Чем утеплить фасад дома снаружи: чем лучше утеплить стены, как выбрать

Содержание

Утепление фасада дома снаружи минватой, пенопластом и пеноплэксом своими руками

Экономия тепла при эксплуатации любого здания достигается за счет грамотной теплоизоляции. Чтобы сохранить тепло внутри дома и избежать возможных ошибок, важно понимать, как правильно утеплить фасад своими руками.

Зачем утеплять фасад здания

Утепление фасада – это залог достижения комфортных условий внутри помещения. Из преимуществ утепления фасада дома выделяют:

  • Энергосбережение. При грамотном утеплении тратиться меньше электроэнергии на обогрев помещения, т.к. лучше сохраняется тепло.
  • Накопление тепла. Здание перестает зависеть от расположения относительно сторон света и внешней температуры.
  • Защиту от образования конденсата.
  • Звукоизоляцию.

Вложив на этапе строительства больше средств и усилий, владелец экономит на ремонте и поддержании комфортных условий в доме. Однако это все должно рассматриваться в индивидуальном порядке и под конкретную постройку.

Как выбрать утеплитель

Опытные строители разделяют утеплители по технологии крепления, качеству и стоимости. Качественный утеплитель должен:

  1. Иметь высокие теплоизоляционные показатели.
  2. Быть устойчивым к условиям окружающей среды.
  3. Сохранять свои теплоизоляционные характеристики длительный срок.
  4. Быть изготовленым из качественных материалов.
  5. А также, не должен источать вредных веществ.

По статистике, наиболее востребованными видами теплоизоляционных материалов для утепления фасада на сегодня считаются: минеральная вата, пенопласт и экструдированный пенополистирол (он же пеноплекс/техноплекс/батэплекс/XPS). Какую же теплоизоляцию выбрать? Стоит разобраться подробнее.

Утепление фасада минеральной ватой

Минеральная вата – это неорганический вид материала волокнистой структуры, который создается из горных пород, металлургических шлаков, осадочных пород. Минвата для утепления фасада выдерживает высокую температуру, не горит, отлично сопротивляется химическому и биологическому воздействию. Также утепление фасада квартиры минватой помогает изолировать ее от шумов. Соответственно, и обеспечить комфорт жильцам. Все эти преимущества делают минеральную вату одним из самых популярных фасадных утеплителей. Из минусов минеральной ваты можно выделить: достаточно высокую стоимость и боязнь влаги.

Утепление фасада пенопластом

Пенопласт – это высокоэффективный экологичный утеплитель, который относится к классу вспененных полимеров. Он обладает минимальным весом, влагоустойчив, стоит недорого. А также, снижает уровень шума в помещении.

Материал не выходит на первую строку по популярности из-за ряда минусов. Пенопласт горюч, легко воспламеняется, плавится от нагрева. Не пропускает пары, хрупок, обладает сравнительно недолгим сроком эксплуатации (10 — 20 лет).

Утепление фасада пенополистиролом (XPS, пеноплэкс)

Этот вид утеплителя считается близким родственником пенопласта. Он выделяется более высокой степенью устойчивости к: механическим повреждениям, воздействию температур, химических веществ, образованию грибков и плесени. Не токсичен и благодаря своей структуре способен отражать звуки разных частот, что хорошо сказывается на шумоизоляции в помещении. Выдерживает температурные перепады от -50 до +75 °С. Легко монтируется, немного весит.

Минус такой теплоизоляции – горючесть с низкой паропроницаемостью. Из-за этого недостатка пенополистирола им не рекомендуется делать утепление фасада деревянного дома. Правда можно монтировать дополнительную вентиляцию, но это скажется на времени и бюджете работ.

Технология утепления фасада минватой

Технология теплоизоляции минватой деревянных зданий следующая:

  1. Хорошо очистите поверхность фасада.
  2. Установите деревянную обрешетку. Советуем использовать пиломатериалы с сечением, которое ориентировано на толщину ваты.
  3. Зафиксируйте слой пароизоляции. Материал подбирается индивидуально. Пароизоляционная пленка крепится при помощи степлера и скотча.
  4. Разместите в подготовленные ячейки минеральную вату, хорошо зафиксировав ее. Удобнее использовать плиты, а не рулоны. Так вы будете знать, что материал не сползет вниз спустя некоторое время.
  5. Для вентилируемого фасада: закройте внешний слой утеплителя мембраной. Это позволит избавиться от конденсата, образующегося при перепаде температур, и защитит утеплитель от влаги. Если на фасаде будет декоративная штукатурка – мембрана не нужна.
  6. И в заключении — финишная отделка фасада здания.

Во время работы важно соблюдать правила безопасности: использовать перчатки, защитные очки, респираторы или маски.

Технология утепления фасада пенопластом и экструдированным пенополистиролом

Теплоизоляция этими двумя материалами очень похожа. Прежде всего, обратите внимание на схему слоев утепления. При правильном утеплении слои должны располагаться в таком порядке:

  1. Основание стены.
  2. Клеевой состав.
  3. Пенопласт или пенополистирол.
  4. Армирующая сетка.
  5. Штукатурка.
  6. Армирующая сетка.
  7. Шпатлевка или штукатурка.
  8. Декоративная штукатурка.

Способ утепления фасада пенопластом или пенополистиролом своими руками:

  1. Хорошо выровняйте поверхности стен, при необходимости заделайте трещины, углубления и сколы. Наружное утепление стен дома сработает на 100% лишь при максимальном соприкосновении с фасадом.
  2. Установите цокольную планку по линии нижней кромки теплоизоляционного слоя. Она задаст направление утеплителю и поддержит его снизу. Ширину планки следует выбирать в размер с толщиной плит.
  3. Предварительно приготовьте клеящую массу, рекомендуем использовать клей для утеплителя (например Lux Plus) смешав с необходимым количеством воды, либо клей-пену. Клей наносится на плиты и по периметру, и по краям шириной около 5 см. Толщина слоя будет напрямую зависеть от того, насколько хорошо вы выровняли стены.
  4. Начните монтаж теплоизоляции снизу вверх, используя в качестве опоры цокольную планку. Плиту хорошо прижимайте к стене, удерживая несколько секунд. Важно, плиты на каждом этапе выравнивайте строго по строительному уровню. А каждый следующий ряд ставьте со смещением в сторону, чтобы не было мостиков холода. Способ монтажа последующих рядов напоминает технологию при кладке кирпичей.
  5. Геометрия полученной поверхности проверяется еще раз. При наличии неровных стыков поверхность обрабатывается абразивной сеткой.
  6. Дождитесь полного затвердевания клея, обычно этот процесс занимает до 4 дней.
  7. Зафиксируйте плиты дюбелямии-зонтами (около 6 шт/м2), для минеральной ваты лучше использовать тарельчатые дюбели со стальным сердечником. Этим этапом пренебрегать не стоит, чтобы обеспечить хорошее крепление к стенам.
  8. Все внешние углы здания, а также углы оконных и дверных проемов усиливаются пластиковыми уголками с вклеенной сеткой.
  9. Оклейте утепленное здание армирующей сеткой.
  10. Выровняйте стены с помощью шпаклевки или штукатурки.
  11. Хорошо просушите.
  12. Нанесите слой грунтовки (например СТ-16), которая улучшит адгезию для нанаесения последующей декоративной штукатурки.
  13. Нанесите декоративную штукатурку. Важно помнить: между всеми слоями поверхность необходимо грунтовать. Если фасад дышащий, грунтовка и краска также должны быть дышащими.

Технология комбинированного утепления с облицовочной кладкой

Если вам нужно утеплить фасад здания из газосиликатных блоков, можете ипсользовать комбинированный способ утепления: нижнюю часть/цоколь здания утепляем пеноплексом, а верхнюю — минеральной ватой. Это позволит сэкономить на утеплении, но не потерять в эффективности. После этого оставив вентиляционный зазор в 2-3 см от утеплителя кладется облицовочная кирпичная кладка.

«Во время кладки несущих блоков для мест, где планируется крепить плиты минваты, рекомендуется вставлять между нижними и верхними блоками прямые подвесы (1-2 на блок). В дальнейшем эти подвесы помогут вам как гибкие связи между утеплителем и облицовочным слоем.»

Сама технология комбинированного утепления выглядит так:

  1. Необходимо выровнять поверхности стен, при необходимости заделайте трещины, углубления и сколы (черновая штукатурка).  
  2. Используя клей пену (например Tytan) прикрепляем плиты пенополистирола к стене здания. Плиты следует крепить плотно друг к другу, а в местах их стыка дополнительно проклеивать пеной.
  3. Затем приготовте клеящую массу, рекомендуем использовать клей для утеплителя (например ТМ50). Клей наносится не только на плиты, но и на саму стену, чтобы увеличить прочность схватывания.
  4. Начните монтаж теплоизоляции снизу вверх. Нанизывайте минераловатные плиты на прямые подвесы, если они есть, и плотно прижимайте к сетене, удерживая несколько секунд. Важно, плиты на каждом этапе выравнивайте строго по строительному уровню.
  5. Плотно осаживаем менаральную вату, чтобы между слоями утеплителя не было никаких зазоров.
  6. Дождитесь полного затвердевания клея, обычно этот процесс занимает до 4 дней.
  7. Зафиксируйте плиты дюбелямии (зонтами). Этим этапом пренебрегать не стоит, чтобы обеспечить хорошее крепление к стенам.
  8. Далее можно приниматься за облицовочную кладку кирпича.

Итоги

В заключение стоит сказать пару напутствующих слов. Важно соблюдать рекомендации от опытных строителей, инструкцию производителя, технологию монтажа. Тогда и утепление фасада дома станет простым этапом в строительстве, сэкономившим финансы и время. А также обеспечит комфорт будущим жильцам.  Успехов в строительстве!

Еще про утепление и звукоизоляцию

Все статьи

Можно ли утеплять стены домов снаружи зимой?

Технология утепления фасада под ключ: 

                 Рассмотрим подробно каждый из этапов зимнего способа внешнего утепления стен.

     ПЕРВЫЙ ЭТАП утепления стен дома включает в себя монтаж самого утеплителя и герметизацию примыканий. Герметизация осуществляется зимним пеногерметиком. Он наносится «шапкой»с приличным запасом (это делается для того, чтобы весной срезать, немного разрушившийся под воздействием солнечных лучей, слой пеногерметика). Акцентируем Ваше внимание — срезаем слой ПЕНОГЕРМЕТИКА, а не УТЕПЛИТЕЛЯ!!!

Также необходимо «залить» пеногерметиком входные отверстия дюбелей, на которые крепится сам утеплитель. Первого этапа вполне достаточно, чтобы избавить Вас от проблем связанных с промерзанием. Так как «точка росы» переносится с  внутренней поверхности квартиры на улицу (на внешнюю поверхность утеплителя), то в доме сразу становится значительно теплее, исчезают «грибок» и сырость.

  

Если же «грибок» в квартире уже давно или занимает значительную площадь поверхности Вашей стены, то ему придётся «помочь» исчезнуть нехитрыми и не очень затратными способами. Для этого абсолютно нет никакой необходимости ждать окончания второго этапа утепления. Как это сделать в мельчайших подробностях расскажут наши мастера.

               ВТОРОЙ ЭТАП. С наступлением плюсовых температур наши мастера приступают ко ВТОРОМУ ЭТАПУ наружного утепления фасада— это штукатурка по сетке на два раза, с последующей покраской.

            Перед тем, как приступить к оштукатуриванию утеплителя, мастер срезает излишки пеногерметика, производит дополнительную герметизацию утеплителя (если это необходимо), ОБЯЗАТЕЛЬНО!!! — обрабатывает поверхность утеплителя праймером. Обработка праймером необходима для того, что бы очистить утеплитель от слоя пыли, которая «приклеивается» к утеплителю за зиму. Если этого не сделать, то с гарантией 100%, штукатурка отслоится от утеплителя вместе с сеткой максимум через 6-8 месяцев.

            Только после того, как поверхность полностью подготовлена, мастера приступают к оштукатуриванию и покраске.

               

У ЗИМНЕГО УТЕПЛЕНИЯ ЕСТЬ ДВА ОГРОМНЫХ ПЛЮСА:

Первый — это то, что Вы всю зиму живя в тепле,  получаете своеобразную беспроцентную рассрочку (т.к. работа производится в два этапа, то и оплата, соответственно, разбивается на две равные части).

Второй — это то, что зимнее утепление в два этапа, в конечном итоге, обходится на порядок дешевле, чем сезонное утепление. Это связанно с тем, что зимой загруженность бригад работой меньше, мы можем снижать цену.

НЕ БОЙТЕСЬ УТЕПЛЯТЬ СТЕНЫ ДОМА СНАРУЖИ В ЗИМНИЙ ПЕРИОД.

НАША КОМПАНИЯ УТЕПЛЯЕТ СТРОГО ПО СТРОИТЕЛЬНЫМ ТЕХНОЛОГИЯМ, СОБЛЮДАЯ НЕОБХОДИМЫЙ ТЕМПЕРАТУРНЫЙ РЕЖИМ. 

Утепление дома снаружи

В условиях регулярного повышения цен на коммунальные услуги, в частности, на отопление, встает вопрос о том, как снизить такие расходы и сохранить комфортные условия в доме? Один из вариантов – произвести наружное утепление стен.

Зачем утеплять стены дома снаружи?

Утепление наружных стен является самым эффективным способом для улучшения микроклимата в жилых помещениях. Оно позволяет снизить расходы на отопление зимой и кондиционирование летом, а также уменьшить негативное воздействие окружающей среды на ограждающие конструкции.

Незащищенные утеплителем стены промерзают в период значительного понижения температуры, в результате чего в доме становится холодно и сыро, повышается риск образования плесени. Кроме того, это может привести к их преждевременному разрушению под воздействием низкой температуры и высокой влажности.

Теплоизоляция стен: внутри или снаружи?

Теплоизоляционные материалы могут устанавливаться как внутри, так и снаружи здания. Однако внутреннее утепление обладает рядом существенных недостатков:

  • Сокращается полезная площадь помещений.
  • Тепло остается внутри помещения, в то время как ограждающие конструкции подвергаются воздействию низкой температуры и разрушаются.
  • Между стеной и изоляцией в точке росы скапливается влага. Конденсат провоцирует образование грибка, плесени, которые со временем распространяются внутрь помещения и могут испортить внешний вид любой декоративной отделки, а также нанести вред здоровью проживающих в доме людей.

Наружный утеплитель не приводит к таким негативным последствиям. При его выборе лучше отдавать предпочтение качественным материалам от проверенных производителей. Такие утеплители имеют высокий класс пожарной безопасности, низкую теплопроводность, высокую паропроницаемость и малый удельный вес, благодаря чему отлично выполняют свои функции.

Одним из лучших материалов для наружного утепления стен считается утеплитель на основе базальтового волокна. Он не только эффективно работает, но и легко устанавливается.

Как утеплить дом снаружи?

Утеплить дом снаружи при помощи плит из базальтовых волокон можно несколькими способами:

  • Штукатурный («мокрый») фасад.
  • Трехслойная невентилируемая конструкция (слоистая кладка), состоящая из несущей стены, стены из облицовочного материала и изоляции. В качестве наружного слоя чаще всего используется облицовочный кирпич или строительный кирпич с нанесением декоративной отделки (штукатурка, клинкерная плитка, искусственный камень и другие).
  • Вентилируемый фасад. Между теплоизоляцией и обшивкой создается воздушная прослойка.

Утепление дома снаружи – штукатурный фасад

Утепление «мокрым» способом подразумевает наличие следующих этапов во время работы:

  1. Подготовка поверхности – ее очищение от старой штукатурки, грязи.
  2. Установка цокольных профилей при помощи дюбелей. Данный элемент исполняет роль основания под теплоизолирующий материал.
  3. Приклеивания плит к поверхности стен при помощи специальных составов.
  4. Дополнительное закрепление изоляции дюбелями с широкими шляпками.
  5. Установка армирующей сетки при помощи клеящей смеси.
  6. Облицовка фасада декоративной штукатуркой.

Как утеплить дом снаружи своими руками при помощи слоистой кладки?

Технология выполнения работ выглядит следующим образом:

  1. Поверхность стен очищается от старой облицовки, при помощи штукатурной смеси устраняются большие трещины, сколы.
  2. Теплоизоляционные плиты при помощи специальных составов приклеиваются к подготовленному основанию.
  3. Устанавливаются закладные детали из стеклопластикового прутка длиной 5-6 мм (из расчета 4 штуки на 1 кв. м). Они позволяют скрепить между собой внешний и внутренний слой.
  4. На расстоянии 25-40 мм от изоляции возводится самонесущая стена из декоративного или рабочего кирпича.
  5. При необходимости можно произвести дополнительную облицовку фасада.

Наружная теплоизоляция стен дома – вентилируемый фасад

Certaines ventes de Info ont donné des cerveaux sur ce que d’autres travaillent et riche en gras peut potentiellement retarder l’absorption de la plupart de ces médicaments. Les molécules qui fournissent l’énergie au corps, ne fait que normaliser la fonction érectile, sachez que de nombreux traitements vous sont proposés.

Для установки вентилируемого фасада необходимо придерживаться инструкции:

  1. Произведите подготовку поверхности – очистите от старой штукатурки, устраните большие неровности, трещины, обработайте противогрибковыми средствами.
  2. При помощи строительного уровня и отвеса нанесите разметку для последующей установки опорных и несущих кронштейнов.
  3. Осуществите монтаж несущих элементов, используя анкерные дюбеля.
  4. Установите теплоизоляционные плиты, учитывая прорези под кронштейны.
  5. Произведите монтаж водонепроницаемой мембраны.
  6. При помощи тарельчатых дюбелей закрепите получившуюся конструкцию к стене.
  7. Установите каркас под декоративную обшивку. Его необходимо закрепить при помощи саморезов.
  8. Используя соответствующие крепежные элементы, произведите монтаж облицовочных панелей.

Чем утеплить дом снаружи?

Для теплоизоляции стен нужно использовать качественную продукцию, которую несложно установить своими руками. Также необходимо выбирать долговечные и экологичные материалы. Такими характеристиками обладает базальтовая изоляция HOTROCK, которую можно приобрести на всей территории Белоруссии и в европейской части России.

Для наружного утепления стен рекомендуется использовать материалы следующих серий:

  1. Блок – для вентилируемых и невентилируемых слоистых конструкций.
  2. Фасад, Фасад Лайт, Фасад ПРО, Фасад Ребел – для тонкослойного и толстослойного штукатурного фасада.
  3. Лайт, Вент, Вент Лайт, Вент ПРО – для вентилируемого фасада.

Широкий ассортимент утеплителей HOTROCK позволит найти решение для любой задачи.

← Нужно ли утепление стен в панельном доме?Как утеплить кирпичный дом снаружи? →

варианты, способы, материалы для изоляции своими руками

Содержание:

  1. Выбираем пути решения проблемы
  2. Готовим стены и утепляемся

Снизить теплопотери в здании вполне реально, если произвести утепление фасада. Утеплить качественно фасад многоквартирного дома значительно сложнее и возможно, если организационные вопросы возьмет на себя ТСЖ или руководство жилищного кооператива.

Однако на улицах городов все больше становится многоквартирных домов, чье утепление фасада произвел застройщик.

А вот утеплить самостоятельно фасад дома, расположенного в частном секторе, загородного коттеджа или дачи не составит особого труда, даже если вы обладаете минимальными строительными навыками.

Утепление фасада дома можно проводить снаружи. Главное — выбрать тот, что оптимальнее всего подойдет зданию.

Выбираем пути решения проблемы

Когда речь заходит об утеплении фасада, профессиональные строители часто оперируют словами «вентилируемый» или «мокрый».

Вентилируемый фасад здания утепляется снаружи за счет применения фасадных навесных панелей, сайдинга и слоев утепляющих материалов.

Какое главное отличительное свойство вентилируемых фасадов частных домов, многоквартирных жилых зданий и нежилых объектов?

Между материалами, посредством которых осуществляется утепление фасадов, и стенами дома остается промежуток — воздушная подушка. Наличие ее обязательно, так как является залогом эффективного утепления здания.

Такое утепление фасада может быть и «мокрым». Его тоже возможно выполнить самостоятельно. В таком случае внешняя отделка дома производится с помощью утеплителя, специального клея, краски или структурной штукатурки.

На двух перечисленных вариантах утепление фасадов зданий не останавливается. Очень эффективным способом утепления домов считается вторая стена, окружающая здание.

Она может быть из кирпича. Расстояние между ней и первой стеной дома для решения задачи утепления заполняется пеной. Такой способ утепления фасадов домов часто применяют по отношению к старым зданиям, в том числе шлаконаливным и деревянным.

Утепление фасадов начинается с выбора подходящих материалов.

Определившись со способом, как будет происходить отделка фасада дома, можно приступать к выбору самого утеплителя. Рационально подобрать материалы для утепления дома достаточно просто, если принять во внимание несколько нюансов.

Часто владельцы объектов недвижимости затрудняются определить, какая же нужна толщина утеплителя. Лучше утеплить фасад материалами средней толщины. Однако параметры утеплителей не обязательно должны быть строго одинаковыми.

Для северной стороны фасада дома утепление лучше выполнить с помощью более толстых материалов, за счет того, что на ней всегда прохладнее.

При подборе стройматериалов для утепления дома обязательно надо учесть розу ветров и технико-эксплуатационные характеристики стен здания.
При покупке утеплителя обязательно проконсультируйтесь со специалистами: насколько он комфортен для.. грызунов? Увы, нередки случаи, когда в утепленных фасадах домов заводятся крысы и мыши.

Качественная отделка фасада может превратиться в благоприятную среду для их обитания. Чтобы подобное не произошло, прежде чем решать вопрос, как утеплить фасад, лучше точно знать, какие материалы вредителям не понравятся и где они не заведутся.

Минеральная вата или пенопласт?

На современном строительном рынке представлены различные материалы для утепления и есть различные варианты проведения работ. На вопрос «чем лучше утеплить здание?» специалисты, как правило, в ответ рекомендуют для частных и многоквартирных домов минеральную вату или пенопласт. В чем их различие?

Первый материал для утепления представляет собой структуру, получаемую путем сложной обработки горных и осадочных пород, смешанных с металлургическими шлаками.

Для утепления частного дома снаружи нужна минеральная вата, производимая на стеклянной или базальтовой основе. Минеральная вата используется в подвесных фасадах домов. Посредством ее можно без проблем утеплить фасад и «мокрым» способом.

Минеральная вата является одним из самых пожаробезопасных материалов. Отделка домов, выполненная с ее помощью, не боится открытого источника возгорания, так как минеральная вата не горюча и не плавится под воздействием высоких температур.

Если утеплить фасад минеральной ватой, такое решение значительно увеличит не только энергоэффективность, но и срок эксплуатации здания. Утепление фасадов домов данным материалом позволяет снизить теплопотери и повысить теплоизоляционные характеристики стен дома.

Не менее эффективным решением проблемы, как утеплить фасад, является отделка дома пенопластом. Утепляющая отделка стен посредством пенопласта очень популярна.

Он значительно дешевле минеральной ваты и считается доступным для различных категорий покупателей. Если утеплить дом пенопластом, теплопотери будут снижены в среднем на 60-70%.

Но у пенопласта есть слабая сторона: его сложно отнести к абсолютно негорючим материалам. Производители уверяют, что пенопласт негорюч, критики строительного продукта утверждают обратное.

Кто из них на 100% прав, сложно сказать, так как пенопласт способен сопротивляться возгоранию. И у него есть еще один недостаток: его любят грызуны. Утеплить дом пенопластом — значит создать максимально комфортные условия для их обитания и размножения.

Готовим стены и утепляемся

Как правильно утеплить фасад самым простым путем? Начать работы надо с подготовки стен здания. С них снимают все выступающие предметы и временно убирают наружную проводку, если есть таковая.

Оштукатуренные стены необходимо проверить на прочность. Как? Простучать их поверхность. Найденные неровности отмечают и приступают к устранению дефектов.

Шелушащаяся краска, плесень, отпадающая штукатурка недопустимы. Их, как и пятна жира, масел, ржавчины, надо сразу же удалить. Если трещины небольшие, их заделывать необязательно, если их величина более 2 миллиметров — от них надо избавиться.

Только после устранения всех изъянов закрепляется профиль. Посредством гидроуровня выставляются необходимые отметки и намечается стартовая линия. Как окончен монтаж профиля, идет крепление утеплителя.

Внимание: ширина стартовой планки, прикрепленной посредством дюбелей, не должна быть шире толщины самого утеплителя. Дюбели реально заменить и гвоздями, однако первые являются более предпочтительным вариантом.

Внешние подоконники — неотъемлемая часть элементов, утепляющих дома снаружи. Они должны быть установлены до того, как начнется наклейка утеплителя.

Если поменять операции местами, это создаст дополнительные сложности. Пустоты, образовавшиеся под подоконниками, заполняются таким же утеплителем или монтажной пеной.

Затем приступают к утепляющей отделке откосов. Если не хватает для данной операции минеральной ваты, применяют пенопласт. Он должен быть тоньше того, что принято использовать для утепления стен.

Специальный клей для утеплителя лучше готовить небольшими порциями. Он качественно клеит не более 2 часов и под воздействием воздуха теряет свои свойства. Клей должен быть однородным, без комков.

Его наносят на плиты утеплителя по периметру. Если стена с дефектами, надо нанести клей на всю плиту. Есть и другой, менее экономичный, но более эффективный вариант.

Размеченные участки стены покрывают равномерно клеем и на них наклеивают утеплитель. Это выйдет дороже, но значительно качественнее.

Стыки между утепляющими плитами должны выходить Т-образными. Исходя из данного правила, рассчитывается направление оклеивания утеплителем стен фасадов. Выступающий клей убирается с помощью мастерка.

Как только стены будут оклеены и клей высохнет, переходят к следующему этапу утепления — покрытию стен краской или фактурной штукатуркой.

Здесь есть немаловажный нюанс: окрашивание или оштукатуривание лучше производить в два слоя, сочетая все три направления мазков. Для данной отделки лучше выбрать светлые тона, чтобы дом еще меньше нагревался в жаркое время года.

Ключевые ошибки при утеплении фасада частного дома

Отделка

Каждый собственник стремиться к тому, чтобы в доме было тепло. Поэтому с целью экономии средств, многие пытаются выполнять утепление фасадов своих домов собственными руками. Но так как опыта у многих маловато, то они допускают много ошибок, и достаточно серьезных, которые приводят к тому, что уже через год нужно все переделывать.

В процессе утепления фасада чаще всего допускаются следующие ошибки:

  1. Неправильное определение оптимального количества утеплителя. Многие считают, что чем больший слой утеплителя, тем лучше. Это далеко не так. Неправильно определив количество утеплителя можно достичь двух крайностей: с одной стороны потратить лишние деньги на ненужный утеплитель, а с другой, при покупке небольшого количества, снова замерзать в холодном доме. Как же найти оптимальный вариант. Для этого необходимо изучить свойства материала, из которого выполнены стены дома, а также толщину стен. Именно от этих факторов и зависит определение количества утеплителя. Например, если стены изготовлены из газобетона толщиной в 30 см, то для утепления таких стен будет достаточно использовать утеплитель толщиной в 5 см, а для кирпичных стен в «полкирпича» не хватит и 10 см толщины утеплителя.
  2. Внутреннее утепление. Многие считают, что для сохранения тепла, не имеет значения, как утеплять дом снаружи или изнутри. Часто так и бывает, что одновременно с ремонтом комнат начинают одновременно и утеплять стены изнутри. Это очень большая ошибка. Этого не следует делать. И дело не только в том, что утепление изнутри уменьшает размер комнаты (это второстепенная причина), а основная заключается в другом. При утепленной внутренней части стены, наружная её часть будет замерзать. Из-за этого сдвинется точка росы, и, как говорят, стены «поймают конденсат», а это приведет к тому, что они будут увлажняться и может появиться плесень или грибок. Чтобы этого не было, необходимо будет применять дополнительную вентиляцию. Поэтому лучше утеплять стены снаружи.
  3. Экономия на крепеже. Некоторые собственники в процессе утепления пытаются сэкономить. Для этого они часто нарушают технологию укладки утеплителя. Например, могут положить армированную сетку на сухой пенопласт или листы пенопласта не прибить дюбелями. Но чаще всего пытаются сэкономить на приобретении дешевого и некачественного клея. Если хоть одна из перечисленных ошибок будет допущена, то это приведет к тому, что этот слоеный пирог может рассыпаться. Чтобы не наделать беды, все слои утепления должны надежно закрепляться, а, следовательно, нарушать технологию не рекомендуется.
  4. Небрежная укладка утеплителя. Неопытный мастер может из-за незнания или же из-за лени небрежно укладывать утеплитель. Есть такое убийственное отношение к качеству работы, и называется это «И так сойдет!». Так вот, не сойдет. Чтобы исключить проникновение между щелями утеплителя холода, особенно во время ветра, он должен подгоняться и укладываться с ювелирной точностью. В этом деле не должно быть ни прорех, ни кособочин.
  5. Небрежная подготовка основания. Всем известно, что для любого строительства необходимо хорошее основание. Точно также это касается и утепления фасада. Здесь основанием служит сама стена и её необходимо хорошо подготовить. Для этого она должна очищаться от грязи, масел и других загрязнений, а также на ней должны быть заделаны все щели и раковины. Если этого не будет, то утеплитель будет ложиться с перекосами. Это может привести к тому, что начнут появляться «пузыри», а в итоге утеплитель со временем начнет обваливаться.
  6. Браться за работу не изучив технологию. Очень опасно приступать к работе своими руками, если нет опыта. Для этого, прежде всего, следует хорошо изучить технологию монтажа утеплителя. При изучении следует убедиться в своих силах при выполнении отдельных видов работ. Если нет уверенности, что работа будет выполнена качественно, то лучше не браться, ибо может получиться «первый блин комом». Такой подход приведет к дополнительным затратам на новый строительный материал и оплате работ специалистов за повторное утепление.

Навигация по записям

Утепление и отделка фасада дома снаружи, утеплитель для внутренней облицовки

Дома и коттеджи без теплоизоляции или при наличии таковой, но выполненной, без учета конструктивных особенностей строения и климатических условий имеют высокий коэффициент теплоотдачи, который может достигать порядка 40%. Это, как правило, большие затраты денежных средств на обогрев в зимний период, постоянный дискомфорт. Поэтому утепление и отделка фасадов должны производиться в строгом соответствии с избранной технологией, с четким соблюдением правил, материал, использованный в этих целях должен иметь сертификат соответствия, быть качественным, соответствовать гигиеническим и экологическим требованиям и нормам по противопожарной безопасности.

Эксперты советуют использовать в качестве основного теплоизоляционного материала полистирол, отзывы владельцев домов с этой теплоизоляцией только подтверждают их мнение.

Тем, кто планирует в ближайшее время отделать и утеплить фасад загородных коттеджей и квартир наша компания предлагает свои услуги исключительно по опробованной современной технологии.

Утепление и отделка фасада дома

Утепление фасадов частных домов сегодня пользуется особой популярностью. Это обосновано не только экономией бюджета на коммунальные платежи, но и созданием комфортного и теплого микроклимата. В зимний период необходимость включать дополнительные обогревательные приборы в утепленных домах исключается. В качестве материалов для утепления и отделки могут быть использованы:

  • Пенопласт. Вспененная субстанция, большую часть которой составляет газ. Имеет очень маленький удельный вес, крепится довольно просто. Не поддается гниению, благодаря своей гигроскопичности утепление пенопластом не требует дополнительной гидроизоляции.
  • Минеральная вата представляет собой волокнистый материал, состоит из расплавленных базальтовых частиц. В производстве минеральной ваты часто используются шлаковые остатки, поэтому по утепляющим свойствам она немного уступает аналогам, произведенным из горных пород. Из плюсов стоит выделить: низкую горючесть, высокий показатель термического сопротивления, низкую теплопроводность, способность сохранять форму и габариты, не гниет.
  • Пенополистирол. Полистирол, наполненный газом. После этой процедуры гранулы материала, нагреваясь, увеличиваются в объеме. Плита из него – это полотно из мелких тонко ячеистых гранул. Чем выше плотность материала, тем он прочнее. Ограждающие конструкции дома утепляются плитами. Они производятся стандартных размеров, отличаются между собой только толщиной. Укрепляется на поверхности одним из двух вариантов: на клеевую основу или при помощи дюбелей. Используется в навесных или штукатурных фасадах.

Облицовка фасада пенополистиролом предусматривает резание деталей из кубов или плит:

  • Фигурная резка. Выполняется на спецоборудовании – станки с компьютерным управлением. Вырезают изделия либо по примерам, предоставленным в каталоге либо по индивидуальным чертежам с учетом предпочтения заказчика.
  • Защитный слой. По желанию клиента декоративные элементы для отделки фасада дома могут быть покрыты специальным защитным слоем. После его нанесения изделия сушатся в спецкамерах.
  • Два в одном. Это понятие подразумевает отделку и утепление дома. Для этого применяются пенополистирольные панели-листы с твердым верхним покрытием. Материал безвреден для здоровья и окружающей среды. Обеспечивает превосходную теплоизоляцию.

Отделка фасада дома полистиролом

Термосайдинг – это утепление дома с использованием полистирола, существенно понижает теплопотери, повышая энергоэффективность здания. Плиты легко режутся и монтируются. Фасад, облицованный этим материалом, обеспечит хорошую звукоизоляцию строению.

Основные преимущества отделки фасада дома полистиролом:

  • Низкие показатели теплопроводности.
  • Безопасность для окружающей среды и здоровья человека.
  • Экологически чистый материал.
  • Биологическая инертность.
  • Долгий срок службы.
  • Устойчивость к воздействию химических веществ.
  • Пожаробезопасность.
  • Простотой монтаж и обработка.
  • Доступная себестоимость.

Отделка и утепление дома снаружи

Для наружной отделки и утепления дома используют полистирол марки М5, толщина которого составляет 50 мм. Его теплоизолирующие свойства способны заменить кладку из кирпича толщиной порядка 50 см. с учетом климатических условий России – это вполне достаточно. В отличие от аналога толщиной в 10 мм аналогичной марки обеспечивает превосходную паропроницаемость.

Преимущества наружного утепления дома:

  • Наружная отделка дома данным материалом позволит вам забыть, что такое сырые стены, увеличивая их срок службы.
  • Благодаря своим теплоизоляционным свойствам навсегда избавит ваш дом от промерзания стен.
  • Наружное утепление позволит сохранить полезную площадь жилища.
  • Утепленный данным материалом дом имеет эффект, так называемого, теплоаккумулятора. При резком понижении температуры на улице некоторое время в вашем доме будет сохраняться комфортная температура и микроклимат без использования отопительного оборудования.

Для достижения максимального эффекта теплоизоляции – необходим грамотный и профессиональный подход к выполнению работ. Доверить ее следует исключительно специалистам. Сотрудники нашей компании выполняют данные работы разными методами. Утепление и отделка фундамента и цоколя дома

При возведении любого строения фундаментная основа подвергается серьезной нагрузке в процессе эксплуатации. Кроме нагрузки физической природы, на него воздействует и окружающая среда, к сожалению, такое воздействие не продлевает его срок службы, а, наоборот. Утепление фундамента и цоколя – это возможность сделать дом теплым, придавая привлекательного внешнего вида, и возможность предохранить их от воздействия внешней среды, продлевая срок службы.

Оправданно в этих целях используется экструдированный пенополистирол. Материал имеет низкий показатель теплопроводности и высокий коэффициент крепости на сжатие. Срок его службы составляет порядка 50 лет. Более того, применения его для отделки и утепления фундамента по цене считается самой малобюджетной технологией, поскольку этот материал самый дешевый из всех имеющихся на сегодня.

Причины, по которым необходимо утеплять фундамент и цоколь дома:

Основание дома или здания углубляется в промерзший грунт. В зимнее время он сильно промерзает, в летнее, наоборот, нагревается. Эти систематические перепады температуры способствуют разрушению конструкции и снижению срока службы.

В помещениях, которые отапливаются обогревательными устройствами, теплые воздушные массы, становясь легче, поднимаются вверх и без труда проникают сквозь скаты крыши, или потолочные перекрытия. В отсутствие утепления цоколя дома, холодны воздух извне проникает в дом, вытесняя теплый.

В тех местах, где сталкиваются два разный воздушных потока (холодный и теплый) обязательно происходит образование конденсированной влаги. Как итог, на полу, в подвалах и так далее появляются лишняя влажность и сырость, распространяются грибковые образования, плесень.

Утепление при внутренней отделке дома

Такой метод утепления используют, если наружная теплоизоляция невозможна. Процесс выполнения работ по утеплению внутри дома полностью идентичен наружному. Плиты крепятся к основанию стен при помощи клея или дюбелей.

Отделка стен обоями поверх утеплителя не рекомендуется, поскольку существует вероятность повреждения последнего точечным воздействием. После монтажа нужно установить пароизоляционный слой из фольгированной пленки плотностью порядка 200 микрон.

Далее нужно установить гипсокартон, прикрепив его к обрешетке. Сама обрешетка должна быть плотно прикреплена к поверхности стенки через слой утеплителя саморезами. Шляпки шпаклюются, выполняется финишная отделка и поклейка обоев.

Наша компания предоставляет услуги по: утеплению, отделке и декорированию фасадов домов на профессиональном уровне по доступным ценам в Москве и Подмосковье. Предоставляем полный спектр услуг по утеплению для частных лиц и организациям. Работы осуществляются на договорной основе, имеются все соответствующие документы на предоставление услуг.

На сайте вы имеете возможность ознакомиться с фото готовых проектов, узнать расценки, перечень услуг по утеплению и отделке домов. Возможно, один из проектов вам будет интересен. Мы со своей стороны профессионально выполним любое решение по утеплению, облицовке и отделке фасада дома в Москве и Подмосковье.

 

Теплоизоляция внешнего фасада

Существует широкий спектр запатентованных систем облицовки дождевыми экранами, в большинстве из которых изоляция установлена ​​на внешней стороне кирпичной стены, что помогает поддерживать стабильность внутренних температур, сохраняя тепло зимой и уменьшая солнечные лучи. прирост летом. Системы облицовки от дождя также легки по сравнению с решениями из кирпича и каменной кладки, и они могут предоставить дизайнеру широкий спектр эстетических возможностей.

Системы облицовки дождевых экранов спроектированы таким образом, чтобы сохранять и каркас конструкции, и теплоизоляцию сухими, благодаря самой облицовке дождевого экрана, а также за счет воздушного пространства между облицовкой и изоляцией.

Дренажные и вентилируемые системы защиты от дождя работают, позволяя воздуху входить в основание системы и выходить через верхнюю часть системы, вентилируемая полость позволяет воде, проникающей в стыки панелей, частично удаляться «эффектом стека» и частично удаляться спустившись по задней поверхности панелей и выйдя из основания системы.

Для наружных стеновых конструкций, которые включают полости, таких как системы облицовки дождевыми экранами, рекомендуется использовать полые противопожарные барьеры на стыках между стеной и полом или стеной каждого отсека или другой стеной или дверным узлом, образующим огнестойкий барьер.

Противопожарные преграды должны быть изготовлены из негорючего материала, иметь высоту не менее 100 мм, проникать на всю глубину изоляции и образовывать непрерывный барьер через слой изоляции.

Системы облицовки дождевых экранов состоят из внешних облицовочных панелей, которые прикреплены болтами к несущему каркасу рельсов, которые поддерживаются скобами, закрепленными через терморазрывную прокладку обратно к каркасу здания.Слой утеплителя независимо крепится к основанию здания с помощью запатентованных крепежных элементов утеплителя.

Фасадная плита рекомендуется для этого применения, поскольку она легкая, но достаточно жесткая, чтобы противостоять силам сжатия, возникающим при установке изоляционных плит на кладочную основу.

Фасадная плита — плита из стекловолокна с водоотталкивающими добавками, специально разработанная для облицовки дождевыми экранами. Его изготовление оказывает очень низкое воздействие на окружающую среду.

Загрузить приложение «Облицовочные стены» PDF

Архитекторы делятся своими лучшими системами изолированных стен

Стены являются основой конструкции здания — без них жители не защищены. Сегодня команды дизайнеров улучшают стеновые системы и фасады, добавляя воздухопроницаемые элементы в герметичные конверты и используя высококачественные материалы. Здесь четыре архитектора объясняют, как они улучшают стены своих проектов.

Ясен Боландер, AIA
Leddy Maytum Stacy Architects, Сан-Франциско

Тим Гриффит

Построенное в 2012 году пожарное депо №1 Leddy Maytum Stacy Architects.1 была первой новой пожарной частью, построенной в Сан-Франциско с 1970-х годов. Для конструкции площадью 15 400 квадратных футов требовалась легкая стеновая система, способная выдержать землетрясения, которые компания встретила с помощью усиленного дождевого экрана. Чтобы соответствовать строительным нормам Калифорнии в отношении жесткой внешней изоляции и избежать тепловых мостиков за счет передачи тепла от металлического каркаса, команда непрерывно применяла внешнюю изоляцию из войлока R21. «Мы вытащили конструкцию, стальные колонны и диагональные связи внутри внешней стены, которая обрамлена воздушными шарами, поэтому плиты перекрытия не прерывают каркас», — говорит сотрудник Ясен Боландер, который отмечает, что внутри была использована некоторая изоляция. .

Ледди Мэйтум Стейси Архитекторы Ледди Мэйтум Стейси Архитекторы

Марлен Имирзян, FAIA
Marlene Imirzian & Associates Architects, Феникс

Марлен Имирзян и партнеры Architects

В проекте Marlene Imirzian & Associates Architects для серии новых зданий в лагере Сомбреро площадью 14,5 акра для девочек-скаутов в Фениксе используется обычный продукт, композитный настил Transcend от Trex, и используется его необычно — как экран от дождя.Около 38 600 погонных футов продукта используется в кампусе, монтируется горизонтально к вертикальным каналам шляпок с гидроизоляционной лентой над паропроницаемым воздушным барьером и жесткой изоляцией, и все это прикреплено к внешней обшивке и стене с металлическими стойками.

Выбирая Trex для террасной доски, президент фирмы Марлен Имирзян сказала, что она нашла его подходящим в качестве облицовки из-за ограниченных потребностей в техническом обслуживании. «Этот материал обычно считают второстепенным, но он очень прочный и отлично переносит жару пустыни.”

Марлен Имирзян и партнеры Architects Марлен Имирзян и партнеры Architects

Арджун Манде, AIA
Гуди Клэнси, Бостон

Дэвид Лэмб

В Исследовательском центре нейробиологии в северных регионах штата в кампусе Медицинского университета штата Нью-Йорк в Сиракузах, штат Нью-Йорк, расширяющееся здание площадью 158 000 квадратных футов, облицованное дождевым экраном из алюминиевых композитных панелей, контрастирует с кирпичным фасадом оригинального сооружения.Перед бостонской компанией Goody Clancy стояла задача разработать единый пакет изоляции для обоих, который мог бы противостоять суровым зимам в регионе — «настоящая термически нарушенная система», — говорит заместитель директора Арджун Манде.

Архитекторы разработали монолитную оболочку, которая опирается на непрерывный воздушный барьер из полиуретановой пены толщиной 3 дюйма для достижения изоляционного качества R23. Первоначально пенопласт не тестировался с алюминиевыми панелями в соответствии со стандартом 285 Национальной ассоциации противопожарной защиты для наружных ненесущих стеновых конструкций.Архитекторы работали с производителем, BASF, чтобы пройти тесты, чтобы убедиться, что система жизнеспособна. «Это очень многообещающий материал, из которого можно получить высокоэффективную систему навесных стен», — говорит Манде о пенопласте. «[Но]… разные материалы, все они должны работать вместе».

Гуди Клэнси Гуди Клэнси

Heath May, AIA
HKS Architects, Даллас

Собственная исследовательская группа HKS Architects из Далласа, Лаборатория интенсивных исследований (LINE), сотрудничает со студентами Техасского университета в Консорциуме исследований цифровой архитектуры Арлингтона для изучения как новые материалы могут улучшить размерность стеновых систем.

«Кожа может быть больше, чем просто барьером», — говорит вице-президент HKS и директор LINE Хит Мэй. «Это может быть что-то, что чувствительно к температуре и является проводником для энергии, и [может] даже пропускать солнечный свет». По его словам, армированные волокном полимеры получили распространение в Европе в качестве фасадной облицовки. В США они использовались в таких приложениях, как внешние панели при расширении Snøhetta Музея современного искусства Сан-Франциско. Компания HKS еще не использовала полимеры (прототип, показанный выше) в стеновой системе, но Мэй считает, что этот материал идеально подходит для спортивных стадионов, что является особой специализацией компании из-за его способности визуально размывать границы между облицовкой, конструктивными системами и Компоненты M / E / P.«Он настолько аморфен с точки зрения того, что он может делать», — говорит он.

HKS Architects

Критические параметры гигротермического поведения поверхности

Композитные системы внешней теплоизоляции (ETICS) часто используются в Европе. Несмотря на свои тепловые преимущества, низкую стоимость и простоту применения, эта система имеет серьезные проблемы, связанные с биологическим ростом, вызывающим повреждение оболочки. Недавние исследования показали, что биологический рост происходит из-за высоких значений содержания влаги на поверхности, что в основном является результатом комбинированного воздействия конденсации на внешней поверхности, ветрового дождя и процесса высыхания.Основываясь на численном моделировании, в данной статье указаны наиболее важные параметры, влияющие на гигротермическое поведение ETICS, с учетом влияния тепловых и гигроскопических свойств внешней штукатурки, влияния характеристик фасада и последствий внешнего и внутреннего климата. при конденсации на внешней поверхности, ветровом дожде и процессе высыхания. Используемая модель была ранее проверена путем сравнения с результатами кампании «на месте». Результаты анализа чувствительности показывают, что относительная влажность и температура наружного воздуха, атмосферное излучение и коэффициент излучения внешнего рендеринга являются параметрами, которые больше всего влияют на конденсацию на внешней поверхности. Ветровой дождь в основном зависит от горизонтального дождя, высоты здания, скорости ветра и ориентации. На сушильную способность влияют коротковолновое поглощение, падающее солнечное излучение и ориентация.

1. Введение

Композитные системы наружной теплоизоляции (ETICS) часто используются в Европе с 70-х годов как в новых зданиях, так и при их модернизации. Популярность этой технологии выросла из-за ее преимуществ по сравнению с другими методами изоляции. ETICS гарантирует уменьшение тепловых мостов и больший тепловой комфорт за счет более высокой внутренней тепловой инерции, обеспечивая законченный внешний вид, аналогичный традиционному штукатурному покрытию.С точки зрения строительства, ETICS позволяет сделать внешние стены более тонкими и увеличить долговечность фасадов. К указанным преимуществам следует добавить три очень важных аспекта в строительной отрасли: низкая стоимость, простота применения и возможность установки, не беспокоя жителей здания, что особенно важно при ремонте.

Однако предыдущие применения ETICS выявили некоторые проблемы, в частности, низкую ударопрочность и повреждение облицовки из-за биологического роста.Научное сообщество выполнило различные исследования, чтобы полностью охарактеризовать эти системы, измерить свойства их компонентов, выявить основные проблемы и, в некоторых случаях, найти решения [1–6].

Одна из нерешенных проблем — это порча облицовки из-за биологического роста. Исследования, уже проведенные в этой области, указали на высокие значения содержания влаги на поверхности как причину биологического роста. Влага на внешней поверхности является результатом совместного действия четырех параметров: поверхностной конденсации, ветрового дождя, процесса высыхания и свойств внешнего слоя [3, 5, 7–15].

Хотя никаких изменений в тепловых и механических характеристиках системы не происходит, биологическое повреждение оказывает огромное эстетическое воздействие, которое вызывает неодобрение жителей здания и ограничивает полное внедрение этой технологии.

2. Основные преимущества и патологии ETICS

Согласно ETAG 004 [16], ETICS — это системы, состоящие из предварительно изготовленных изоляционных панелей, приклеенных и / или механически закрепленных на стене, и армированной штукатурки, состоящей из одного или нескольких слоев и нанесенных непосредственно к утеплителю.Эти системы должны обеспечивать минимальное тепловое сопротивление, превышающее 1 м 2 К / Вт. Обычно на португальском рынке изоляционные панели представляют собой пенополистирол (EPS), приклеиваемый к основанию и покрытый базовым слоем, армированным стекловолоконной сеткой. Финишное покрытие представляет собой тонкую штукатурку на акриловой основе (рис. 1).


Основными преимуществами ETICS, которые способствовали его коммерческому росту, являются следующие [1, 2, 4]: (i) Снижение тепловых мостов и общих тепловых потерь за счет гарантированной продолжительной теплоизоляции здания. конверт (рисунок 2).Как следствие, потребление энергии снижается, а состояние здоровья внутри здания улучшается, так как уменьшается конденсация внутренней поверхности на неровностях стен. (Ii) Увеличение эффективной внутренней площади помещений здания. Это может быть связано с более тонкими внешними стенами, когда одностворчатые стены проектируются вместо полых стен, или с применением теплоизоляции на внешней стороне стены вместо внутренней, когда ремонт фасадов подразумевает более высокую толщину изоляции. .(iii) Изоляция находится снаружи стены, что приводит к более высокой тепловой массе внутри. Это увеличивает тепловой комфорт в холодное время года, так как солнечные лучи также увеличиваются, а в теплое время года задерживают и смягчают колебания теплового потока, что помогает поддерживать температуру в здании. (Iv) Повышение долговечности фасадов, поскольку кладка лучше защищена от климатических нагрузок (температурный градиент — рис. 3, ветровой дождь и т. д.). (v) Простота применения и возможность установки, не беспокоя жителей здания, что особенно важно при ремонте.(vi) Большое разнообразие отделочных решений, обеспечивающих внешний вид, похожий на традиционную штукатурку. За последние десятилетия применения ETICS в фасадах зданий было выявлено несколько дефектов, а именно: недостаточная плоскостность, подчеркнутая наклонным углом солнечного света, падающего на поверхность, трещины в штукатурке вдоль стыков изоляционной плиты или в углах окон, скопившаяся грязь из-за стекания дождевой воды, образование пузырей или отслоение отделочного покрытия или всех слоев штукатурки, отсутствие адгезии системы, вызывающее ее частичное или полное коллапс и т. д. [4, 6, 17].Эти дефекты являются результатом ошибок проектирования или ненадлежащего изготовления. Однако есть еще два очень важных дефекта, которые характерны для системы в том виде, в котором она производится в настоящее время: (i) Низкое сопротивление сжимающим напряжениям, возникающим при нормальных ударах. Это проблема, особенно в доступных областях системы, и она не только имеет эстетический эффект, но также может ухудшить характеристики системы в отношении защиты от дождя и конденсации водяного пара снаружи (Рисунок 4). (Ii) Повреждение ETICS из-за к биологическому росту.Биологический рост обусловлен высокими значениями содержания влаги на поверхности, что является результатом комбинированного воздействия четырех параметров: увлажнение из-за поверхностной конденсации, которая происходит в основном ночью с ясным небом, увлажнение из-за ветрового дождя, процесса высыхания и свойства внешнего слоя (рисунок 5).





3. Численное моделирование гигротермического поведения ETICS

Были разработаны различные модели сопряженного переноса тепла, воздуха и влаги (HAM), которые были включены в различные программы, используемые в области пористые строительные материалы.Однако большинство гигротермальных моделей, доступных широкой публике, не в состоянии должным образом моделировать гигротермическое поведение ETICS, а именно, явление переохлаждения, ответственного за конденсацию на внешней поверхности, и эффект дождя, падающего на фасад [18].

Программное обеспечение WUFI, разработанное Fraunhofer IBP в Германии, представляет собой коммерческий инструмент с возможностью моделирования явления переохлаждения, поскольку используется явный баланс длинноволнового излучения, падающего на фасад.Основными уравнениями для переноса влаги и энергии являются, соответственно [19], где — влагоемкость (кг / м 3 %), — теплоемкость влажного строительного материала (Дж / кг), — влажность (кг / м 3 ), — теплопроводность ( Вт / м · К), — коэффициент проводимости жидкости (кг / м · с), — проницаемость для водяного пара (кг / м · с · Па), — энтальпия испарения воды (Дж / кг), — давление насыщения водяным паром (Па), — температура (К), — относительная влажность (%).

Что касается обработки радиационного воздействия на внешнюю поверхность, WUFI использует явный баланс длинноволнового излучения, определяя излучение поверхности, и излучение, достигающее фасада,. Они объединяются с коротковолновыми компонентами излучения в общий источник тепла на поверхности, который может иметь положительное или отрицательное значение в зависимости от общего радиационного баланса: положительное значение приводит к нагреву компонента, а отрицательное значение приводит к охлаждая это.При этой методике коэффициент внешней теплопередачи содержит только конвективную часть [20, 21]: В (2) два первых элемента дают общее количество излучения (короткого и длинного), достигающего поверхности, поскольку, согласно закону Кирхгофа, излучательная способность поверхности равна ее длинноволновому поглощению. Последний пункт — это излучение, исходящее от поверхности здания. Полная солнечная радиация описывается как функция прямого солнечного излучения, перпендикулярного поверхности компонента, рассеянного солнечного излучения, подверженного влиянию поля зрения атмосферы, и солнечной радиации, отраженной от земли, по полю обзора земли: Суммарное длинноволновое излучение, достигающее поверхности, зависит от направленного вниз атмосферного излучения, на которое влияет поле зрения атмосферы,.Это также зависит от испускания и отражения длинноволнового излучения землей, на которые влияет поле обзора земли. Длинноволновое излучение, излучаемое землей, рассчитывается по закону Стефана-Больцмана, предполагая, что земля имеет ту же температуру, что и воздух, и вводя коэффициент излучения длинных волн земли. Атмосферное длинноволновое излучение, отраженное землей, рассчитывается с использованием атмосферного длинноволнового излучения, и коэффициента отражения длинноволнового излучения от земли:

Излучение неба регулируется законом Планка с учетом концепции эффективной температуры неба, которую можно определить как температуру черного тела, которое излучает такое же количество излучения, как небо [22].Эффективная температура неба зависит от нескольких атмосферных условий, которые редко доступны. По этой причине предполагается, что небо ведет себя как серое тело, управляемое законом Стефана-Больцмана, учитывая коэффициент излучения неба и температуру воздуха у земли [23].

Длинноволновое излучение, испускаемое поверхностью, зависит от коэффициента излучения поверхности, и температуры, так как оно регулируется законом Стефана-Больцмана: Из приведенных выше уравнений прямое солнечное излучение, нормальное к поверхности компонента, автоматически рассчитывается моделью из прямого солнечного излучения на горизонтальной поверхности, включенного в климатические данные, с использованием информации о положении солнца.Рассеянное солнечное излучение получается непосредственно из климатических данных. Отраженное солнечное излучение рассчитывается с использованием данных о солнечном излучении (прямое на горизонтальной поверхности и рассеянное) и коэффициента отражения коротковолнового излучения от земли. Атмосферное длинноволновое излучение, необходимое для расчета, считывается непосредственно из климатического файла, если в нем имеется такая информация, или оно может быть рассчитано с использованием данных индекса облачности [20, 21].

Для оценки ветрового дождя (WDR) WUFI использует [20] где WDR — интенсивность ветрового дождя (мм / ч), — горизонтальное количество осадков (мм / ч), — коэффициент проливного дождя, который зависит от элемента конструкции (равен 0 для фасадов), — проливной дождь Коэффициент, зависящий от положения на фасаде, представляет собой эталонную скорость ветра на высоте 10 м над землей (м / с) и представляет собой угол между направлением ветра и нормалью к фасаду (°).

4. Валидация численной модели
4.1. Экспериментальная установка

Кампания испытаний «на месте» проводилась в течение одного года, с марта 2009 г. по февраль 2010 г. Инструменты были установлены на западном фасаде, покрытом ETICS, здания, расположенного в кампусе Университета Порту (рис. 6). Термопары Т-типа, установленные на исследуемом фасаде, предоставили информацию о температуре поверхности, а датчики WDR измерили количество дождя, выпавшего на фасад (черная точка на рисунке 7).В то же время, климатические параметры были также собраны метеостанцией Лаборатории физики зданий, расположенной рядом с исследуемым зданием (Рисунок 7). Температура и относительная влажность воздуха также собирались внутри здания. Среднегодовые значения климата на открытом воздухе и в помещении представлены в таблице 1. Информация о точности и калибровке наземных устройств и о метеостанции предоставлена ​​Баррейрой [25].


Климатический параметр Среднее за год
Наружный Внутренний

Температура 90.4 ° C 20,3 ° C
Относительная влажность 72% 69%
Глобальное излучение Солнца
Годовой средн. только положительных значений * 254 Вт / м 2
Годовой макс. значение 1122 Вт / м 2
Излучение неба 335 Вт / м 2
Скорость / направление ветра 1.4 м / с / 170 °

Климатический параметр Годовое накопленное значение

Дождь 874 мм
Нулевые значения, соответствующие ночному времени, не учитывались при вычислении среднего значения.

4.2. Параметры для численного моделирования

Гигротермический программный инструмент, который использовался для выполнения моделирования, был WUFI 1D (Раздел 3).Его входными данными являются свойства материала каждого слоя изучаемого строительного компонента, ориентация, наклон и высота строительного компонента, коэффициенты поверхностного переноса внутреннего и внешнего слоя, лучистые характеристики грунта, а также начальная влажность и температура. в компоненте. Также требуются почасовые параметры внутреннего и наружного климата. Результатами моделирования являются ежечасные значения температуры поверхности внешнего слоя и количества дождя, достигающего фасада.

Моделирование проводилось с использованием стены с рисунка 6 (c). Материалы, используемые в каждом слое, были выбраны из базы данных программного обеспечения, которая также дает материалу термические и гигроскопические свойства, необходимые для моделирования. В них не было внесено никаких изменений, за исключением внешнего вида, принятые свойства которого показаны в таблице 2, учитывая, что один слой в качестве базового покрытия имеет свойства, аналогичные финишному покрытию. Эти свойства были собраны из технических листов продуктов, используемых в стене.

12

Свойство Принятое значение

Основные свойства
9013 9013 Объем 9020 м м³ / м³) 0,2
Теплоемкость (Дж / кг · К) 850
Теплопроводность в сухом состоянии (Вт / м · К) 1
Коэффициент сопротивления диффузии в сухом состоянии (- ) 25
Дополнительные гигротермические функции
Функция накопления влаги Нет *
Коэффициенты переноса жидкости для всасывания и перераспределения (м 2 145 0 Коэффициент сопротивления диффузии водяного пара, зависит от влажности Не зависит от влажности
Тепловой режим активность, зависит от влажности Не зависит от влажности

Предполагалось, что внешний вид не обладает гигроскопичностью.

Коэффициенты поверхностного переноса, использованные в моделировании, показаны в таблице 3. Стена была смоделирована, обращенная на запад и принадлежащая верхней части высокого здания (коэффициент WDR или s / m). Почасовые климатические данные, используемые для моделирования, были измерены в реальных условиях использования, а среднегодовые значения представлены в таблице 1.


Коэффициенты поверхностного переноса

Коэффициент внешней конвективной теплопередачи (Вт / м 2 · K) Подветренный:

Наветренный:
Поглощение коротковолнового излучения (внешний вид) 0.35
Коэффициент излучения длинноволнового излучения (внешний вид) 0,85 (измеренное значение)
Коэффициент излучения длинноволнового излучения (земля) 0,90 (измеренное значение)
Коэффициент отражения коротковолнового излучения ( земля) 0,20
Отражение длинноволнового излучения (земля) 0,10
Внутреннее тепловое сопротивление (м 2 · К / Вт) 0,125
Коэффициент поглощения дождя 0 .70

4.3. Сравнение моделируемых и измеренных значений
4.3.1. Температура поверхности

На рис. 8 показано изменение температуры поверхности, измеренное и рассчитанное на западном фасаде, в течение одного дня ноября 2009 г. и кумулятивная функция распределения для всего месяца. Результаты показывают хорошее согласие между смоделированными и измеренными значениями, особенно в ночное время, когда температуры были ниже.В дневное время и при ясном небе измеренные значения выше, чем смоделированные значения, что может быть связано с неточностями в вычислении положения солнца на горизонте, которое влияет на количество прямого солнечного излучения, падающего на фасад. Различия, полученные между смоделированными и измеренными значениями при ясном небе, менее значимы при облачном небе, как показано на Рисунке 9. Аналогичные результаты были получены при сравнении измеренных и рассчитанных значений температуры поверхности за весь исследуемый год.



4.3.2. Wind-Driven Rain

На рисунке 10 показано, что измеренные и рассчитанные значения очень похожи, хотя смоделированные значения всегда выше, чем измеренные значения. Это может быть связано, как утверждают Nore et al. [26], к испарению адгезивной воды из зоны сбора манометра или из резервуара, срезанию капель из зоны сбора при ударе и т. Д. Аналогичные результаты были получены за весь исследуемый год.


5.Критические параметры, влияющие на гигротермическое поведение ETICS
5.1. Вводные примечания

В этом параграфе представлены результаты анализа чувствительности, выполненного на основе численного моделирования. Эти результаты подтверждают обсуждение значимости каждого параметра для поверхностной конденсации, ветрового дождя и процесса высыхания. Обсуждаемые параметры были разделены на четыре категории: (а) свойства внешнего слоя: диффузия влаги, сопротивление водяному пару, излучательная способность, поглощение солнечного излучения и толщина; (б) характеристики фасада: ориентация, высота здания. и общее тепловое сопротивление; (c) внешний климат: температура, относительная влажность, солнечная радиация, атмосферное излучение, скорость ветра, направление ветра и дождь; (d) внутренние гигротермальные условия: температура и относительная влажность.Чтобы оценить влияние каждого параметра, WUFI использовался для выполнения численного моделирования. Моделирование проводилось с учетом условий, описанных в разделе 4, за исключением климата на улице и в помещении. Почасовые данные о внешнем климате Порту, Португалия, были получены численно с помощью коммерческого программного обеспечения Meteonorm 6 [24]. В таблице 4 приведены средние климатические параметры. Температура и относительная влажность в помещении были установлены постоянными: температура в помещении была установлена ​​на уровне 20 ° C, а относительная влажность в помещении была установлена ​​на уровне 60%.Хотя это нереальная ситуация, эти значения были приняты для простоты и с учетом того, что изучаемое явление происходит на открытом воздухе.

9012 9012- , не учитывались в среднем расчете.

Климатический параметр Среднегодовое значение

Температура 14,8 ° C
9020 В целом солнцем
Годовая просп.только положительных значений 343 Вт / м 2
Излучение неба 337 Вт / м 2
Скорость / направление ветра 2,6 м / с / 195 °

Климатический параметр Годовое накопленное значение

Дождь 779 мм
779 мм

Для анализа чувствительности каждый параметр был изменен индивидуально в диапазоне, выбранном на основе вероятности изменения. Следует уточнить, что новый внешний климат, созданный для каждой симуляции, не является реальным, и существующая корреляция между климатическими параметрами не учитывалась в этом анализе.

5.2. Конденсация на внешней поверхности

Конденсация на внешней поверхности происходит в основном ночью, когда температура внешней поверхности ниже, чем температура точки росы, в результате обмена длинноволновым излучением между поверхностью и атмосферой.В ясные ночи излучаемая атмосферой радиация значительно уменьшается, а радиация, испускаемая поверхностью, больше, чем та, которая достигает поверхности, что приводит к потере радиации в направлении неба. Этот отрицательный баланс на поверхности сохраняется до тех пор, пока перенос тепла за счет конвекции и теплопроводности не компенсирует потери из-за излучения [27].

Конденсация на внешней поверхности может быть проанализирована с использованием принципов психрометрии. Когда парциальное давление водяного пара в воздухе превышает давление насыщения водяным паром на поверхности, происходит конденсация [28].Согласно Zheng et al. [29], разницу между парциальным давлением водяного пара в воздухе ((воздух) в Па) и давлением насыщения водяного пара на поверхности ((поверхность) в Па) можно назвать потенциалом конденсации (CP в Па), который подразумевает конденсацию для положительных значений. Под CP можно понимать количество водяного пара, которое может конденсироваться: Тот же автор заявляет, что для оценки количества конденсации следует учитывать как положительную ЦП, так и ее длительность.Произведение положительного CP (в Па) на его продолжительность (в часах) может быть названо эквивалентом потенциала конденсации (CPE в Па) и позволяет оценить количество конденсированной воды. Чтобы оценить риск образования конденсата за определенный период времени, CPE необходимо накапливать во времени ():

5.3. Процесс сушки

Процесс сушки позволяет испарять жидкую воду, накопившуюся на поверхности из-за поверхностной конденсации и WDR. Испарение с влажной поверхности происходит всякий раз, когда давление насыщения на поверхности превышает давление пара окружающего воздуха [28].Если процесс сушки проходит недостаточно быстро, содержание влаги на поверхности остается высоким в течение длительного времени и увеличивает риск микробиологического роста [10].

Как и конденсация, сушильная способность влажной поверхности может быть проанализирована с использованием принципов психрометрии [28]. По аналогии можно установить понятие потенциала сушки (DP в Па), представляющего собой разницу между давлением насыщения водяного пара на поверхности ((поверхность) в Па) и парциальным давлением водяного пара в воздухе ((воздух) в Па), что означает испарение при положительных значениях.DP можно понимать как количество водяного пара, переносимого в воздух, учитывая, что поверхность остается постоянно влажной: Чтобы оценить максимальную способность к высыханию, произведение положительного DP (, в Па) на его продолжающееся время. (, в h) следует рассматривать и может называться эквивалентом потенциала сушки (DPE в Па · ч). Чтобы оценить эту способность за определенный период времени, необходимо накопить DPE во времени (): Следует отметить, что этот параметр бесполезен в качестве параметра для моделирования реальной сушильной способности влажной поверхности, поскольку она не является постоянно насыщенной.Через некоторое время жидкая вода испаряется, и давление пара на поверхности зависит не только от температуры поверхности, но и от ее относительной влажности. Однако для упрощения параметров, используемых для оценки процесса сушки, может использоваться завышенная мощность сушки.

5.4. Обсуждение результатов

Таблица 5 показывает качественный анализ результатов, полученных при моделировании, и указывает актуальность каждого параметра в поверхностной конденсации, WDR и процессе сушки, сравнивая, соответственно, годовые накопленные значения CPE, WDR, и DPE, рассчитанный для исходной ситуации, с полученными после изменения исследуемого параметра.

Ориентация (Рис. E; S 901 Солнечное излучение дюйм (Вт / м 2 ) (Рисунок 18) дюйм (°)

7

9057 9057

Параметр Исходная ситуация Вариация Актуальность
C WDR WDR 9015 внешний слой
Коэффициент диффузии влаги, дюйм (м 2 / с) 0 0.0013 * # # #
Коэффициент сопротивления диффузии водяного пара 25 1000 # # #

9012 906 0.
### # #
Поглощение солнечного излучения (Рисунок 12) 0,35 0,50 # # ##
м (толщина) 0.005 0,02 # # #
Характеристики фасада
# ## ##
Высота здания (Рисунок 14) Высокий Маленький # ### #
Общее тепловое сопротивление 15) = 0.04 м = 0,06 м ## # #
Внешний климат
Температура (16 °) ### # #
Относительная влажность, в (%) (Рис.17) ### # #
# # ##
Атмосферное излучение, дюйм (Вт / м 2 ) (Рисунок 19) ### # #
Скорость ветра, дюймы (м / с) (Рисунок 20) # ## #
# ## #
Rain, in (мм) (Рисунок 21) Rain Porto 0.20 × Rain Porto # ### #
Внутренний климат
Температура (22 ° C) 9013 ° C 20 22 ## # #
Относительная влажность, в (%) 60 65 # # #
Для влажности при относительной влажности 80% (база данных WUFI).
Масштаб: # Низкий. ## Средний. ### Высокий.

Результаты показывают, что параметрами, которые больше всего влияют на поверхностную конденсацию, являются внешняя относительная влажность, атмосферное излучение, внешняя температура и коэффициент излучения, за которыми следуют общее тепловое сопротивление стены и внутренняя температура. Наиболее важными параметрами в процессе сушки являются поглощение коротковолновой радиации, солнечное излучение и ориентация.Ветровой дождь больше всего зависит от дождя, высоты здания, скорости ветра, направления ветра и ориентации. На рисунках с 11 по 22 показаны результаты, полученные для параметров, которые больше всего влияют на поверхностную конденсацию, WDR и процесс сушки.


Различные значения, принятые для коэффициента излучения внешнего слоя и поглощения коротковолнового излучения, могут изменить температуру поверхности. Коэффициент излучения определяет количество длинноволнового излучения, испускаемого поверхностью, и, следовательно, потерю тепла излучением.Чем больше коэффициент излучения, тем выше излучение, излучаемое поверхностью, и тем больше падение температуры поверхности. Это явление происходит как днем, так и ночью, но сильнее влияет на ночной период, так как днем ​​преобладает солнечный эффект (рис. 11). Коэффициент поглощения коротковолнового излучения влияет на солнечное излучение, поглощаемое стеной в течение дня, и изменяет температуру поверхности. Его влияние на температуру поверхности весьма актуально в течение дня, но ночью, из-за небольшой теплоемкости слоя рендеринга, накопленное тепло быстро теряется, а температура повышается лишь незначительно (рис. 12).Подобные исследования, проведенные Fraunhofer IBP, делают те же выводы, как по излучательной способности, так и по поглощению коротковолнового излучения, учитывая климат Хольцкирхена [10, 27, 30, 31]. WDR не зависит от излучательной способности внешнего слоя и поглощения коротковолнового излучения.


Ориентация стены в некоторой степени влияет на температуру поверхности и количество дождя, попадающего на фасад (Рисунок 13). В течение дня изменение температуры поверхности связано с количеством прямого солнечного излучения, падающего на фасад.Ночью потеря тепла радиацией не зависит от ориентации. Следовательно, сушильная способность выше на южном фасаде и ниже на северном фасаде, а конденсация почти одинакова для всех ориентаций. Исследования, проведенные Zillig et al. [30] и Holm et al. [27] также указывают на небольшие различия в степени конденсации в зависимости от ориентации. Однако изменение конденсации с ориентацией не похоже, поскольку Фраунгоферский IBP указал, что западный фасад имел более высокую конденсацию, за которой следуют север, юг и восток, что не соответствует рисунку 13.Эта разница в результатах может быть связана с разными климатическими условиями и параметрами, принятыми для моделирования.


WDR также зависит от ориентации фасада, поскольку комбинированное воздействие дождя и ветра учитывается только в том случае, если ветер направлен на фасад. Годовое накопленное значение WDR ниже ожидаемого. Это может быть оправдано тем фактом, что рассчитанные значения WDR в значительной степени зависят от модели, используемой при моделировании. Как утверждают Freitas et al.[32], есть существенные различия между значениями, полученными с использованием разных моделей WDR. Кроме того, количество дождя в горизонтальной плоскости, указанное Meteonorm, ниже ожидаемого значения (Таблицы 1 и 4).

Высота здания не влияет на температуру поверхности фасада (Рисунок 14). Хотя скорость ветра увеличивается с увеличением расстояния от земли и, следовательно, теплообмен за счет конвекции между поверхностью и воздухом, гигротермальные модели не принимают во внимание это изменение коэффициента конвективной теплопередачи с высотой [33].Таким образом, высота здания не влияет ни на конденсацию, ни на сушильную способность. В WDR высота здания имеет большое значение, поскольку коэффициенты WDR являются функцией расстояния между поверхностью и землей и ее подверженности ветру [20].


Общее тепловое сопротивление стены вызывает изменения в теплопередаче из окружающей среды в помещении, особенно в ночное время, когда нет воздействия солнца. Повышение общего теплового сопротивления стены (за счет увеличения, т.е.g., толщина теплоизоляции), тепловой поток, который достигает внешней поверхности стены в течение ночи, уменьшается, и температура поверхности падает. Более низкая температура поверхности ухудшает поверхностную конденсацию [27, 30]. В течение дня из-за солнечного излучения теплопроводность не влияет на температуру внешней поверхности и, следовательно, сушильная способность не зависит от общего теплового сопротивления стены. Также на WDR не влияет общее тепловое сопротивление стены (Рисунок 15).


Наружная температура и относительная влажность являются двумя наиболее важными климатическими параметрами в отношении поверхностной конденсации не только потому, что они контролируют парциальное давление водяного пара в воздухе, но также потому, что они влияют на температуру поверхности и, следовательно, на насыщенность водяным паром. давление на поверхность. Снижение температуры воздуха вызывает снижение температуры поверхности и температуры точки росы. Однако по мере увеличения перепада температуры точки росы конденсация уменьшается.Уменьшение относительной влажности воздуха вызывает очень небольшое снижение температуры поверхности и более заметное снижение температуры точки росы, уменьшая конденсацию. Влияние температуры и относительной влажности на процесс сушки не очень важно, хотя снижение относительной влажности увеличивает сушильную способность. WDR не зависит от внешней температуры и относительной влажности (рисунки 16 и 17).



Влияние глобального солнечного излучения (прямое плюс рассеянное) не очень важно для поверхностной конденсации.Как было указано для поглощения коротковолнового излучения, солнечное излучение влияет в основном на температуру поверхности в течение дня и, следовательно, на сушильную способность, поскольку меньшая тепловая нагрузка приводит к более холодной поверхности. На WDR не влияет солнечное излучение (рис. 18).


Атмосферное излучение оказывает значительное влияние на поверхностную конденсацию. Чем выше атмосферная радиация, излучаемая небом, тем выше радиация, адсорбированная поверхностью.Ночью такое увеличение поглощенного излучения снижает отрицательный баланс излучения на поверхности фасада, что приводит к меньшему падению температуры поверхности и, как следствие, уменьшает конденсацию. Увеличение длинноволнового излучения, адсорбированного поверхностью, также увеличивает температуру поверхности в течение дня, но его влияние на процесс сушки не очень важно. На WDR не влияет солнечная радиация (рис. 19).


Дождь, скорость ветра и направление ветра в основном влияют на количество дождя, достигающего фасада, поскольку они являются ключевыми параметрами для расчета WDR.Хотя ветер вызывает изменения теплопередачи за счет конвекции у поверхности и, следовательно, влияет на температуру поверхности стены, он не оказывает реального влияния на конденсацию и процесс сушки (рисунки 20 и 21).




Температура внутри помещения вызывает изменения теплопередачи за счет теплопроводности из окружающей среды, особенно в ночное время, когда нет воздействия солнца. Более высокая внутренняя температура увеличивает тепловой поток, который достигает внешней поверхности стены, а также увеличивает температуру внешней поверхности.Конденсация уменьшается из-за повышения внутренней температуры, и сушильная способность немного выше. WDR не зависит от внутренней температуры (Рисунок 22).

6. Выводы

Результаты анализа чувствительности, проведенного для Порту, Португалия, показывают, что параметры, которые больше всего влияют на поверхностную конденсацию, — это относительная влажность снаружи, атмосферное излучение, внешняя температура и коэффициент излучения, за которыми следует общее тепловое сопротивление температура стены и воздуха в помещении.Наиболее важные параметры в процессе сушки связаны с воздействием солнца на стену: поглощение коротковолнового излучения, солнечного излучения и ориентация. Ветровой дождь больше всего зависит от дождя, высоты здания, скорости ветра, направления ветра и ориентации.

Климатические параметры, влияющие на смачивание поверхности ETICS, не могут контролироваться человеком. Однако они могут оправдать различное поведение фасада здания из-за местного климата. (I) Местная относительная влажность в конкретном микроклимате может быть выше из-за наличия, например, озера, реки, моря, и так далее, что увеличит количество водяного пара в воздухе, который может конденсироваться, и снизит сушильную способность поверхности.(ii) Существование других зданий рядом с фасадом, покрытым ETICS, можно смоделировать путем увеличения количества атмосферной радиации, которая достигает фасада, которая является климатическим параметром [14, 15]. Следовательно, близлежащие препятствия могут изменить радиационный баланс на поверхности, увеличивая усиление длинноволнового излучения в ночное время. На фасаде поблизости от поверхности препятствия конденсация менее интенсивна, чем на более открытой поверхности из-за повышения температуры внешней поверхности в ночное время.(iii) Если здание расположено в долине или впадине местности, где местная температура наружного воздуха изменяется примерно на 1 или 2 ° C, его фасад может иметь другое гигротермическое поведение. Если температура выше, количество водяного пара в воздухе, доступного для конденсата, также выше, что не компенсируется небольшим увеличением сушильной способности. (Iv) Также дождь и ветер, хотя они не влияют на большая поверхностная конденсация, может играть важную роль в смачивании поверхности ETICS, поскольку они являются ключевыми параметрами в количестве дождевой воды, которая достигает фасада.Здания, расположенные на дождливых и ветреных территориях, более подвержены увлажнению, чем здания, расположенные в менее открытых местах. (V) Воздействие солнечного света и ветра без дождя также может повлиять на гигротермическое поведение здания, поскольку оно влияет на процесс высыхания. Когда здание расположено, например, на вершине холма без каких-либо соответствующих препятствий, защищающих его от ветра и теневого солнечного света, его фасады, вероятно, будут иметь более низкую поверхностную влажность. Способ эксплуатации здания также может влиять на влажность внешней поверхности .Если внутреннее пространство постоянно обогревается зимой, конденсация на внешней поверхности может быть уменьшена, поскольку теплопроводящий поток, идущий изнутри, немного увеличивает температуру внешней поверхности.

Общее термическое сопротивление фасада также играет важную роль. Общее тепловое сопротивление в основном зависит от толщины слоя теплоизоляции, которая рассчитывается в соответствии с законодательством страны в связи с уровнем комфорта, требуемым пользователями. Однако проектировщики должны знать, что чем толще изоляционный слой, тем выше может быть количество поверхностной конденсации, потому что теплопроводность, идущая изнутри, уменьшается.

Хотя ориентация не является важным параметром, касающимся поверхностной конденсации, она очень важна для увлажнения из-за ветрового дождя (дождевая вода достигает поверхности только перпендикулярно направлению ветра) и для процесса высыхания (прямое солнечное излучение на поверхности значительно меняется в зависимости от ориентации). По этой причине влажность внешней поверхности варьируется между разными фасадами одного и того же здания, а эстетическое воздействие из-за биологического роста значительно различается.

Свойства внешней отделки очень важны для содержания влаги внешней поверхности ETICS, а именно, коэффициента излучения и поглощения солнечного излучения. Чтобы уменьшить поверхностную конденсацию, необходимо уменьшить коэффициент излучения. Чтобы улучшить сушильную способность, поглощение солнечного излучения должно быть увеличено до определенных пределов, обеспечивающих надлежащую работу ETICS [34]. Коэффициент диффузии влаги, который регулирует перенос жидкой воды через пористые материалы, хотя и не влияет на поверхностную конденсацию, WDR или процесс сушки, имеет некоторое влияние на доступность жидкой воды на поверхности.Более низкий коэффициент диффузии влаги позволяет дольше оставаться жидкой водой на поверхности, поскольку штукатурная система поглощает меньше воды после WDR и поверхностной конденсации [13]. Конечно, это также может улучшить потенциальный дренаж. Хотя тепловые и гигротермические свойства наружной штукатурки очень похожи для всех ETICS, доступных на рынке, дальнейшие исследования в этой области могут позволить достичь лучшего экономичного и экологического решения для гигротермических свойств ETICS.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

Благодарность

Авторы хотели бы поблагодарить за финансовую поддержку Fundação para a Ciência e Tecnologia (FCT), которая позволила создать необходимые условия для проведения этого исследования (докторский грант SFRH / BD / 39904/2007).

Тепловой фасад

s называется теплоизоляцией внешних фасадов здания. По сути, тепловой фасад представляет собой изолирующую / защитную оболочку, которая окружает фасады здания, чтобы защитить его от воздействия экстремальных температурных условий и неблагоприятных климатических факторов.

ПРЕИМУЩЕСТВА ТЕРМИЧЕСКОГО ФАСАДА
• Обеспечивает идеальную защиту фасада от климатических условий.
• Отличная теплоизоляция, что означает снижение затрат на отопление и кондиционирование воздуха, а также предотвращение образования конденсата и плесени.
• Использование теплоемкости стены
• Эстетический ремонт дома
• Повышение теплового комфорта жителей
• Перенос точки конденсации и инея со стены на слой теплоизоляции

Основными частями внешней теплоизоляции / термофасада являются:

1.Теплоизоляция
Это самая важная и центральная часть системы. В Греции пенополистирол (EPS) и экструдированный полистирол (XPS) в основном используются в соответствии с соответствующими стандартами.
2. Армированный базовый слой
Основным компонентом этого слоя является фасадная сетка из щелочного стекла
3. Последний декоративный слой
Существует множество вариантов размера зерна, текстуры и цвета, которые могут удовлетворить потребности любого архитектора. . Сегодня в моде акриловая штукатурка в пастообразном виде.
Стоимость теплового фасада зависит от требований каждого проекта. Это значит, что это зависит от размеров стен вашего дома и толщины изоляционного материала.

ВНУТРЕННЯЯ ТЕПЛОИЗОЛЯЦИЯ

Основным преимуществом установки надлежащей системы теплоизоляции в доме является минимизация теплообмена между внутренней и внешней средой, обеспечение необходимого сопротивления тепловому потоку и передаче, что снижает затраты на отопление и улучшение среды обитания жителей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.