюю температуру.Также в строительстве все чаще используется сборный железобетон, что дает преимущества с точки зрения воздействия на окружающую среду, стоимости и скорости строительства.

Древесина устойчива к электрическим токам, что делает ее оптимальным материалом для электроизоляции. Прочность на разрыв также является одной из основных причин выбора древесины в качестве строительного материала; его исключительно сильные качества делают его идеальным выбором для тяжелых строительных материалов, таких как конструкционные балки.Дерево намного легче по объему, чем бетон и сталь, с ним легко работать, и его легко адаптировать на стройплощадке. Он прочен, дает меньше тепловых мостиков, чем его аналоги, и легко включает в себя готовые элементы. Его структурные характеристики очень высоки, а его прочность на сжатие аналогична прочности бетона. Несмотря на все это, древесина все шире используется для строительства жилых и малоэтажных построек. Его редко используют в качестве основного материала для высотных конструкций.

Это самые распространенные строительные материалы, используемые для строительства.У каждого материала есть свой уникальный набор достоинств и недостатков. В конце концов, они могут быть заменены материалами, которые практически не имеют ограничений с технологическими достижениями будущего. Тем не менее, наши нынешние строительные материалы будут оставаться актуальными еще многие десятилетия.

Средняя прочность на сжатие для различного соотношения древесины и цемента при 28 днях.

Контекст 1

… MOE (МПа) — модуль упругости, b (мм) — ширина образца, d (мм) — толщина образца, L (мм) — длина пролета , P i (N) — нагрузка при пределе пропорциональности, а y (мм) — величина отклонения при пределе пропорциональности.Прочность на сжатие и плотность образцов матрицы WFC через 7 дней и 28 дней (влажное отверждение) перечислены в таблицах 3 и 4. Из таблиц 3 и 4 можно заметить, что химические вещества, используемые для обработки древесного волокна, существенно не влияют на влияют на плотность матрицы, но существенно влияют на прочность матрицы. Проведено сравнение прочности кубиков матрицы WFC (100 × 100 × 100 мм), приготовленных химически и без химикатов. Прочность на сжатие без химикатов для соотношения дерево / цемент 50:50 определить невозможно, потому что кубики были очень мягкими и уже сломались во время фиксации с помощью испытательной машины.Таким образом, значения записаны как незначимые (NS) в таблице 4 и приняты равными нулю на фиг. 5 и 6. На рисунках 5 и 6 показаны тенденции средней прочности на сжатие трех образцов двух типов смеси WFC с различным соотношением древесина / цемент (50:50, 40:60 и 30:70) через 7 дней и 28 дней. лечение. Средняя за 7 дней прочность на сжатие смеси WFC, изготовленной с использованием химикатов, составляет 1,71 МПа, 4,3 МПа и 3,43 МПа, что превышает прочность матрицы WFC, изготовленной без использования химикатов.Через 7 дней прочность на сжатие с химическими добавками увеличилась на 65% по сравнению с без добавок. Через 28 дней средняя прочность смесей (40:60), приготовленных с химическими добавками, является самой высокой и составляет 4,65 МПа, а WFC, полученная с соотношением 50:50, является самой низкой. Прирост прочности 62,7% через 28 дней. Избыточное количество цемента в матрице WFC с включением химикатов при соотношении древесина / цемент 30:70 отрицательно сказалось на прочности и сделало матрицу хрупкой и разрушилась при низкой прочности.Максимальное значение прочности на сжатие 5,53 МПа для соотношения дерево / цемент 40:60, наблюдаемое в этом исследовании, выше, чем прочность цементного композита из кокосовой шелухи, обработанного CaCl 2, составляющая 4,1 МПа, о которой сообщалось в [20]. Однако это значение намного ниже, чем у Sotannde et al. 2012 [21] с прочностью на сжатие 19,9 Н / мм для древесно-цементно-древесно-стружечных плит. Причина более высокой прочности плит из древесно-стружечных плит по сравнению с матрицей WFC может быть связана с циклом прессования в течение 24 часов во время производства древесно-цементно-древесно-стружечных плит, что позволило устранить пустоты в максимально возможной степени.Другой причиной низкой прочности матрицы WFC является процесс влажного отверждения. Поскольку отверждение сухим воздухом является хорошим предиктором прочностных свойств древесно-цементного композита, этот тип отверждения будет исследован в будущих исследованиях. Характеристики образца матрицы WFC при различном соотношении древесина / цемент с химически обработанным древесным волокном и без химически обработанного древесного волокна при средней плотности суммированы на рис. 6. Предварительная обработка химикатами существенно не влияет на плотность плит, однако древесина Соотношение / цемент значительно увеличивает плотность матрицы WFC после 7 дней и 28 дней отверждения.Обычно чем выше содержание волокна, тем ниже плотность матрицы. Это обычное наблюдение в матрице из древесных волокон, поскольку древесные частицы обычно имеют более низкую насыпную плотность, чем цемент. Как показано на рис. 7, полученные образцы матрицы с соотношением древесина / цемент 30:70 представляют собой относительно более плотные композиты, чем образцы матрицы 50:50 и 40:60. Максимальная плотность, оцененная для матрицы WFC, составляет 1450 3 кг / м, что соответствует диапазону легкого бетона в соответствии с ACI 213R [22], но прочность на сжатие не соответствует стандарту.Химические вещества, входящие в матрицу WFC, существенно влияют на водопоглощение матрицы. В таблице 5 показано водопоглощение кубиков WFC как для обработанного, так и для необработанного древесного волокна. Существуют весьма существенные различия и взаимодействия между матрицей WFC с химическими веществами и без химикатов и соотношением древесина / цемент, которое повлияло на водопоглощение, как показано на рис. 8. Плиты, изготовленные из волокна без химической обработки, демонстрируют высокое значение водопоглощения — 64,32%, но значение уменьшается при меньшем соотношении дерево / цемент.Это можно объяснить тем, что древесное волокно, как и все лигноцеллюлозы, гигроскопично, с относительно высоким сродством к воде. Испытания на статический изгиб были проведены для определения кажущегося модуля упругости и прочности на изгиб небольших панелей WFC. В таблице 6 показаны статические свойства изгиба композитных плит WFC, которые различаются в зависимости от условий и соотношения дерево / цемент. Экспериментальный результат (рис.9) показывает, что модуль упругости (E) немного выше для соотношений дерево / цемент 30:70 для сухой плиты (22%) лицевой стороной вверх и влажной плиты (7.2%) на досках лицевой стороной вниз. С другой стороны, платы ускоренного старения показывают самые высокие значения для любого состояния и случая. На изменение значений Е для бетона влияют тип крупного заполнителя, тип цемента, водо-влажностное соотношение смеси, размер добавляемого заполнителя и возраст выдержки [25]. На рис. 9 изменение соотношения древесина / цемент и содержание влаги существенно влияют на модуль упругости. Образцы для древесины / цемента 40:60 демонстрируют более высокую прочность на изгиб по сравнению с соотношениями древесина / цемент 30:70, как показано на рис.10. Прочность зависит от процентного содержания древесного волокна в смеси WFC, и в любом случае плиты с ускоренным старением дают наивысшее значение. Снижение прочности плит происходит из-за уменьшения процентного содержания волокна и, как следствие, уменьшения прочности соединения плит WFC. Стандарт ASTM [18] для древесных волокон и древесно-стружечных панелей не устанавливает минимальные значения изгиба или жесткости. Согласно ISO 8335 [26] плотность 3 должна быть не менее 1000 кг / м 2. Минимальные MOR и MOE, требуемые этим стандартом, составляют 9 МПа и 3000 МПа соответственно.Влажные и сухие матричные плиты WFC, подготовленные в этом исследовании, не соответствуют минимальным прочностным характеристикам, установленным в ISO 8335 [26]. Однако плиты WFC после ускоренного старения в условиях влажности соответствовали стандарту ISO. В таблице 7 показано сравнение некоторых предыдущих исследований с текущими результатами. В данном исследовании представлены результаты экспериментального исследования физико-механических свойств матрицы WFC. Установлено, что прочность на сжатие матрицы WFC увеличивается с уменьшением соотношения дерево / цемент с 50:50 до 40:60.Для матриц с соотношением древесина / цемент 30:70 прочность снижается и демонстрирует хрупкое разрушение при предельной нагрузке. На водопоглощение не оказывает существенного влияния соотношение древесина / цемент, но значительно снижается из-за химических добавок. Водопоглощение обработанной древесноволокнистой матрицы находится в том же диапазоне, что и у других древесно-цементных композитных материалов. Плиты с ускоренным старением демонстрируют самые высокие механические свойства по сравнению с сухими и влажными плитами и соответствуют минимальным требованиям стандарта ISO 8335.Авторы предложили использовать плиты ускоренного старения с соотношением дерево / цемент 40:60 в качестве конструкции смеси, которая достигает оптимального набора механических свойств по сравнению с другими условиями влажности и другими соотношениями. Авторы выражают признательность Министерству науки, технологий и инноваций (грант 06-01-02-SF0755) и Universiti Kebangsaan Malaysia за финансовую поддержку данного исследования (грант UKM-GUP-BTT-07-25-023). Авторы выражают благодарность Duralite Sdn. Bhd. За поддержку и помощь в предоставлении древесного волокна для…

Как бетонировать столб забора

Это может показаться очень простым и ненужным советом, но я уверяю вас, что спустя 4 года вы, возможно, пожелали бы, чтобы вы обратили внимание на него.

Многие заборы из хвойных пород возводятся каждый год, что обходится домовладельцу значительными расходами. К сожалению, у большого процента этих заборов потребуется замена столбов всего через 4 года — иногда меньше, если хвойная древесина, из которой изготовлены забор и столбы, низкого качества или они не подвергались обработке давлением в соответствии с надлежащими стандартами. .

Проблема часто возникает, когда столб забора полностью вбивается в бетон. Это эффективно формирует чашу у основания, где вода, которая течет по внешней стороне столба, собирается вокруг конца столба и не имеет возможности выйти наружу.

При постоянном нахождении столба в воде древесина очень сильно гниет. быстро приводит к преждевременной слабости. Столб может сломаться при сильном ветре, с которым он обычно легко справляется.

Конечно, если все посты будут вывешены в один и тот же день, вы можете столкнуться с необходимостью одновременно перемещать партию.

Щелкните изображение, и вы увидите, что столб может проходить сквозь бетон в почву, так что любая вода никогда не будет задерживаться и может стекать, прежде чем это станет проблемой.

Если у вас глинистая почва, которая может затруднить дренаж, выкопайте яму под столб еще на 100 мм глубже, чем вам нужно, заполните его балластом (без цемента), а затем утрамбуйте его концом столба.

Теперь вставьте столб и бетон только по бокам. Балласт действует как впитывающий (до некоторой степени).

Обычно нижняя часть ваших постов — при условии, что они хорошего качества — должна длиться 10-20 лет.

Последний совет относительно сообщений. Спустя год или около того столбы забора часто слегка сжимаются в бетонных гнездах. Если вы хотите сохранить древесину как можно дольше, капните немного консерванта на водной основе на лицевую поверхность столба, чтобы он попал в древесину под землей, тем самым помогая сохранить погруженную древесину ненадолго.

Бетонная смесь — я уверен, что вы все слышали, что если вы смешаете балласт с цементом, создав сухую смесь, а затем снова заполните отверстие этой смесью «дрилен», окружающая влага активирует смесь и заставит ее затвердеть » бетон жесткий?

Я считаю, что этот метод ошибочен и слишком часто недостаточно эффективен для правильной работы с логами.Я бы посоветовал смешать заполнитель с обычным портландцементом в соотношении 4: 1 с достаточным количеством воды, которая будет тщательно перемешиваться, чтобы связать материал, но не оседать и не растекаться. Столб забора будет стоять без посторонней помощи до тех пор, пока бетон не улетучится, что приведет к более прочной работе.


Вода в бетоне | For Construction Pros

Количество воды в бетоне контролирует многие свежие и затвердевшие свойства бетона, включая удобоукладываемость, прочность на сжатие, проницаемость и водонепроницаемость, долговечность и атмосферостойкость, усадку при высыхании и возможность растрескивания.По этим причинам ограничение и контроль количества воды в бетоне важны как для конструктивности, так и для срока службы.

Соотношение водоцементных материалов
Отношение количества воды за вычетом количества воды, абсорбированной заполнителями, к количеству вяжущих материалов по весу в бетоне, называется водоцементным соотношением и обычно обозначается как соотношение Вт / см. Отношение w / cm представляет собой модификацию исторического водоцементного отношения (соотношение w / c), которое использовалось для описания количества воды, за исключением того, что было поглощено заполнителями, к количеству портландцемента по весу в бетоне. .Поскольку сегодня большинство бетонов содержат дополнительные вяжущие материалы, такие как летучая зола, шлаковый цемент, микрокремнезем или природные пуццоланы, соотношение в / см является более подходящим. Чтобы избежать путаницы между соотношениями w / cm и w / c, используйте соотношение w / cm для бетонов с дополнительными вяжущими материалами и без них. Уравнение соотношения вес / см: отношение вес / см = (вес воды — вес воды, абсорбированной в заполнителях), деленное на вес вяжущих материалов.

При затвердевании паста или клей, состоящий из вяжущих материалов и воды, связывает заполнители вместе.Затвердевание происходит из-за химической реакции, называемой гидратацией, между вяжущими материалами и водой. Очевидно, что увеличение соотношения вес / см или количества воды в пасте разбавляет или ослабляет затвердевшую пасту и снижает прочность бетона. Как показано на Рисунке 1, прочность бетона на сжатие увеличивается с уменьшением отношения Вт / см как для не воздухововлекающего, так и для воздухововлекающего бетона.

Уменьшение отношения Вт / см также улучшает другие свойства затвердевшего бетона за счет увеличения плотности пасты, которая снижает проницаемость и увеличивает водонепроницаемость, повышает долговечность и устойчивость к циклам замораживания-оттаивания, зимнему образованию накипи и химическому воздействию.

В целом, чем меньше воды, тем лучше бетон. Однако бетону необходимо достаточно воды для смазки и получения рабочей смеси, которую можно без проблем перемешивать, укладывать, уплотнять и отделывать.

Требования кодов
Поскольку соотношение Вт / см контролирует как прочность, так и долговечность, строительные нормы и правила устанавливают верхние пределы или максимальные отношения Вт / см и соответствующие минимальные значения прочности на сжатие, как показано в Таблице 1. Например, бетон, подверженный замерзанию и оттаиванию во влажном состоянии или к химикатам для борьбы с обледенением должно иметь максимум 0.Соотношение 45 Вт / см и минимальная прочность на сжатие 4500 фунтов на кв. Дюйм для обеспечения долговечности. Дизайнеры выбирают максимальное соотношение Вт / см и минимальную прочность, прежде всего, исходя из условий воздействия и соображений долговечности, а не требований несущей способности. Для различных условий воздействия используйте нормативные требования к максимальному соотношению Вт / см и минимальной прочности, чтобы снизить проницаемость бетона. Это повысит устойчивость бетона к атмосферным воздействиям.

Содержание воды и усадка при высыхании
Наиболее важным фактором, влияющим на величину усадки при высыхании и последующую вероятность растрескивания, является содержание воды или количество воды на кубический ярд бетона.По сути, усадка бетона увеличивается с увеличением содержания воды. Около половины воды в бетоне расходуется на химическую реакцию гидратации, а другая половина обеспечивает удобоукладываемость бетона. За исключением воды, потерянной при кровотечении и абсорбированной основным материалом или формами, оставшаяся вода, которая не потребляется в процессе гидратации, способствует усадке при высыхании. Поддерживая как можно более низкое содержание воды, усадку при высыхании и вероятность растрескивания можно свести к минимуму.

Технологичность
Легкость смешивания, укладки, уплотнения и отделки бетона называется удобоукладываемостью. Содержание воды в смеси является самым важным фактором, влияющим на удобоукладываемость. Другие важные факторы, влияющие на удобоукладываемость, включают: пропорции смеси, характеристики крупных и мелких заполнителей, количество и характеристики вяжущих материалов, увлеченный воздух, примеси, осадку (консистенцию), время, температуру воздуха и бетона. Добавление большего количества воды в бетон увеличивает удобоукладываемость, но большее количество воды также увеличивает вероятность сегрегации (осаждения крупных частиц заполнителя), увеличения просачивания, усадки при высыхании и растрескивания в дополнение к снижению прочности и долговечности.

Добавление воды на месте
Если измеренные осадки меньше, чем разрешено спецификациями, они могут быть скорректированы однократным добавлением воды. Однако существуют требования, связанные с добавлением воды на месте:

  • Не превышайте максимальное содержание воды для замеса, установленное принятыми пропорциями бетонной смеси.
  • Бетон не выгружался из смесителя, за исключением испытаний на осадку.
  • Все доливки воды должны быть завершены в течение 15 минут после начала первого добавления воды.
  • Вода должна подаваться в смеситель с таким давлением и направлением потока, чтобы обеспечить надлежащее распределение внутри смесителя.
  • Барабан должен быть повернут еще на 30 или более оборотов при скорости перемешивания, чтобы обеспечить однородную смесь.

Перед добавлением воды на месте необходимо знать допустимое количество воды, которое можно добавить. Эта сумма должна быть напечатана в накладной или быть определена на совещании перед началом строительства и согласована всеми сторонами.

Вода — ключевой компонент бетона. Однако слишком много воды может отрицательно сказаться на свойствах свежего и затвердевшего бетона, особенно на прочности, долговечности и возможности растрескивания. На следующей работе обязательно знайте требования к воде для используемых бетонных смесей, особенно допустимую воду, которая может быть добавлена ​​для корректировки осадки.

Ссылки
Косматка, С. Х., и Уилсон, М. Л., Проектирование и контроль бетонных смесей, 15-е издание, Портлендская цементная ассоциация (PCA), www.Concrete.org

Идеальный строительный материал для жизни вне сети

Приблизительное время чтения: 26 минут

Papercrete — это бетон, сделанный из бумаги. Он недорогой, прочный, легкий, изолирующий и лучше, чем кирпич.

Papercrete был изобретен в 1920-х годах, но его было так легко сделать, что его никто не купил. Papercrete использовался для строительства домов, стен, заборов и легко превращался в любой объект, от цветочных горшков до мебели.

Самым большим преимуществом бумажного бетона является то, что он легкий, но достаточно прочный, чтобы выдерживать нагрузки.Он также имеет отличные изоляционные свойства со значением R R2 на дюйм. А еще лучше, вы можете использовать обычные ручные инструменты и электроинструменты, чтобы распилить, просверлить его и даже забить в него гвозди.

Хотите сохранить этот пост на потом? Нажмите здесь, чтобы закрепить на Pinterest!

Основные ингредиенты Papercrete

Как вы могли догадаться, papercrete начинается с бумаги. Газета — это лучший выбор, но подойдет любая бумага, включая журналы, салфетки, бумажные пакеты, нежелательную почту и даже картон.

Их все можно комбинировать в любой пропорции и разорвать на полоски длиной два дюйма; замачивают в воде, а затем измельчают до состояния кашицы с помощью смесителя для штукатурки, краски или штукатурного смесителя, прикрепленного к большому сверлу.

Второй ингредиент — цемент, используемый в качестве связующего. Портландцемент — это стандартная рекомендация в меньшем количестве, чем бумажная масса. Количество цемента может варьироваться, но никогда не должно быть меньше 10%.

Также добавляются такие наполнители, как вермикулит, перлит, песок и / или грязь, но пропорции и конкретный наполнитель меняются.Наполнители могут облегчить бумажный бетон в случае перлита и вермикулита или сделать его более тяжелым и прочным при использовании песка или грязи. Выбор наполнителя зависит от конечного использования.

Несущим стенам требуются более прочные и тяжелые материалы, такие как песок или грязь, в то время как другие применения, не требующие большого веса или напряжения (например, сеялка), могут быть выполнены с более легкими наполнителями, такими как вермикулит или перлит.

Если вы планируете много формовать или резать бумажный бетон, лучше использовать более легкие наполнители.Вы также можете отказаться от наполнителя и выбрать самую прочную смесь из бумажной массы и цемента.

Serious Off-Grid Papercrete

Ингредиенты Papercrete — это, по сути, сетевые компоненты. Если мы окажемся вне сети на какое-то время, производственные процессы по производству цемента и даже бумаги будут поставлены под угрозу. Вот почему мы также собираемся описать чистый, автономный рецепт с использованием древнеримской формулы цемента в качестве связующего и натуральной целлюлозы из определенных растений.

Глина — еще один вариант связующего, но уникальные свойства, которые делают бумажный бетон, исходят от целлюлозных волокон в бумаге.Если вы можете найти в природе волокна целлюлозы, вы можете импровизировать без бумаги.

Papercrete Colors

Прямой папербетон светло-серого цвета. Его можно покрасить или окрасить и запечатать полиуретаном. Его также можно окрасить имеющимися в продаже красителями для бетона.

Добавление красителя избавляет вас от работы по покраске и перекрашиванию. Вы также обнаружите, что грубую текстуру бумажного бетона трудно раскрасить, хотя установка распылителя краски может упростить задачу.

Когда мы исследуем автономный подход к бумажному бетону, мы также рассмотрим различные природные красители, такие как чистый ежевичный сок, изображенный выше.

В чем обратная сторона Papercrete?

Многое зависит от рецепта и ваших пропорций. Смесь с высоким содержанием бумажной массы будет легче, дешевле, будет иметь лучшие изоляционные свойства, ее будет легче пилить, сверлить и брить.

К сожалению, бумажный бетон в целом образует плесень при постоянном контакте с водой, особенно бумажный бетон, сделанный с высоким содержанием целлюлозы. Бумажный бетон легко запечатать, чтобы защитить его от дождя, с помощью водостойкого покрытия для настила или водостойкого полиуретана, но постоянное воздействие влаги или погружение в воду в конечном итоге создаст проблему.

С другой стороны, бумажный бетон с высокой долей бетона не только прочнее, но и более устойчив к влаге. Компромисс заключается в том, что он тяжелее, а добавленный цемент означает добавленную стоимость.

Кроме того, бумажный бетон плохо сцепляется с камнем или бетоном. Если вы планируете нанести бумажный бетон на одну из этих поверхностей, вам придется придумать способ прикрепить скрепляющие ленты, арматуру или какой-либо другой способ, чтобы дать бумажному бетону возможность сцепиться с бетонной или каменной поверхностью.

Papercrete с высоким содержанием бумажной массы может быть легковоспламеняющимся.В большинстве отчетов указывается, что он имеет тенденцию тлеть, а не воспламеняться, но в отличие от обычного кирпича, его следует хранить вдали от источников огня, таких как дровяные печи, если в смеси содержится высокая доля бумажной массы.

Смесам с высоким содержанием пульпы также не хватает структурной целостности смесей, изготовленных с пропорционально большим количеством цемента. Мы выделим конкретные смеси и пропорции в зависимости от использования, нагрузки и потенциального воздействия воды. Как правило, вы должны держать весь пейпбетон над землей и особенно не класть его под землю, иначе он в конечном итоге распадется.

Подготовка к изготовлению Papercrete

Как и в любом другом процессе, вам понадобятся инструменты, материалы и источник целлюлозы на бумаге. Необходимое количество бумаги зависит от того, что вы пытаетесь сделать. Если вы пытаетесь построить небольшой дом, вам понадобится много бумаги. Если вы собираетесь заливать бумажный бетон в форму, чтобы создать столб или несколько кирпичей, вам понадобится меньше.

Если вы получаете ежедневную газету, достаньте ее из мусорного ведра и положите в ящик для хранения бумаги.Соберите из почтового ящика другую бумагу, те старые журналы, которые вы слишком долго копили, и вы всегда можете попросить семью и друзей внести вклад и даже сохранить некоторые для вас.

Если в конверте от почтового ящика есть пластиковые окошки, вырвите их. Пластик и папербетон нельзя смешивать. И, кстати, кому нужен измельчитель для банковских выписок и нежелательной почты по кредитным картам, когда вы делаете бумажный бетон.

С учетом всего сказанного, вот краткий список вещей, которые вам понадобятся для изготовления небольшой партии бумажного бетона, из которого получится от 2 до 3 кирпичей:

  • ведра на 5 галлонов и дуршлаг для слива бумажной массы. .
  • Насадка для смесителя для штукатурки или краски или насадка для смешивания штукатурки, хотя острые лезвия смесителя для штукатурки могут разрезать пластмассовые стенки 5-галлонного ведра.
  • Сверло для тяжелых условий эксплуатации, вмещающее полудюймовую коронку.
  • Воды достаточно, чтобы покрыть порванную бумагу на два дюйма.
  • Вермикулит, перлит, песок или грязь. (Вермикулит и перлит — легкие наполнители, а песок и грязь — более тяжелые и прочные наполнители.)
  • Дерево, гвозди и молоток для создания форм. При формировании кирпичей определить размер формы поможет настоящий кирпич.

Papercrete Brick Forms

Papercrete обычно заливается в форму или форму. Формы используются для придания формы таким объектам, как горшки, а формы обычно используются для изготовления бумажных кирпичей.

Если вы планируете делать кирпичи, вы можете легко сделать форму кирпича из 2 × 4. Стандартный размер кирпича обыкновенного — 8 х 4 х 2.25 дюймов. К сожалению, стандартное 2 x 4 на самом деле составляет 1,75 x 3,75. Ни одно из измерений не приближается к 2,25 дюйма, поэтому вам придется либо отрезать длину 2 x 4, чтобы получить 2,25 дюйма, либо сделать кирпич большего размера.

Ничего страшного, если все кирпичи, которые вы делаете, будут одного размера, и именно этим мы и займемся.

Разделительные агенты для бумажного бетона

Любая форма или форма должны быть покрыты разделительным агентом, чтобы позволить бумажному бетону отделяться от формы или формы.

Подойдет обычное растительное масло, или вы можете купить профессиональные разделительные составы для бетона в домашнем магазине или строительном магазине.Нанесите разделительный состав на внутреннюю часть формы или формы с помощью кисти или распылите его для более крупных проектов.

Вам также понадобится доска под формой, которая также должна быть покрыта разделительным составом. Если вы занимаетесь крупномасштабным строительством с помощью бумажного бетона, вам обязательно нужно использовать ручной распылитель с насосом, чтобы ускорить и упростить нанесение форм.

В серьезной автономной среде вы можете использовать животный жир, старое моторное масло и даже воски, чтобы предотвратить приклеивание бумажного бетона к сторонам формы или формы.

Целлюлоза для бумаги Направления:

1. Разорвите бумагу на длинные 2-дюймовые полоски и опустите в 5-галлонное ведро почти до полного заполнения.

2. Налейте в ведро столько воды, чтобы полоски бумаги пропитались.

3. Утрамбуйте бумагу миксером для краски, чтобы она слегка сжалась так, чтобы она находилась ниже уровня воды как минимум на два дюйма.

4. Дайте бумаге впитаться от 24 до 48 часов. Вы также можете прокипятить бумагу в большой кастрюле в течение 30 минут, если спешите.

5. Прикрепите миксер для краски или штукатурки к дрели и перемещайте его по бумаге, чтобы измельчить бумагу до состояния целлюлозы. Поэкспериментируйте со скоростями сверла, чтобы определить, какая скорость работает лучше всего, исходя из мощности вашего сверла.

Сделайте это во дворе и наденьте старую одежду. Мякоть вылетит из ведра и может забрызгать вас и окружающее пространство.

6. Продолжайте измельчать бумагу, подтягивая миксер снизу и с боков.Если смесь слишком сухая и не деформируется, добавьте воды. Если смесь слишком влажная, слейте сверху немного воды или добавьте еще бумаги. (При необходимости можно добавить небольшую часть засохшей бумаги, но разорвать ее на мелкие кусочки).

7. Готовая мякоть должна иметь консистенцию творога или комковатой овсянки.

8. После измельчения вы можете добавить литр отбеливателя, если хотите уменьшить серый цвет. Влейте отбеливатель, продолжайте измельчать и распределяйте отбеливатель миксером до однородного состояния.По мере того, как бумажная масса впитывается, цвет становится светло-серовато-белым.

Не надейтесь. Вы никогда не получите чистый белый цвет. Если вы решите отбеливать целлюлозу, знайте, что любые брызги, которые попадут на вашу одежду, будут отбеливать ее местами, поэтому одевайтесь соответственно. Вы также не сможете покрасить бумажный бетон. Отбеливатель нейтрализует его или превратит его в очень приглушенный цвет.

9. Процедите целлюлозу через дуршлаг или, для больших партий, импровизируйте сетку с сеткой, поддерживаемой проволочной сеткой на деревянной раме.

10. Зарезервируйте целлюлозу для окончательной формулы.

Базовая формула бумажного бетона:

  • 5 частей бумажной массы
  • 2 части портландцемента

Для этого этапа вам понадобится еще одно 5-галлонное ведро. Если вы делаете большее количество, вы можете использовать тачку или бетонный желоб. Вы будете использовать шпатель, чтобы смешать бумажную массу и цемент в меньших количествах. Вы также можете использовать лопату, если смешиваете в большей емкости.

Basic Papercrete Указания:

1. Добавьте нужную пропорцию бумажной массы в емкость для смешивания (мы используем 5 частей бумажной массы в 5-галлонном ведре).

2. Затем добавьте цемент в нужной пропорции. (В этом примере мы используем 2 части цемента.)

3. Начните перемешивание смеси с помощью шпателя. Если он станет слишком сухим, добавьте еще немного бумажной массы. Если он слишком влажный, добавьте еще цемента.

4. Когда все будет готово, он должен иметь консистенцию кускового пудинга.

5. Он не должен оседать, когда кладется на доску, но сохраняет свою форму. Если да, то теперь вы готовы втиснуть его в форму. Если вы наносите его на край формы для горшка или другого предмета, вам понадобится более густая консистенция, чтобы влажный бумажный бетон не скользил по форме.

В форме для кирпича проще, потому что стороны формы просто содержат влажный папербетон.

6. По прошествии 20 минут бумажный бетон начнет оседать.

Пришло время добавить еще немного, если вы хотите, чтобы кирпич был однородной формы.

Используйте шпатель, чтобы разгладить верхнюю часть бумажного бетона, если вы делаете кирпич. Если вы используете форму для горшка или предмета, нанесите и разгладьте руками. Вы должны проверить стороны, чтобы убедиться, что бумага не соскользнула вниз.

7. Накройте форму или форму полиэтиленовой пленкой на 24 часа, чтобы картон медленно затвердел, затем снимите пластиковую пленку и удалите форму, чтобы картон мог свободно стоять для дальнейшего высыхания.

8. Дать высохнуть еще 2 дня.

9. При сушке на открытом воздухе накройте неплотно прилегающим брезентом, чтобы предотвратить попадание утренней росы или дождя. Если вы делаете бумажный бетон зимой, вам нужно дать ему высохнуть в относительно теплом месте, например, в гараже или в месте, где вы импровизировали какое-то тепло.

10. Что-нибудь простое, например, накрыть его черным брезентом или черным пластиковым мешком для мусора, может улавливать достаточно тепла от солнца, чтобы выполнять работу в холодный день.

Варианты рецептуры Papercrete

Papercrete дает усадку при высыхании и оседает при первой укладке в форму.Степень усадки пропорциональна количеству бумажной массы в окончательной смеси. Базовый бумажный бетон при высыхании дает усадку на 15-25%.

Если вы делаете кирпичи, вам следует добавить в форму немного бумажного бетона через 20 минут после первой заливки, если она осядет, или разработать форму, которая позволит вам переполнить форму для компенсации. Чем больше цемента вы добавляете в бумажную бетонную смесь, тем меньше усадка и оседание, составляя от 3 до 5%.

Если вы хотите сделать бумажный бетонный раствор или штукатурку, смешайте бумажную массу с цементом в пропорции 50/50.

Если вы хотите улучшить несущие свойства, используйте эту формулу:

  • 5 частей бумажной массы
  • 3 части глины
  • 2 части цемента
  • 1 часть песка

Если хотите для увеличения изоляционных свойств там, где несущая способность не является критической, добавьте больше бумажной массы. У вас всегда должно быть немного цемента в смеси (не менее 10%), но вы можете и должны экспериментировать с различными пропорциями пульпы, если вы приступаете к серьезным конструкциям из бумаги.

Если вы хотите значительно увеличить несущую способность, сделайте соотношение 5: 2 для бумажной массы и цемента, которое мы продемонстрировали.

Избегайте соблазна использовать только бумажную массу. Это папье-маше, а не бумагобетон. Сама по себе бумажная масса после высыхания является очень слабой с точки зрения несущей способности, а также легко воспламеняется.

В Интернете есть и другие варианты формул бумажного бетона, которыми придерживаются различные каменщики. Мы рассмотрели некоторые основы, но если вы серьезно относитесь к papercrete, вы, скорее всего, придумаете свою любимую формулу.

Абсолютно вне сети

Хотя это немного грязно, сделать бумажный бетон довольно просто. Особенно с такими вещами, как перлит, электроинструменты, достаточное количество электричества, много бумаги и легкий доступ к строительному магазину для цемента. Но в серьезной или внезапной автономной среде вам придется импровизировать. Давайте рассмотрим инструменты и ингредиенты и подумаем о вариантах.

• Вода — Здесь нет проблем, если время от времени идет дождь или снег. Кроме того, если нигде нет воды, у вас проблемы посерьезнее, чем пытаться придумать, как сделать бумажный бетон.

• Перлит или вермикулит — Грязь и песок — легкие заменители. Преимущество таких наполнителей, как перлит или вермикулит, заключается в том, что они легкие и повышают изоляционные свойства бумажного бетона. Хотя грязь и песок тяжелее, они выполняют ту же функцию, добавляя структуру бумажному бетону, а также добавляют некоторые несущие свойства.

• Цемент — Здесь два варианта. Самый простой — использовать глину. Копайте достаточно глубоко в земле, и велика вероятность, что вы наткнетесь на слой глины.Кирпичи в основном изготавливаются из глины, и при смешивании с бумажной массой они могут образовывать очень хорошую вариацию на бумаге. Он более восприимчив к воде, но в сухой среде работает нормально.

Второй вариант — изготовить древнеримский бетон. Это древний рецепт, которому более 2000 лет. Мы рассмотрим это в отдельном разделе, потому что это немного сложно.

• Бумага — Вы не поверите, но бумага может быстро стать дефицитным товаром в автономной экономике.Решение состоит в том, чтобы найти натуральный источник целлюлозы с волокнистым составом. Именно волокна в бумаге обеспечивают структурную целостность бумажного бетона, и она вам понадобится, если вы делаете его с заменителем бумаги.

Вот несколько хороших примеров, на которые стоит обратить внимание:

  • Стебли лопуха и заусенцы — Они очень волокнистые. Их самая распространенная идентификационная характеристика — это неровности, которые остаются на нашей одежде во время обычной прогулки по лесу и полям.Фактически, римляне делали веревку из стеблей лопуха, натирая стебли на волокна.

Мертвый лопух лучше всего после того, как он станет коричневым и высохнет. Если они зеленые, поставьте стебли сушиться на солнце. Обрежьте стебли, раздавите заусенцы и бросьте их в ведро вместе с другими хорошими заменителями целлюлозы.

  • Сушеные травы, солома или сено — Трава также очень волокнистая, особенно стебли семян. Как и лопух, засохшие отмершие травы, кажется, лучше всего подходят в качестве бумажного заменителя бумажного бетона.Нарежьте их ножницами или нарежьте на кусочки длиной от 2 до 4 дюймов, замочите и измельчите так же, как бумагу. Если трава зеленая, просушите ее на солнце, а затем срежьте.

Другие растения с волокнистыми стеблями или стеблями, такие как рогоз или борзая, также подходят.

Растения, которые НЕ работают как заменители бумаги
  • Листья — Казалось бы, листья могут быть хорошей заменой бумаге, и, хотя в них есть целлюлоза, они упускают кое-что: «волокнистую» целлюлозу.Листья имеют тонкие жилки, переносящие воду и питательные вещества, но сами листья хрупкие, особенно когда они коричневые и сухие, и не имеют крепких волокон для поддержки. Банановые листья — исключение, но у большинства из нас бананы не растут на заднем дворе.
  • Кора — Как и листья, в коре не хватает волокнистой целлюлозы. У него есть несколько слоев коры на стволе дерева, чтобы делать то же самое, но кора практически не подвержена влиянию воды и плохо размягчается.
Натуральные красители

Многие из нас, даже не пытаясь, нашли красители в природе.

Если вы в детстве ели шелковицу с дерева, вы знаете, насколько они эффективны для удаления пятен. Ягоды красного сумаха — еще один пример, и их можно добавлять целиком в нерешетчатый бумажный бетон во время перемешивания. Также стоит подумать о ежевике, черной малине и чернике.

Лучше всего размять их, чтобы выделить их сок и цвет, а затем добавить сок в ведро для варки по мере перемешивания.

Изготовление бумажного бетона вне сети

Несмотря на то, что существует множество природных источников волокнистой целлюлозы, существует только два варианта связующего для замены покупного портландцемента: древнеримский цемент и глина.

Из двух глиняный самый простой, но вам придется копать, чтобы его найти. Кроме того, он не обеспечивает такой же несущей способности, как цемент. Как и бумажная масса, она уязвима для влаги.

Кирпичи из самана в значительной степени сделаны из глины, но большинство зданий, построенных из кирпича, были построены в пустынных районах, где влажность была меньшей проблемой. Если вы живете в пустыне, дерзайте. Если нет, стоит взглянуть на старую римскую формулу цемента.

Римский бетон и цемент

Римляне построили из бетона свои акведуки, бани, некоторые дороги и гавани и даже Пантеон.Пантеон — это куполообразное сооружение, построенное из бетона, простоявшее без износа более 2000 лет.

Римляне не бездельничали, и поскольку их бетонные заливки имели такую ​​высокую концентрацию цемента, им не требовалась арматура для укрепления стен и потолков. Проблема с арматурой в бетоне заключается в том, что она в конечном итоге ржавеет и заставляет бетон крошиться. У римлян такой проблемы не было.

Если вам интересно, разница между бетоном и цементом заключается в том, что бетон представляет собой комбинацию цемента, песка и гравия.Цемент — это отдельная история.

Формула римского цемента «
Opus Caementicium »

Первоначальная формула римского цемента была утеряна на века и вновь открыта в 1700-х годах французским инженером. Римляне брали куски известняка и помещали их в печь. Высокая температура сожгла углерод и кислород в известняке и оставила нечто, называемое негашеной известью.

Полученную негашеную известь затем измельчили до порошка и добавили в воду для получения пасты, известной как гашеная известь.Это основной римский цемент, который вы можете использовать с натуральной волокнистой целлюлозой для изготовления бумажного бетона. Предположим, у вас есть печь и доступ к известняку.

Для изготовления бумажного бетона добавьте 3 части натуральной целлюлозной массы к 2 частям глины или 1 части римского цемента (гашеная известь) и перемешайте. Результат будет похож на традиционный бумажный бетон, а цвет готового продукта будет светлым оттенком вашего целлюлозного материала и связующего.

Резка и смешивание натуральной целлюлозы

Без электричества у вас не будет такой роскоши, как электрическая дрель с миксером для краски, но если у вас есть насадка для миксера, вы можете прикрепить ручку к верхней части и нажимать, крутить и повернуть вручную.Смеситель для штукатурки работает лучше всего, потому что у него самые острые лезвия, но берегитесь стенок любого пластикового ведра.

Также помогает срезать траву или стебли как можно меньше и разбивать их между двумя плоскими камнями, прежде чем замачивать их в воде. Вы также можете нырнуть и руками разорвать, перемешать и раздавить. Ветка толщиной около 2 дюймов с вбитыми в конец гвоздями также может опускаться, подниматься и снова и снова опускаться в смесь для обработки мякоти.

Стоит немного поэкспериментировать с этим автономным подходом, если вы думаете, что вам когда-нибудь понадобится такая кладка.

Масштабирование Papercrete

Пора вернуться к сетке и стать серьезным. То, что мы до сих пор исследовали, относится к очень маленьким масштабам с использованием 5-галлонных ведер и отдельных форм для пары кирпичей. Если вы планируете более крупные проекты с бумагой для бетона, вам следует сделать несколько вещей:

  • Поэкспериментировать с составами, подходящими для вашего конечного использования. Если вы ищете несущую способность, вам нужно провести несколько тестов, чтобы увидеть, как кирпич выдерживает вес. Вы также можете просто поэкспериментировать с формулами и пропорциями, чтобы увидеть, что вы думаете о результатах.
  • Поэкспериментируйте с формулами строительных растворов. Самое масштабное строительство с любой кладкой требует раствора. Стандартная формула — это смесь бумажной массы и цемента в соотношении 50/50, но посмотрите, что произойдет, если вы измените это значение на 60/40 и т. Д.
  • Подумайте о массовом производстве. Не строите форму из цельного кирпича. Стройте длинные формы из нескольких кирпичей от 8 до 16 футов 2 x 4, чтобы вы могли заливать и формировать несколько кирпичей за партию.
  • Увеличьте масштаб вашего смесительного оборудования. Ведро емкостью 5 галлонов и ручная дрель помогут на долгие дни и усталые руки.Но будьте осторожны. Обычный стоячий миксер для бетона не справится. Это потому, что он буквально не сможет эффективно разрезать бумагу на клочки, необходимые для изготовления целлюлозы. Поищите в Интернете по запросу «papercrete». Многие каменщики из бумажного бетона разработали несколько простых и эффективных способов смешивания больших партий бумажной массы.
  • Сообщите друзьям, семье и соседям, что вам нужна их газета. Вы также можете связаться с продуктовыми магазинами и розничными торговцами, которые регулярно выбрасывают большие пачки картона.Вы даже можете спросить в местном центре по переработке вторсырья, есть ли у вас бумага. Они могут вас удивить и просто указать на переполненную бумажную корзину.
  • Если у вас есть время, сделайте несколько тестов на влажность различных составов бумажного бетона. Неразумно ждать результатов годами, но через пару недель или месяцев вы можете начать немного лучше понимать динамику бумажного бетона и влажности.

Beyond Papercrete

Как самостоятельный навык, способность делать papercrete может быть очень ценной.Пока вы думаете о таких вещах, как бумажный бетон, возможно, стоит некоторое время изучить конструкцию Adobe, Fidobe (который сделан из глины и измельченной ткани) и другие альтернативные строительные материалы.

Все это может сэкономить вам много денег, они имеют привлекательный деревенский вид, их можно раскрасить и придать им форму в соответствии с вашими глазами, и они могут дать вам еще один способ обрести уверенность в своих силах. Это также весело и, по крайней мере, в небольшом масштабе, легко сделать.

Понравился пост? Не забудьте закрепить на Pinterest!

Вам также может понравиться:

сообщить об этом объявлении

Вам также может понравиться:

Могу ли я сделать бетон без гравия? (Правильная смесь)

Если вы не работали с бетоном, то часто можете не знать, какие именно материалы необходимы для его изготовления.Я часто слышу, как другие даже используют термины «цемент» и «бетон» как синонимы. Некоторые домашние мастера, незнакомые с бетоном, задаются вопросом, можно ли сделать бетон без использования гравия.

Нет, бетон без щебня не сделать. Смесь ингредиентов из 1 части цемента, 2 частей песка и 3 частей гравия (камня) — вот что составляет бетон. Без гравия бетон не был бы прочным и не мог бы использоваться в качестве фундамента или основания, способного выдерживать большие нагрузки.

Этот ответ несколько упрощен, и бетон — это гораздо больше, чем гравий и песок, которые входят в него.Здесь мы узнаем, из чего состоит бетон, как получить идеальную бетонную смесь и какие заменители можно использовать для гравия.

Дополнительные компоненты бетона

Есть много типов бетона, но, по сути, бетон представляет собой смесь цемента и горных пород.

Мелкодисперсный порошкообразный цемент, называемый портландцементом, смешивается с водой для образования пасты. Затем производители смешивают эту пасту с песком и камнями, часто называемыми заполнителями, и в результате образуется бетон (источник).

Что добавляет песок в бетон?

Заполнители составляют от 60 до 75% бетона. Следовательно, тип используемого заполнителя играет жизненно важную роль в консистенции бетона (источника).

Песок является жизненно важной частью большинства бетонных смесей из-за его относительной доступности и естественной доступности в определенных средах. Добавление песка и других заполнителей не только укрепляет бетонную смесь, но и делает ее более объемной и увеличивает сцепление с дорогой.

Песок — это мелкозернистый материал, состоящий из мелких зерен, и эти крошечные частицы заполняют промежутки между крупными заполнителями.Следовательно, без песка или любого мелкого материала бетон требует дополнительной пасты, иначе он станет пористым и с ним будет трудно работать (источник).

Когда мы используем бетон, происходит гидратация. В то время как мы обычно связываем гидратацию с выпиванием восьми стаканов воды в день, гидратация — это другой процесс в цементе. Гидратация — это когда цементные соединения связываются с молекулами воды. Это также запускает процесс твердения бетона.

Добавление песка в цемент с гравием обеспечивает более плавный процесс гидратации.Если бы в бетоне были только цемент и гравий, смесь значительно усадилась бы и ослабила структуру. Песок ограничивает усадку.

Чтобы узнать больше о свойствах песка и его влиянии на бетон, взгляните на «Могу ли я сделать бетон, используя только песок и цемент?»

Что добавляет вода в бетон?

Вода активирует связующее в бетоне. Это придает бетону гибкость при заливке, но также является частью процесса твердения. Вода является необходимой частью химической реакции гидратации, поскольку она реагирует на соединения в цементе.

Что гравий добавляет в бетон?

И песок, и гравий играют важную роль в определении текстуры бетона и количества воды, необходимой для смеси. Прочность бетона зависит от добавленного в него гравия.

Однако гравий также бывает разных размеров. Мелкие, более мелкие кусочки гравия создают «мелкий» сорт бетона, который подходит для внешних гладких поверхностей. Более крупные куски гравия создают «гладкий» бетон, который является чрезвычайно прочным, но несколько громоздким.

Гравий увеличивает прочность бетона, но, если использовать слишком много, он имеет противоположный эффект и нарушает целостность бетонной смеси. Поэтому важно знать, какой бетон вам нужен для конкретной работы.

Заменители гравия

Есть несколько типов заполнителей, которые можно использовать вместо гравия, и они имеют свои явные преимущества и недостатки.

Два заменителя гравия — перлит и вермикулит. Это твердые пористые материалы, которые помогают создать более легкий бетон с отличными изоляционными свойствами (источник).

Пенополистирол

(EPS) — недорогой заменитель гравия. Он имеет то преимущество, что обеспечивает аэрацию бетона и может использоваться для создания легкого бетона.

Однако прочность этого бетона значительно ниже при трех фунтах на квадратный дюйм, что делает его более подходящим в качестве изолятора или штукатурки. Мы объясним PSI немного позже.

Glasscrete — это экологически чистый заменитель мелкого гравия. В нем используется переработанное стекло, и оно зарекомендовало себя как подходящая замена, так как практически отсутствует потеря прочности и улучшена маневренность (источник).

Еще один экологически чистый заменитель — пластик. Необычный выбор, пластик может быть более дешевой альтернативой бетону. Однако он не обладает прочностью гравия и обычно требует стальной фибры или какого-либо другого армирования, чтобы сделать его жизнеспособным в долгосрочной перспективе (источник).

Виды бетона

Когда бетон смешивается, ему присваивается марка «M», чтобы соответствовать стандартным смесям. Стандартные смеси также имеют значение PSI (фунт на квадратный дюйм), которое указывает на прочность.Базовая терминология для бетона — нормальная, стандартная или высокопрочная (источник).

Существует около 23 различных типов бетона, но здесь мы рассмотрим наиболее часто используемые (источник). Бетон нормальной прочности предназначен для небольших конструкций, не требующих большой прочности, таких как дорожки, гаражи и внутренние плиты перекрытия.

В строительстве используется обычный бетон, но без армирования. Он используется в пешеходных дорожках и при строительстве небольших зданий, не требующих большой прочности на разрыв.

Для сравнения, железобетон представляет собой смесь простого бетона, но он заливается в помещения, армированные металлическими стержнями или стержнями. Еще один прочный бетон — это предварительно напряженный бетон, который используется в проектах с большой нагрузкой, таких как мосты и путепроводы.

Раствор представляет собой смесь только цемента, воды и песка. Эта смесь используется для строительства, особенно строительства из кирпича.

Идеальное соотношение бетонной смеси

Когда дело доходит до смешивания бетона, важны пропорции.Слишком жидкая и жидкая бетонная смесь ничего не удержит. Тот, который должен высохнуть, не осядет должным образом, а тот, который содержит слишком много гравия, будет жестким и громоздким. Поэтому лучше сделать все правильно с первого раза.

Однако идеальная бетонная смесь зависит от выполняемой вами работы. Соотношения могут отличаться, особенно при использовании заменителей гравия. Для некоторых материалов требуются разные соотношения.

Когда дело доходит до бетона, вода и заполнители в смеси играют важную роль в прочности и долговечности.К воде не нужно привередничать; Пока он чистый и пригодный для питья, вы можете использовать его для бетонной смеси.

Однако для бетона требуются специальные заполнители. Размер и соотношение заполнителя имеют значение для конечного продукта и его потенциальных применений. Заполнители составляют большую часть бетонной смеси, поэтому их следует правильно использовать.

Пропорции бетонной смеси обычно выражаются тремя числами — X: Y: Z. Первое число относится к количеству используемого цемента, второе — к песку, а третье — к гравию.Количество воды, используемой в каждой смеси, также разное.

M5, 7,5, 10, 15 и 20 относятся к «Нормальному классу бетона». Эти смеси, как правило, более гранулированы и используются в пространствах, которые вы не увидите после строительства.

M10 — очень гранулированная смесь в соотношении 1: 3: 6. Благодаря своей пористой природе, он полезен для укладки плит патио и дорожек.

Классическое применение бетона — строительство, особенно кирпич. M25 входит в состав стандартной марки бетона и является наиболее часто используемой бетонной смесью.Благодаря своей универсальности вы можете использовать его как для фундамента, так и для самого здания.

M25 изготовлен из смеси 1: 1: 2 и имеет давление 3625 фунтов на квадратный дюйм. Этот бетон прочен, но его изготовление немного дороже из-за более низкого соотношения песка и гравия, что означает использование большего количества цемента.

Тестирование бетонной смеси

Хороший способ проверить, подходит ли бетонная смесь для обработки, — это использовать так называемое «испытание на оседание». Вы проводите тест, используя бездонный контейнер.Подойдет даже чашка из пенополистирола со снятым дном.

Чашка или конус должны быть набиты бетоном как можно плотнее. Положите конус на поверхность лицевой стороной вниз и снимите его, оставив бетон позади.

Если бетон близок к исходному размеру конуса или если он проседает до размера менее 50% от размера конуса, тогда смесь слишком твердая или мягкая, и ее практически невозможно обрабатывать.

Если бетон остается на уровне от 50% до 75% от исходного конуса или чашки, это указывает на хорошую текстуру, и бетон должен быть годным для использования (источник).

Последние мысли

Технически, вы не можете назвать это бетоном без гравия, но технологии и инновации показали, что есть несколько заменителей, которые вы можете использовать для создания бетона без традиционного гравия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *