Какую температуру держит жидкое стекло: Жидкое стекло — Огнеупорные материалы – Какую температуру выдерживает жидкое стекло — Канализация

Жидкое стекло — Огнеупорные материалы

Жидкое стекло — это водный раствор силиката натрия, воздушное вяжущее, изготавливаемое путем обжига смеси, состоящей из кварцевого песка и соды. Полученное стекло после дробления растворяют в воде. Натриевое жидкое стекло применяется при производстве бетонов со специальными свойствами (кислотоупорных, жаростойких), огнез ащитных красок и других материалов.

Материал жидкое стекло незаменим в химической промышленности для производства силикагеля, силиката свинца, метасиликата натрия. В строительстве жидкое стекло применяется для защиты фундаментов от грунтовых вод, гидроизоляции стен, полов и перекрытий подвальных помещений, устройства бассейнов. Но это не единственное предназначение «водного раствора силиката натрия». Он удачно подходит для склеивания и связки строительных материалов, изготовления кислотоупорных, огнестойких и огнеупорных силикатных масс. Им можно склеивать бумагу, картон, стекло, фарфор, пропитывать ткани, бумаги, картона и деревянных изделий для придания им большей плотности и огнестойкости. Жидкое стекло успешно используется для изготовления силикатных красок, клеев, моющих и чистящих средств, в качестве защитного средства при обрезке и ранении деревьев.

Жидкое стекло также применяется в мыловаренной, жировой, химической, машиностроительной, текстильной, бумажной промышленности, в том числе для производства картонной тары. В черной металлургии — как связующий материал при изготовлении форм и стержней. В литейном производстве — в качестве флотационного реагента, при обогащении полезных ископаемых и других целей. Как это использовать Гидроизоляция. Добавить 1 литр жидкого стекла на 8-10 литров цементного раствора. Склеивание. Нанести тонким слоем на склеиваемые поверхности и плотно прижать. Пропитка поверхностей материалов. Обработать кистью с обеих сторон несколько раз с промежуточной сушкой раствором 400 г. жидкого стекла в 1 литре воды. Меры предосторожности: Жидкое стекло не токсично, пожаровзрывобезопасно. При попадании в глаза промыть большим количеством воды. Хранит

Поведение жидкостекольных систем при повышенных температурах

Растворимое и жидкое стекло

При умеренном нагревании натриевые жидкие стекла по мере потери влаги увеличивают вязкость и затвердевают, когда содер­жание воды понижается до 20—30%. Выше 100 °С скорость потери веса снижается и обращается в ноль около’ 600 °С, когда гидратные формы кремнезема полностью отдадут воду.

Весьма важен темп нагревания. Если давление насыщенного пара в глубинных слоях стекла окажется выше атмосферного давления, то произойдет вспучивание материала. Этим явлением пользуются для получения пористых материалов, резко снижая внешнее давление в нагретой системе в той стадии, когда жидкое стекло еще сохраняет пластичность. Такой же результат получает­ся при быстром повышении температуры после гранулирования жидкого стекла, так как существует значительный градиент влаж­ности материала от поверхности к центру гранулы [58, 59].

В других случаях, когда жидкое стекло используется как связующее в бетонах, желательно получить наиболее плотные и прочные структуры. Пористость в бетонах возникает как за счет уменьшения объема жидкого стекла в ходе потери влаги и обра­зования крупных пустот, так и из-за возникновения капиллярной пористости затвердевшего жидкого стекла при его дальнейшем высушивании.

Пористость собственно затвердевшего жидкого стекла, высу­шенного при разных температурах, была определена нами для калиевых систем различных модулей, начиная от трех и кончая золями, стабилизированными калиевой щелочью. Также была из­мерена удельная поверхность по азоту методом БЭТ. Пористость определяли измерением эффективной ПЛОТНОСТИ (бэф) пикнометри — ческим методом и кажущейся плотности (ек)- Затвердевшие в

Течение недели растворы в слое 2—3 мм затем сушили до постоян­ного веса при различных температурах. Данные приведены в табл. 21.

Чем ниже модуль жидкого стекла, тем выше проявляется склонность системы изменять при потере воды свой общий объем, мало изменяя сплошность структуры. И наоборот, золи стремятся сохранить свой общий объем, создавая пористость при потере воды.

Равновесная сушка, т. е. высушивание жидкого стекла до постоянного веса при каждой температуре, и вопросы кинетики сушки описаны в разд. 4.3.

При дальнейшем нагревании обезвоженного силиката, как от­мечает Вейл [13], стекло увеличивается в объеме при температуре ниже ликвидуса градусов на 300 и это приводит к частичной потере прочности. Затем прочность начинает существенно возра­стать за счет анионной полимеризации и уплотнения всей системы при непосредственном возникновении безводных стекольных свя­зей. Водостойкость системы на этом этапе заметно возрастает. Вблизи 1000 °С начинают протекать реакции между силикатом и теми или иными наполнителями, если силикат находится в составе Жаростойкого бетона, и после достаточной выдержки при этой температуре система приобретает свою эксплуатационную проч­ность и жаростойкость максимум до 1600 °С (в зависимости от наполнителя) с началом размягчения под нагрузкой 0,2 МПа при этой температуре [57].

Высокотемпературные фазовые превращения безводных нат — Риевых и калиевых стекол можно увидеть по диаграммам в разд. 2-1 и 2.2.

При распылительной сушке натриевого жидкого стекла для получения легкорастворимых порошков температуру воздуха мож­но повышать до 300 °С, сокращая соответственно время сушки, Для калиевого жидкого стекла такое повышение недопустимо из — за образования нерастворимых форм силиката калия. Силикаты лития при потере гидратной влаги в районе 150—200 °С начинают превращаться в формы, нерастворимые в воде, и материал быстро приобретает водостойкость.

Силикаты четвертичных аммонийных оснований при нагрева­нии начинают разлагаться и теряют не только воду, но и органи­ческую составляющую. На рис. 41 приведены кинетические данные этого процесса при различных температурах. Видно, что нагрева­ние до 300 °С приводит к потере подавляющей части органики. Гидрат тетраметиламмония разлагается с образованием триме- тиламина и метилового спирта

(СН3), NOH—(CH, bN+Ch4OH.

Более сложные тетраалкилы аммония термически диссоциируют по схеме

R3(R’—Ch3-Ch3)N0H^R3N + h30+R’-CH=Ch3.

Силикат при этом превращается в частично гидратированный кремнезем, система становится полностью нерастворима в воде, но сохраняет влагопроницаемость. Переход от силиката четвер­тичного аммония к кремнезему не нарушает целостность пленок и покрытий и используется в практических целях.

Особую область использования растворимых стекол образуют технологии, в которых получение жидкого стекла и его отвержде­ние совмещаются в одном непрерывном процессе [57]. Такая технология включает совместный сухой помол растворимого стек­ла, части наполнителя и отвердителя. Затворяя по месту исполь­зования такую смесь водой и получая требуемые композиции, при повышенной температуре, подчас изменяющейся по заданному графику, проводят операции образования жидкого стекла и от­верждения всей композиции. Когда растворимым стеклом являют­ся гидратированные порошки силикатов калия или натрия, рас­творяющиеся при обычной температуре за несколько минут, то такая технология в физико-химическом отношении мало отли­чается от обычного процесса использования жидкого стекла в соответствующей композиции.

Другое дело, когда используют безводные растворимые стекла. Большей частью применяют не очень высокомодульные порошки с повышенной щелочностью. Они растворяются лучше, и с при­менением автоклава, т. е. при температуре выше 100 °С, растворе­ние продолжается десятки минут, часы и может вообще не завер­шаться полностью. Образовавшееся в системе жидкое стекло уступает во взаимодействие с не очень активным отвердителем, которым может быть и собственно наполнитель; система приобре­тет начальную прочность, и в дальнейшем, повышая температуру По заданному графику, проводят полное отверждение.

Использование более щелочных растворимых стекол, повышен­ная температура и необходимое давление пара позволяют связы­вать карбонатные породы, прежде всего известняки, магнезит, доломиты, достигая прочности на сжатие несколько десятков МПа. Подобная технология была опробована также с алюмосилика­тами, некоторыми кремнеземсодержащими породами и целым ря­дом наполнителей, практически не взаимодействующих с жидким стеклом при обычной температуре [57]. Основная трудность при­менения безводного растворимого стекла в виде порошков заклю­чается в отработке температурного режима, который бы позволил в достаточной степени растворить стекольный порошок и затем при более высокой температуре и давлении пара провести реакцию с наполнителем.

Взаимодействие растворов силикатов с соединениями кальция занимает важное место в практической химии и заслуживает отдельного анализа. Чтобы разобраться в огромном количестве известных из практики фактов, подытожим общехимические све­дения, характеризующие их …

В общем виде под силикатными красками следует понима1 суспензию наполнителей, отвердителей (силикатизаторов) и пиг­ментов в водных растворах водорастворимых силикатов, в част­ности жидких стекол. Применение жидкого стекла в качестве пленкообразователя для …

Наиболее высокомодульными щелочными силикатами являют­ся стабилизированные кремнезоли. Это дисперсные системы с низ­кой вязкостью и клейкостью. Раствор с содержанием Si02 более 10% при размерах частиц до 7 нм прозрачен, выше 50 …

Жидкое стекло: виды, сфера применения, плюсы и минусы

Современный рынок строительных материалов изобилует всевозможными смесями, содержащими сложные активные добавки. Однако среди всего этого есть материалы, которые остаются популярными веками наример жидкое стекло – один из них. Его в строительстве применяют повсеместно, а иногда его и вовсе нечем заменить. Одно из достоинств – низкая себестоимость, что также является фактором выбора миллионов строителей по всему миру. Каждый, кто хочет стать профессионалом в строительстве, должен уметь им пользоваться.

Жидкое стекло: история возникновения и состав

Что такое жидкое стекло вы можете не знать, но пользовался им каждый. Хотя бы раз вам приходилось пользоваться силикатным клеем. Он продается в любом магазине канцелярских товаров. А ведь это и оно и есть. Удивительно то, что более двухсот лет тому назад люди разработали состав, который по сей день не менялся. А родиной изобретения является Германия. Там жил химик Ян Непомук фон Фукс, который занимался изучением силикатов и их свойств. Именно он смешал щелочной силикат с кремниевой кислотой.

Жидкое стекло: достоинства и недостатки

Жидкое стекло: достоинства и недостатки

В результате реакции наблюдалось схватывания смеси. Итог – формирование вязкой субстанции. Но если ее оставить на открытом воздухе, образуется твердое вещество, похожее на стекло, так как остается прозрачным. Однако производственный процесс выглядит сложнее, ведь составляющие приходится получать дополнительно. В чистом виде в природе они не встречаются. Требовалось разогреть кварцевый песок до полного расплавления. Применялись стеклоплавильные печи. Но после добавляли уголь и соду (сульфат натрия).

Жидкое стекло: достоинства и недостаткиЖидкое стекло: достоинства и недостатки

Состав жидкого стекла до сих пор неизменен. Однако печи стали усовершенствованные. Сейчас это автоклав, где точка кипения субстанции выше, что позволяет добиться лучших характеристик готового продукта. Но главное, что спустя два века эта технология до сих пор работает, и заменять ее другой, более дорогостоящей нет смысла. Жидкое стекло – это материал, используемый не только в строительстве. Есть масса производств, где требуется улучшить качество производимой продукции, и оно прекрасно дает это сделать практически без удорожания.

Характеристики жидкого стекла

Есть целый перечень достоинств данного материала. В список входит:

  1. Гидрофобность. После застывания не боится воды. Поэтому обработанные поверхности не поддаются воздействию влаги, коррозии, гниению.
  2. Антистатичность. Будучи твердым не электризуется. Если нанести смесь на поверхность детали, она обреете антистатические свойства.
  3. Термоизоляция. Малая тепловодность – причина уникального свойства сохранят тепло. Поэтому часто добавляют жидкое стекло в раствор (кладочный, для стяжки).
  4. Огнеупорность. Это способность нейтрализовать действие высоких температур. Сам материал не горит, не токсичен, химически нейтрален, экологически безопасен.
  5. Антисептичность. Это действительно антисептик. В жидком состоянии смесь убивает паразитов, и не дает им появиться в течение срока эксплуатации конструкции.

Жидкое стекло: достоинства и недостаткиЖидкое стекло: достоинства и недостатки

Среди сфер использования жидкого стекла применение в строительстве и промышленности определяется способностью заполнять нежелательные пустоты. Раковины, трещины, пазухи, заполненные силикатом, не увеличиваются со временем, не аккумулируют воду, и как следствие сохраняет морозостойкость монолита, если речь идет о бетонной поверхности.

Виды жидкого стекла

Принципиально состав может отличаться только вводимой добавкой, которую изготавливают на основе натрия, калия или лития. Соответственно различают и три различных типа продукции. Свойства жидкого стекла (калиевого K2O(SiO2)n, натриевого Na2O(SiO2)n, литиевого Li2O(SiO2)n) отличаются. Литий используется редко.

Основными являются два первых вида. Именно их можно встретить на прилавках строймаркетов. Именно они используются в строительстве и даже в быту. Поэтому необходимо рассмотреть данные типы более детально, и научиться распознавать, в каких случаях требуется то или иное соединение.

Жидкое натриевое стекло

Жидкое стекло: достоинства и недостаткиЖидкое стекло: достоинства и недостатки

При таком составе субстанция отличается повышенной вязкостью. Визуально он отличается неярко выраженным сероватым оттенком без видимых включений. Благодаря вяжущим свойствам одной из сфер применения является производство различных клеев, которые используют для организации гидроизоляционного покрытия. Как работать с жидким стеклом знает каждый профессиональный строитель. И, если нужно дополнительно защитить конструктив от влаги и воды, этот материал незаменим. Более того, железобетонная конструкция становится огнеупорной, и ее прочность повышается.

Жидкое калиевое стекло

Жидкое стекло: достоинства и недостаткиЖидкое стекло: достоинства и недостатки

Этот вид стал бы прекрасной альтернативой, если бы не более высокая стоимость производства. Смесь также тягучая, вязкая, клейкая. Только теперь она имеет едва заметный зеленоватый оттенок. Себестоимость повышается из-за сложности работы с калиевыми соединениями. С другой стороны этот состав обладает отличными бактерицидными свойствами. Материал не является благоприятной средой для поселения грибков, плесени, бактерий. Кроме того, благодаря химической нейтральности применение жидкого стекла в строительстве обусловлено необходимостью защитить сооружения от дождя, воздействию агрессивных сред, тумана, росы и т.д. Лакокрасочная продукция с этим компонентом отличается особым глянцем и блеском.

Область применения

Жидкое стекло: достоинства и недостаткиЖидкое стекло: достоинства и недостатки

Абсолютно естественно, что такой широкий спектр достоинства нашел применение в различных сферах деятельности человека. Сейчас обширное использование жидкое стекло нашло в таких областях:

  1. Черная металлургия. Изготавливают, например, керамические флюсы и литейные формы. Электроды для электросварки обрабатывают именно силикатом. А при производстве сплавов жидкое стекло – связующий компонент.
  2. Машиностроение. Часто требуется антипригарное лакокрасочное покрытие. Деликатные соединения также обеспечиваются с помощью этого клейкого вещества. Краска на жидком стекле формирует на поверхности антинагарный слой.
  3. Строительная сфера. Производят жароупорные материалы (бетоны и растворы), цеолиты и катализаторы.
  4. Химическое производство. Лаки и краски – только вершина айсберга. Даже в стиральном порошке есть этот компонент, как и в большинстве чистящих и моющих средств. А конструкции, работающие в кислой среде, нуждаются в дополнительной защите, что также обеспечивается силикатами.
  5. Циллюлозно-бумажное производство. В данном случае применение силиката необходимо для склеивания, а также выпуска глянцевой гладкой бумаги.

Применение жидкого стекла в быту заключается не только в использовании силикатного клея для бумажных листов. Делая ремонт, каждый, кто желает придать конструкциям дополнительную прочность, влагозащитность, бактериальную безопасность, жаростойкость, обязательно покупает этот компонент.

Применения в строительстве

Жидкое стекло: достоинства и недостаткиЖидкое стекло: достоинства и недостатки

Если говорить о конкретных этапах возведения конструкций, применяется жидкое стекло для следующих видов работ:

  1. Устройство гидроизоляции подземных коммуникаций (тоннелей, колодцев). Вы сможете уберечь подвал и цокольный этаж от воздействия влаги.
  2. Защита фундамента от грунтовых вод в случае их неглубокого залегания.
  3. Организация гидроизоляции перекрытий и наружных стен.
  4. Укладка декоративного покрытия – керамической, кафельной плитки.
  5. Устройство бассейна, искусственного водоема, резервуара.
  6. Затирка шва между кирпичом, камнем, керамогранитом, облицовочной плиткой.
  7. Изоляция колодцев с питьевой водой. Не появляется грибок, плесень.

 

Даже отмостка вокруг дома или дорожки на приусадебном участке прослужат на 8-10 лет дольше, так как раствор обретет гидрозащиту, что послужит причиной увеличения морозостойкости.

Когда для кладки используется жидкое стекло, способ применения заключается в том, что при условии сохранения правильных пропорций оно вводится в состав кладочного цементно-песчаного раствора. Тогда даже при сильном нагреве, как в случае с каминной кладкой, швы не растрескаются.

Если же требуется покрыть деревянные конструкции, его смешивают с окисью хрома, охрой или суриком. Такое покрытие не выцветает под действием влаги и не выгорает на солнце. Когда же требуется покрыть поверхность пленкой, делают водный раствор.

Применение в строительных смесях

Большой популярностью пользуются бетоны и растворы, в состав которых входит данный компонент. Цементно-песчаная смесь может использоваться для следующих видов общестроительных работ:

  1. Обработка несущих конструкция, перегородок, пола и потолка на этажах, расположенных на минусовой отметке.
  2. Устройство фундамента, цокольного этажа зданий, находящихся на участке вблизи водоемов или там, где на небольшой глубине залегают грунтовые воды.
  3. Строительство сооружений, эксплуатируемых в условиях повышенной влажности: бани, сауны, бассейны, искусственные водоемы.

Также благодаря характеристикам жидкого стекла его успешно применяют при выкладке и облицовке дымоходов. Высоких температур оно не боится. Раствор не трескается, труба не сыпется, не трескается.

Как приготовить раствор с жидким стеклом

Решив использовать жидкое стекло как обязательный компонент строительной смеси, необходимо придерживаться технологии приготовления раствора. При этом главным фактором является его целевое назначение:

  1. Гидроизоляция. На одну меру песка берут столько же цемента, и столько же силикатного клея. При этом важно сразу же добавить воды и вымесить раствор до однородной консистенции. Застывает он быстро, и выработать придется всего за 10-15 минут. Потом он схватится. Поэтому большой объем не делают.
  2. Грунтовка. Цемент с силикатом смешивают 1:1. Тут же добавляют воду, постоянно перемешивая смесь. При этом она должна быть достаточно жидкой, чтобы можно было работать кисточкой или валиком. В итоге на поверхности образуется водонепроницаемая пленка, препятствующая действию воды.
  3. Антисептик. Просто добавьте в стекло воды в пропорции один к одному. Сразу после вымешивания смесь можно наносить на деревянные, бетонные, кирпичные конструкции, что позволит защитить их от действия вредоносных микроорганизмов, плесени, грибка.
  4. Огнеупорный раствор. На одну долю портландцемента М500 Д0 необходимо израсходовать три доли речного промытого песка. Туда же вводят две доли силикатного клея. После затворения водой раствор готов к применению. Некоторые печники заменяют часть кварцевого песка динасовым или шамотным.
  5. Смесь для укрепления конструкций. На 1 литр чистой воды приходится 0,4 кг жидкого стекла. После полного растворения полученное вещество наносят кистью или валиком на бетонную конструкцию послойно. Количество слоев – от 3 до 5. Перед нанесением следующего основе дают полностью просохнуть.

Жидкое стекло: достоинства и недостаткиЖидкое стекло: достоинства и недостатки

Чтобы субстанция была однородной, используйте строительный миксер или как минимум дрель со специальной насадкой для перемешивания. Руками это можно не успеть сделать, так как ввод жидкого стекла приводит к сокращению времени схватывания.

Применение в быту

При производстве сантехнических работ важно, чтобы все соединения были герметичны. Жидкое стекло – отличный герметик. Просто нанесите его на резьбу или фланец, соедините элементы, закрутите резьбу, удерживайте их в одном положении в течение нескольких минут. Так можно сделать герметичным водопровод и канализацию. Ограничение – газовые трубы. Здесь лучше пользоваться специализированными методами.

Жидкое стекло: достоинства и недостаткиЖидкое стекло: достоинства и недостатки

Также можно на силикат клеить, например, линолеум. Многие пользуются ПВА или Бустилатом, но они не в состоянии защитить от бактерий, грибка, плесени. В больших залах для торжеств, в театрах и других местах, где есть массивные шторы, текстиль обрабатывают стеклом, что не только защищает ткань от пыли, сохраняя привлекательный внешний вид. Силикат не горит, и в случае возгорания не даст шторам вспыхнуть.

В некоторых случаях лучше именно этим клеем соединять изделия из глины или керамики, деревянных брусков, кожи, резины, картона, фанеры, листов ДВП или ДСП. Даже посуду можно чистить стеклом (жидким, естественно). Для этого разведите его водой в пропорциях 25:1, опустите пригоревшую сковороду, кипятите 2 часа. Затем счистите отставший нагар обычной губкой. Если нужно очистить фарфор или стекло, время кипения уменьшают до 10 минут.

Преимущества и недостатки

К числу достоинств относится:

  1. Способность проникать в микроскопические щели, трещины и раковины обрабатываемой поверхности.
  2. Стоимость минимальна. Если даже использоваться силикат в качестве добавки, это незначительно увеличивает себестоимость.
  3. Срок, в течение которого сохраняются защитные свойства – 5 лет. Если же нанесено несколько слоев, этот период увеличивается до 8-10 лет.
  4. Высокая адгезия позволят применять данный материал в условиях повышенной влажности.
  5. Обеспечивает дополнительную прочность, не позволяя ей снижаться под действием агрессивных сред.

Кроме того, этот материал является одним из самых безопасных с экологической точки зрения. Однако есть и ряд недостатков:

  1. Слой покрытия хрупкий, подвержен излому при деформации.
  2. Запрещается обработка предметов изготовленных из органического сырья.
  3. Поверх силиката не получится качественно нанести краску.

Быстрое схватывание – не всегда хороший фактор, а работать приходится быстро, что требует определенного навыка и сноровки.

Инструкция по обработке поверхностей жидким стеклом

Обрабатываемый объект необходимо подготовить. Счищается грязь и пыль. Если пришлось мыть, поверхности дают просохнуть. Разводят грунтовку, как сказано ранее и наносят состав кистью или валиком. Повторяют процедуру. Второй слой укладывается после полного высыхания первого. Приготавливают гидрозащитный раствор и нанося его на всю поверхность. Затем вымывают руки с мылом. До этого все нужно делать в перчатках.

Можно ли изготовить жидкое стекло самостоятельно

Более того, что это можно сделать, так еще и способ не один:

  1. Измельчите селикогель, разведите порошок водой. Результат будет очень похож на готовое жидкое стекло из магазина.
  2. Смешайте промытый кварцевый песок и соду в соотношении 1:4 соответственно. Доведите температуру до предела плавления.

Все это обойдется дороже, чем просто купить его в магазине. Но на фото в интернете часто показано, насколько лучше выглядят фары после обработки специальными средствами. Дешевый, но не менее эффективный аналог – смесь парафина из свечки и растворителя «Вайт-спирит». Но это уже не жидкое стекло.

Огнеупорные бетоны на жидком стекле :: Огнеупорные материалы в металлургии

В бетоне на жидком стекле вяжущим является водный раствор сили­ката натрия при Na2O* nSiO2 * mH2O, который в результате физико-химического взаимодействия с кремнефтористым натрием или другими до­бавками (реагентами твердения) разлагается с выделением Si(0H)4, коагулирует и склеивает между собой зерна заполнителей в монолитный конгломерат. Жидкое стекло обладает высокими адгезионными свойст­вами по отношению ко всем материалам, применяющимся в огнеупор­ной промышленности. Его клеящая способность в 3—5 раза выше, чем цементов, что обеспечивает получение на его основе высококачествен­ных жаростойких бетонов.

 

В отличие от бетонов на гидравлических вяжущих твердение бетона происходит не в результате гидратации минералов, а в результате образо­вания коллоидного клея Si (ОН) 4, который приобретает максимальную прочность после высушивания и перекристаллизации в Si02 с выделе­нием воды. Бетон твердеет в воздушно-сухих условиях при температуре воздуха не ниже 15 °С. При более низких температурах процесс тверде­ния практически не происходит наиболее благоприятные температуры твердения 25—50 °С. Наиболее удовлетворительными свойствами обладает жидкое стекло, в котором кремнеземистый модуль (молярное отношение SiO2 и Na2O) колеблется в пределах от 2,5 до 3. Кремнеземистый модуль называется также модулем стекла. Процесс схваты­вания и твердения бетона происходит только в момент выделения кремнегеля из коллоидного раствора:

Схватывание и твердение бетонов на жидком стекле с добавкой кремнефтористого натрия или других реагентов твердения представ­ляет собой сложный коллоидно-адсорбционный процесс, обусловленный коллоидно-химическим взаимодействием реагента твердения со щелоч­ным силикатом натрия. В упрощенном виде химическое взаимодействие кремнефтористого натрия со щелочным силикатом натрия, у которого силикатный модуль равен двум, можно выразить следующей схемой:

Na2SiF6+ 2 (Na2 О* 2SiO2) + 10Н2О = 5Si (ОН) 4+ 6NaF;

Кремнефтористый натрий вследствие малой растворимости в воде (0,6 %) реагирует с жидким стеклом медленно.

Процесс схватывания и твердения в зависимости от количества добавляемого кремнефторида, от температуры и модуля жидкого стекла на­чинается через 30—60 мин. В течение этого времени свежеприготовлен­ная масса достаточно пластична и хорошо формуется. Количество кремнефтористого натрия должно обеспечивать нормальные сроки схватывания и твердения бетона, а также необходимую прочность бетона к моменту распалубки. При этом не следует забывать, что кремнефтористый натрий является сильно действующим плавнем, понижающим огнеупорные свойства бетонов на жидком стекле.

Кроме кремнефтористого натрия для твердения бетона на жидком стекле иногда применяют нефелиновый шлам, феррохромовые шлаки, обожженный серпентинит, который применяется также как заполнитель, обеспечивающий получение огнеупорного бетона с более быстрыми сроками твердения (10—30 мин.).

При нагревании затвердевшего жидкого стекла с добавкой кремнефтористого натрия, основная часть влаги (80 %) удаляется при 100 °С, при нагревании до 200 °С удаляется еще 12 % влаги. Остатки влаги (8 %) удаляются при нагревании до 300 °С, вследствие обезвоживания гелия кремниевой кислоты при кристаллизации Si02. В результате удаления влаги в бетоне наблюдается усадка, которая при правильном подборе состава бетона не превышает 0,8 %, а при применении бетона с тонкомо­лотым магнезитом 0,25 %.

Нагревание до 800—900 °С приводит к частичному спеканию бетона. При введении огнеупорных тонкомолотых добавок спекание бетона происходит при более высоких температурах, его огнеупорность воз­растает.

Для приготовления тонкомолотых добавок используют шамот, маг­незит, хромит, хромомагнезит, кварц, дунит, серпентинит, тальк, анде­зит, диабаз и т.п. Степень измельчения всех видов добавок должна быть такой, чтобы через сито 0,09 мм (4900 отв/см2) проходило не менее 50 % массы материала.

Выбор того или иного вида добавки зависит от требуемой огнеупор­ности бетона и условий службы футеровки. Применение тонкомолото­го магнезита и хромомагнезита в наибольшей степени повышает огнеу­порность.

Чем меньше плотность жидкого стекла, тем ниже прочность бетона, например, при использовании жидкого стекла плотностью 1,25 предел прочности составляет всего 50 % от прочности при сжатии высушенного бетона (25—30 Н/мм2), приготовленного на жидком стекле плотностью 1,36 г/см3.

При увеличении расхода жидкого стекла увеличивается количество воды в бетоне, в результате чего повышается его пористость, а проч­ность снижается. Так, при увеличении содержания жидкого стекла с 400 до 500 кг на 1 м3 бетона прочность при сжатии снижается пропор­ционально содержанию Na2O.

В результате обжига прочность бетона при сжатии изменяется незна­чительно по сравнению с прочностью высушенного бетона. Нагревание до 300—400 °С вызывает упрочнение его структуры за счет обезвожива­ния геля; при 400—600 °С наблюдается некоторые снижение прочности; с повышением температуры до 800—1000 °С прочность для большинства составов не изменяется или несколько повышается.

Виды тонкомолотых добавок влияют на прочность бетона при нагре­вании. Она наиболее высокая у бетона с тонкомолотой магнезитовой и шамотной добавками. Добавка тонкомолотого кварцита значительно снижает прочность вследствие его модификационного превращения при 575 °С.

Большое влияние на прочность бетона оказывают степень и методы его уплотнения. Для обеспечения подвижности бетона при уплотнении вибрированием в бетон с шамотными заполнителями необходимо вводить не менее 16 % жидкого стекла от общей массы бетона. Умень­шить расход жидкого стекла при этом методе уплотнения нельзя, так как бетон имеет большую вязкость и не уплотняется вибрированием.

Для получения высокопрочного безусадочного бетона с содержанием жидкого стекла 10—14 % необходимо применять трамбование пневматическими трамбовками. При этом крупность заполнителя в бетоне не должна превышать 5 мм, так как укрупнение приводит к измельче­нию трамбовкой и снижению прочности бетона.

При применении трамбования полусухих смесей предел прочности при сжатии бетона на жидком стекле увеличивается в 1,5—2 раза. При этом усадка в процессе сушки и нагревания почти не наблюдается, это имеет большое значение при футеровке индукционных плавильных печей для плавки алюминия.

Увеличение содержания кремнефтористого натрия в бетоне снижает огнеупорность и прочность при высоких температурах, так как он является сильным плавнем.

Наибольшую температуру применения имеет бетон на жидком стекле с тонкомолотой добавкой и заполнителями из боя магнезитового кирпича (1300—1400 °С). Такой бетон начинает размягчаться под наг­рузкой 0,2 Н/мм2 при 1250-1300 °С и разрушается при 1400-1450 °С.

Широкое применение в индукционных печах для плавки алюминия получил бетон на жидком стекле с тонкомолотым магнезитом и шамот­ными заполнителями. Этот бетон имеет высокую термостойкость и устойчив против восстановительного действия расплава алюминия благодаря тому, что шамотные зерна в этом бетоне покрыты оболочкой магнезитового цементного камня.

 

Влияние отрицательных температур на свойства бетона на жидком стекле

Нормальное схватывание и твердение бетона на жидком стекле происходят при температуре 15—20°. Однако по условиям работы на многих предприятиях не всегда представляется возможным устраивать тепляки на протяжении всего цикла работ по сооружению теплового агрегата, в связи с чем возможно периодическое замораживание бетона как в свежеуложенном состоянии, так и в процессе дальнейшего выдерживания.

При температуре ниже нуля растворы жидкого стекла сначала обнаруживают значительное увеличение вязкости, а затем превращаются вследствие выделения кристаллов льда и хлопьевидных частиц в опаловидные беловатые массы. Понижение температуры замерзания в значительной степени зависит, по-видимому, от физико-химического состояния частиц растворенного силиката. 38%-ный раствор жидкого стекла с модулем 3,3 замерзает при температуре — 2,2°. Раствор же с модулем 2,0 и концентрации 54% замерзает при несколько более низкой температуре, чем предыдущий раствор. В общем же понижение температуры замерзания даже у очень концентрированных растворов бывает незначительно по сравнению с замерзанием кристаллоидных электролитов. Температура замерзания растворимого стекла в зависимости от его состава лежит в пределах от—2 до —11°. Замерзший раствор жидкого стекла даже при очень низких температурах представляет собою желеобразную, загустевшую массу, не отличающуюся большой твердостью. При нагревании замерзшего жидкого стекла и равномерном его перемешивании получается раствор с теми же свойствами, какие были до замерзания.

На процессы твердения бетона большое влияние оказывает температура окружающей среды. Процессы твердения бетона на жидком стекле при отрицательных температурах не протекают, и бетонная смесь замерзает. После оттаивания бетонной смеси прочность бетона восстанавливается через 3 суток в воздушно-сухих условиях при температуре +15°. При этом необходимо, чтобы во внутренних слоях бетона, уложенного в конструкцию, температура была бы не ниже +15°. Бетон, выдержанный до замораживания в воздушно-сухих условиях (при +15°) не менее 3 суток и затем подвергнутый действию отрицательных температур, не снижает прочности. Замораживание не отражается на жароупорных свойствах бетона. Так как отрицательные температуры не изменяют свойств жидкого стекла, то последнее, подвергшееся замораживанию, после оттаивания может быть использовано для приготовления бетона. Бетон на жидком стекле обладает достаточной морозостойкостью. Наилучшая температура твердения бетона +15—20°. Температура от 0 до 10° недостаточна для обеспечения твердения бетона на жидком стекле.

Что такое жидкое стекло, его применение

В начале, разберемся, что являет собой материал, как жидкое стекло. Научно это выглядит так: водно- щелочной раствор силиката калия или натрия. Эти вещества упоминаются в составе других видов стекол.  Наиболее распространенным видом жидкого стекла является силикатный клей. В некоторых случаях данный вариант делают практически также как и обычно стекло, сплавляя мелкие частички песка с обычной водой. Осуществляют сплавление при высокой температуре. Другой способ предполагает влияние  на имеющийся в материале кремнезём раствором калия или натрия при одинаковых температурах.

Такое стекло как «жидкое»  имеет отличную клеящую способность. Это происходит потому, что частицы твёрдых склеиваемых материалов, которые находятся на их поверхности, менее скреплены друг с другом, чем те, что находятся внутри их. Проникая вовнутрь молекулы жидкого стекла отдают им влагу, тем самым и увеличивая склеиваемую способность и делая их вязкими. За счет минимальной теплопроводимости, данный материал соискал применение в изготовлении теплоизоляционного материала. Изоляция, основанная на жидком стекле, производится  в промышленной среде, очень термоустойчива (до 1200-1300 °С), легко выдерживает такие состояния — как размораживание и оттаивание.

Усредненные данные полимеризации варьируются от соотношения кремниевой кислоты и щелочи, и от насыщенности силикатного раствора. Увеличивается полимеризация кремнекислоты, естественным образом повышается вискозность материала.

Жидкое стекло и все его виды, активно реагирует на щелочь. рН-показатель обычных растворов находится значениями  11 и 13.Смешивание с водой в пропорциях от 1:10 до 1:100 изменяют рН-показатель.

Плотность жидкого стекла замеряется с использованием аэрометра, имеющим шкалу градирования(кг/м³). Если плотность замеряется часто, то есть смысл замеры, исходя из колебаний. Нужный количественный показатель такого стекла (около 0,7см³) ,время за которое достигается температурная константа у этих приборов незначительно

Вискозность самая важная характеристика жидкого стекла, так как выполняет значительную роль в процессе производства. Вискозность рассчитывается по многим показателям, главные из которых, показатели кремнекислоты к щелочи, насыщенность раствора и температурные показатели. Вискозность прямо пропорциональна возрастанию показателей концентрации и соотношения щелочи к кремнекислоте и снижаетя при увеличении температуры.

Высыхание жидкого стекла происходит как при стандартных температурах, так и при высоких. Все зависит от показателей кремнекислоты и щелочи. Чем насыщенней раствор, тем быстрее происходит сам процесс сушки.

Область применения жидкого стекла разнообразна. Данный материал может применяться:

  1. при скреплении материалов и их деталей, а также для их покрытия. Это аспект использования, затрагивает многие сферы жизнедеятельности  человека. Вот пример использования жидкого стекла при покрытии поверхности авто.
  2. В процессах синтеза веществ с содержанием кремнезема. Это — белая сажа, цеолит, силагель, катализатор.
  3. В изготовлении моющих средств, при отбелке и покраске тканей, а также в изготовлении бумаги.

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *