Количество битума в асфальтобетонной смеси: Состав асфальтобетона: ГОСТ, проектирование, устройство, подбор

Содержание

Содержание битума в асфальтобетонной смеси

А знаете ли Вы вопрос, который задается чаще всего начальником дорожно-строительной лаборатории и начальником АБЗ в рабочее время? Совершенно верно – точное количество материала необходимое при производстве асфальтобетонной смеси (далее по тексту абс). В данной статье мы попытаемся объяснить: сколько битума содержится в тонне асфальта.

Действительно, сколько нужно битума, чтобы уложенное покрытие, как это принято говорить, «не потекло» в случае переизбытка вяжущего (типичный пример — образование на поверхности покрытия битумных пятен) и не было слишком «сухим» в случае недостатка.

Много битума – плохо, так как уменьшается способность сопротивления сдвигающим нагрузкам от колес автомобилей, как следствие – высокая подверженность пластическим деформациям, т.е. процессу колееобразования.

Мало битума – тоже плохо, так как в данном случае происходит увеличение показателя водонасыщения асфальтобетонного покрытия.

Зерна щебня в каркасе не полностью обволакиваются органическим вяжущим, образуя пустоты, что в последующем приводит к разрушению покрытия и уменьшению межремонтных сроков.

Количество материалов для производства абс огромное. Количество карьеров исчисляется десятками и сотнями. Не существует точной нормы расхода битума при производстве одной тонны смеси, т.к. стоит поменять всего одну составляющую и количество битума может измениться кардинально.

Поэтому, чтобы произвести оптимальную по составу и физико-механическим свойствам асфальтобетонную смесь принято руководствоваться государственными стандартами: ГОСТ 9128-2013 и ГОСТ 31015-2002 согласно которым содержания битума в 1-ой тонне смеси составляет:

Для щебеночно-мастичных асфальтобетонных смесей:

— ЩМА-10 расход составит от 65 до 75 кг;

— ЩМА-15 расход составит от 60 до 70 кг;

— ЩМА-20 расход составит от 55 д 60 кг.

Для плотных и других асфальтобетонных смесей:

  1. Главная
  2. Блог
  3. Заметки
  4. Содержание битума в асфальтобетонной смеси

Приготовление асфальтобетонной смеси, расчет

Для того чтобы обеспечить получение доброкачественного асфальтобетона, необходимо установить правильное количественное соотношение составляющих его материалов. Одним из условий, обеспечивающих механическую прочность асфальтобетона, является плотность его каменного остова.

Существует несколько методов подбора или проектирования состава асфальтобетона. В настоящее время чаще всего пользуются методом подбора по кривым плотных смесей.

На основании теоретических расчетов установлено, что плотные минеральные смеси получаются при определенном весовом соотношении частиц, диаметры которых относятся как 2 : 1 (например, фракции 16—8 мм, 8—4 мм, 4—2 мм и т. д.).

На рис. 1.  Кривые оптимальных смесей.

При подборе состава определяется прежде всего гранулометрический (зерновой) состав всех составляющих: щебня (или гравия), песка и минерального порошка.

Так как особенно важное значение имеет содержание в смеси наиболее мелкой фракции (размером 0,074 мм), то прежде всего устанавливается соотношение исходных материалов, обеспечивающее нужное количество этой фракции.

Предположим, что требуется подобрать мелкозернистый асфальтобетон из материалов, имеющих следующий гранулометрический состав:
Таблица 1.

№№Наименование материаловЧастные остатки на ситах, %
5210,50,250,150,074меньше 0,074 мм
1Щебень602010532
2Песок1,55030153,5
3Минеральный порошок4060

Расчет состава каменных материалов для асфальтобетона состоит в нахождении такого весового соотношения имеющихся каменных материалов, при котором одноразмерные фракции в сумме дают требуемое количество данной фракции в смеси, согласно кривым наиболее плотных составов (график 3, рис. 1).

Назначение необходимого количества материалов производится из следующих соображений.

1) Фракция мельче 0,074 мм содержится только в минеральном порошке. Поэтому мы должны взять такое количество минерального порошка, чтобы данной фракции было около 15%:

15X100/ 60 =  25%.
2) Так же рассчитаем количество щебня. Фракция 5 мм содержится в щебне в количестве 60%. В смеси ее должно быть около 25%. Следовательно, для этого потребуется щебня:
25 х 100/ 60 =  42%.

Далее подсчитывается содержание каждой фракции щебня в этой доле, т. е. в 42%.

Содержание этих фракций определяется делением 42% пропорционально частным остаткам:

42/100 Х 60=25,2%; 42/100 X 20 = 8,4%;

42/100 Х 10 ==4,2%;  42/100 Х 5=2,1 % и т, д.

3) Следовательно, песка потребуется:

100—25 — 42 = 33%.

Для проверки правильности произведенного подбора суммируем одноразмерные фракции и наносим на график 3 рис. 1.

Если кривая при этом получается плавная и не выходит за пределы кривых плотных смесей, то при полученном соотношении будем иметь наилучшую смесь. Если кривая получается ломаная и отдельные точки ее выходят за пределы кривых, это указывает на недостаток или избыток соответствующей фракции. Изменив соотношение исходных материалов (но так, чтобы количество фракций 0,074 мм не выходило за пределы плотных смесей), можно улучшить состав. Если же отклонение слишком большое, следует добавить другого материала.

При подборе необходимо учитывать, что при применении гравийного материала и щебня мягких пород следует придерживаться верхнего предела кривых. При твердом и хорошо уплотняющемся дробленом каменном материале можно брать меньшее количество фракций размером 0,074 мм. Оптимальное количество битума определяется по величине временного сопротивления сжатию с проверкой процента объемного водонасыщения.

Для этого изготовляют несколько пробных смесей с различным содержанием битума и определяют временное сопротивление сжатию. При недостаточном количестве битума асфальтобетон получается малосвязный, с низким сопротивлением сжатию вследствие слабого сцепления частиц.

С увеличением количества битума сопротивление сжатию возрастает до известного предела. При избытке битума асфальтобетон становится излишне пластичным и сопротивление сжатию снова уменьшается. За оптимальное количество битума принимается то, при котором получается наибольшее сопротивление сжатию.

Расчет асфальтобетонной смеси

Правильное дозирование материалов имеет большое значение для получения доброкачественного асфальтобетона. Дозирование может производиться по весу (у смесителей типа Д-152 и Д-225) и по объему (у смесителя типа Г-1).

Во втором случае должны быть определены объемные веса всех материалов, входящих в состав асфальтобетона. Зная объемный вес материалов, легко перейти к нужным соотношениям, отвечающим запроектированным в процентах по весу Приведем пример: запроектирован следующий состав асфальтобетонной смеси для приготовления в смесителе Г-1: 50% щебня, 30% песка, 20% минерального порошка, 7% битума.

Полная загрузка смесителя 3 т.

При подборе состава количество каменных материалов принимается за 100%, а битум берется сверх 100%. Следовательно, в 3 т смеси битума должно быть:
3000 X7 / 100 +7 = 196,2 кг.
Общее количество каменных материалов 3000 — 196 = 2804 кг.

Запроектированное количество щебня

50 X 2804/ 100 = 1402 кг.
Объем щебня будет равняться 1402/ объемный вес

Так же производится расчет и остальных материалов.

При весовой дозировке необходимо учитывать влажность материала.

Расчет производится следующим образом: предположим, что влажность песка 5%.

Весовое количество сухого песка подсчитывается так же, как и в приведенном выше примере, т. е.

25 X 2804 /100 = 701 кг.

Так как во влажном песке содержится 95% сухого песка и 5% воды, т. е 701 х 5/ 95 = 37,9, или, округляя, 38 кг.

Следовательно, влажного песка нужно взять 701 кг+38 кг=739 кг.

При объемном способе получается менее точная дозировка, поэтому предпочтение следует отдавать весовому способу.

Асфальтовое вяжущее вещество и мастика

Асфальтовая мастика представляет собой твердое вещество темно-бурого или черного цвета

Асфальтовый порошок

Асфальтовый порошок получается в результате тонкого помола асфальтовых известняков или доломитов, содержащих обычно от 4 до 8% твердого тугоплавкого битума.

Из-за низкого содержания битума порошок без добавки битума в строительствe не применяется; его смешивают с битумом на заводе или на стройке и получают асфальтовое вяжущее вещество.

Асфальтовая мастика

Асфальтовая мастика представляет собой (при нормальной температуре) твердое вещество темно-бурого или черного цвета. Она выпускается заводами в виде квадратных плит толщиной 10-12 см и весом 32 кг. Изготовляют ее, смешивая в определенном соотношении молотую асфальтовую породу с расплавленным нефтяным битумом. Однородную расплавленную смесь разливают в формы, где она и застывает.
Мастика должна удовлетворять следующим требованиям:

  1. быть однородной;
  2. содержать битума не менее 13% от общего веса;
  3. обладать водонепроницаемостью: при слое толщиной 2 см не пропускать воду под давлением в 3 ати в течении час;
  4. предел прочности при растяжении трамбования образцов — восьмерок — должен быть не менее 30 кг/см2.

Альтовая мастика называется также асфальтовым вяжущим веществом и применяется для изготовления литых асфальтовых растворов.

Пути снижения расхода битума при расчете состава асфальтобетонной смеси

Навигация:
Главная → Все категории → Экономия битума

Пути снижения расхода битума при расчете состава асфальтобетонной смеси Пути снижения расхода битума при расчете состава асфальтобетонной смеси
Количество битума в асфальтобетоне должно быть оптимальным, обеспечивающим максимальную прочность, заданную пластичность и оптимальную остаточную пористость. Избыток битума снижает прочность, сдвигоустойчивость и повышает пластичность асфальтобетона. Недостаток битума снижает прочность, водо- и морозостойкость асфальтобетона.

Оптимальное количество битума в асфальтобетоне взаимосвязано со свойствами минеральных компонентов и их соотношением в смеси. Заменяя один материал другим и изменяя их соотношение, можно уменьшить или увеличить оптимальное содержание битума. Но так как битум наиболее дорогой и дефицитный компонент асфальтобетона, проектирование его состава ведут’ по принципу минимального расхода битума.

Для получения асфальтобетона с минимальным расходом битума необходимо подобрать минеральную часть с минимальным количеством пустот. Это.достигается расчетом минеральной части по кривым плотных смесей с выбором такого соотношения между отдельными фракциями, при котором пористость приближалась бы к минимальному значению допустимой пористости минерального остова асфальтобетона. Для асфальтобетонных смесей типов А и Б пористость минерального остова не должна превышать 19%, типов В, Г и Д -22%.

Опыт английских дорожников показал, что при особом подборе соотношения между узкими фракциями минерального материала можно получить минеральный остов асфальтобетона с пористостью до 12%.

Расчеты по данным, приведенным в «Руководстве по строительству дорожных асфальтобетонных покрытий», показывают, что снижение пористости минерального остова на 1% приводит к уменьшению требуемого количества битума на 0,46%.

На расход битума в асфальтобетоне также влияет степень развитости поверхности минеральных компонентов. Чем более угловаты и шероховаты минеральные зерна, чем больше на зернах углублений и выступов, тем больше их поверхность и больше потребуется битума для обволакивания. В действующих нормативных документах нег сведений об изменении удельной поверхности минеральной части асфальтобетонных смесей рекомендуемых типов. Для восполнения этого приводим расчеты, выполненные Г. Р. Фоменко для всех типов смесей. Как видно из этих данных, от среднезернистой смеси до песчаной удельная поверхность минеральных компонентов возрастает в 2-2,5 раза. В пределах одной крупности от типа А до В удельная поверхность минеральной части асфальтобетона увеличивается в 1,4-1,8 раза. В наибольшей степени на величину удельной поверхности смеси влияет количество минерального порошка. Расчеты показали, что на долю минерального порошка приходится 88-91% всей поверхности. Замена дробленого песка на природный, окатанный, снижает удельную поверхность всей смеси на 5-8%. Это, в свою очередь, приводит к уменьшению расхода битума. Так, замена гранитных высевок на кварцевый окатанный песок в песчаном асфальтобетоне приводит к уменьшению расхода битума с 7 до 6% (табл. 2.6).

Снижение вязкости применяемого битума неизбежно приводит к уменьшению требуемого количества вяжущего. Если принять расход битума марки БНД 40/60 за единицу для данного состава асфальтобетона, то расход битума марки БНД 60/90 составит 0,98, БНД 90/130 — 0,96, БНД 130/200 — 0,93, БНД 200/300 — 0,91, а СГ 130/200 — 0,88.

В наибольшей степени на расход битума в асфальтобетоне влияв.т битумоемкость минеральных компонентов. Минеральные материалы, обладающие высокой битумоемкостью, требуют повышенного расхода вяжущего. Поэтому при выборе минеральных материалов для приготовления асфальтобетона следует обязательно учитывать их битумоемкость.

Эталонный минеральный порошок (частицы мельче 0,071 мм) из плотного известняка марки «1000» имеет битумоемкость. 16%. В этом порошке практически нет внутреннего поглощения битума. Весь битум расходуемся на обволакивание минеральных зерен. На них формируется развитый ориентированный слой, способный обеспечить высокие адгезионно-когезионные свойства асфальтовяжущего. Порошки, обладающие меньшей битумоемкостью при одинаковой с эталоном удельной поверхностью, плохо структурируют битум, и считать их минеральным порошком не следует. Если они попадают в смесь вместе с высевками, то их количество необходимо ограничивать.

Необходимо отметить, что минеральный порошок из известняков-ракушечников обладает такой же битумоемкостью, как и порошок из плотного известняка. Это объясняется тем, что’ при дроблении известняков-ракушечников почти полностью разрушаются поры. Частицы мельче 0,071 мм практически плотные. А вот песчаные фракции известняка-ракушечника обладают большей битумоемкостью, чем аналогичные’ фракции дробленого плотного известняка.

Минеральные- порошки, обладающие высокой битумоем костью, например, широко применяемая в Донецкой обл. обожженная доломитовая пыль, вследствие развитой внутренней поверхности поглощают значительное количество битума. Применение этого порошка приведет к повышенному расходу битума в асфальтобетоне.

Порошок из дробленых основных шлаков, содержащий око ло 50% продуктов силикатного распада, также обладает очень-большой битумоемкостью из-за развитой внутренней поверх ности. Асфальтобетон на этом материале требует повышен ного расхода битума (до 12%).

Битумоемкость песчаных фракций также в значительной степени зависит от исходной породы и формы частиц. Наименьшей битумоемкостью обладает окатанный кварцевый песок. С точки зрения расхода битума, окатанный чистый песок наиболее пригоден для приготовления асфальтобетона.

Наибольшей битумоемкостью обладает щебень из металлургических шлаков. Его битумоемкость превышает битумоемкость известнякового щебня в 1,5-2 раза. Необходимо отметить, что битумоемкость гранитного щебня также выше, чем щебня из плотного известняка, в 1,3-1,5 раза.

Состав № 2 на гранитном щебне, кварцевом песке и известняковом порошке требует 6% битума. Больший расход битума объясняется большей битумоемкостью гранитного щебня, чем известнякового. Асфальтобетон на шлаковом материале (состав № 4) требует наибольшего количества битума (12,5%). Такой расход битума связан с большой битумоемкостью щебня, высевок й порошка из доменных основных шлаков. Эти шлаки содержат и продукты силикатного распада, представляющие собой частицы с высокоразвитой внутренней поверхностью, вследствие чего поглощается до 50% битума. При эксплуатации асфальтобетонного покрытия происходит дальнейшая фильтрация битума в глубь зерен, что ускоряет старение. С точки зрения расхода битума, высокобитумоемкие материалы не следует применять для производства асфальтобетона. Возможно сочетание различных по битумоемкости материалов с целью общего снижения расхода битума. Так, например, добавление в шлаковый материал кварцевого песка приводит к значительному уменьшению расхода битума в асфальтобетоне. Замена шлакового порошка, содержащего большое количество продуктов силикатного распада» на известняковый также приводит к снижению расхода битума в асфальтобетоне.

По битумоемкости щебня, высевок из гранита и щебня, высевок и порошка из плотного известняка произведены расчеты требуемого количества битума для стандартных составов по ГОСТ 9128-84, которые позволили уточнить данные о примерном расходе битума. При применении материалов из ‘плотного известняка расход битума в асфальтобетоне может быть ниже приведенных в стандарте значений, а при применении гранитных материалов — больше.

Похожие статьи:
Переработка старого асфальтобетона в стационарных установках

Навигация:
Главная → Все категории → Экономия битума

Статьи по теме:

Главная → Справочник → Статьи → Блог → Форум

Обзор технологий приготовления тёплых асфальтобетонных смесей



Применение технологии теплой асфальтобетонной смеси (ТАС)– это возможность для асфальтовой промышленности улучшить качество своей продукции и производительность труда, эффективность строительства и защиту окружающей среды. Более низкая температура производства снижает старение битума на стадии производства, что повышает стойкость смеси к термическому и усталостному растрескиванию. Данная статья представляет собой обзор различных технологий, используемых в производстве ТАС, описывает их преимущества и недостатки, а также подчеркивает необходимость дальнейших исследований в этой области.

Ключевые слова: теплая асфальтобетонная смесь, асфальтобетон, технология теплой асфальтобетонной смеси, парниковый газ.

1- Введение

Асфальтовая промышленность способствует увеличению выбросов CO2 в связи с потребностью в энергии на этапе производства. В настоящее время горячая асфальтобетонная смесь (ГАС) является доминирующим типом среди производимых асфальтобетонных смесей. Производство ГАС проходит в несколько этапов, включая сушку и нагрев агрегата, нагрев вяжущего и смешивание всех компонентов. Конечная температура перемешивания асфальтобетонной смеси обычно составляет около 165°С [1]. При таких повышенных температурах потребляется значительное количество энергии, а в атмосферу выбрасывается большое количество парниковых газов и загрязняющих веществ.

ТАС — это технический термин, используемый для описания асфальтобетонных смесей, производимых при температурах ниже традиционных ГАС обычно на 10–40°C [1].

Преимущества технологий ТАС заключаются в их экономичности и экологичности. Снижение температуры производства асфальта гарантирует экономические и экологические выгоды. Чем ниже температура смешивания, тем ниже выбросы парниковых газов и расход топлива. Многие исследования продемонстрировали преимущества технологий ТАС. К ним относятся снижение выбросов CO2 и расхода топлива, увеличение срока службы дорожного покрытия вследствие уменьшения времени отвердения вяжущего на этапе производства, возможность включения высокого содержания восстановленного асфальтобетона (ВА), улучшение условий труда на асфальтовых заводах и увеличение времени на транспортировку, укладку и уплотнение асфальтобетонных смесей. Технологии ТАС могут снизить выбросы парниковых газов примерно на 33 % по сравнению с ГАС и потребление энергии на этапе производства примерно на 18 % [2,3].

В настоящее время существует три ведущих технологии, которые могут быть реализованы для производства ТАС: использование химических добавок, органических добавок и методов вспенивания [4,5]. Каждая из названных технологий, несмотря на ряд недостатков, имеет много преимуществ как с точки зрения технологии производства, так и с точки зрения технологических и эксплуатационных характеристик. Выбор подходящей технологии связан с экономическим аспектом и рядом факторов (в том числе с классификацией дорог, климатических зон, экологическими и транспортными факторами), которые влияют на качество дорожного покрытия в течение эксплуатационного периода.

2- Цель изадачи

Определение различных технологий, используемых при приготовлении теплых асфальтобетонных смесей, и их различных характеристик, что облегчает производителю выбор подходящей технологии для условий реализуемого проекта.

3- Технология производства ТАС сиспользованием химических добавок

Один из вариантов технологии производства ТАС связан с использованием химических добавок. Химические добавки — это продукты, которые не зависят от пенообразования или уменьшения вязкости для снижения температуры смешивания и уплотнения. Вместо этого они обычно включают комбинацию эмульгирующих агентов, поверхностно-активных веществ, полимеров и добавок для улучшения покрытия, обрабатываемости смеси и уплотнения, а также стимуляторы адгезии (антискользящие агенты). Химические добавки часто используются в США, Франции и Норвегии. Снижение температуры смешивания колеблется в зависимости от типа добавки: например, от 15 до 30°С при применении REVIX и от 50 до 75 °С — при Evotherm ET [7].

Инновационная технология Evotherm® была разработана в США компанией MeadWestvaco Asphalt Innovations (г. Чарльтон, Южная Каролина). Смесь приготавливают на битумной эмульсии с добавками, предложенными компанией, которые предназначены для улучшения смачиваемости и сцепления битума с каменным материалом, а также для удобоукладываемости смеси. Количество добавок составляет около 0,5 % от массы битумной эмульсии. Концентрация битума в эмульсии — около 70 %. Для смешения каменного заполнителя с эмульсией может быть использован обычный смеситель. Вода, содержащаяся в эмульсии, при смешении с нагретым каменным материалом испаряется. Смесь приготавливают при температуре 80–105°C, а уплотняют при температуре 60–80°C. В связи с этим компания MeadWestvaco сообщает о возможном сокращении затрат топлива на 55 % и снижении количества CO2 и SO2 на 45 %, оксидов азота — на 60 % [7].

Согласно научному докладу, опубликованному Национальным центром исследований асфальта США (NCAT Report 06–02) в 2006 году [3], добавление Evotherm® значительно уменьшило способность асфальтобетонных смесей к колееобразованию по сравнению с контрольными смесями без добавки, полученными при той же температуре, как показано на рисунке 1. Колеи увеличивались с уменьшением температуры смешивания и уплотнения, и это, как полагают, связано с уменьшением старения вяжущего. Однако смеси, содержащие Evotherm®, были менее чувствительны (с точки зрения колееобразование) к пониженным температурам производства, чем контрольные смеси. Улучшенная производительность Evotherm® в некоторых случаях значительно коррелировала с улучшенным уплотнением.

Рис. 1. Глубины колеи для агрегата известняка [3]

4- Технология производства ТАС сиспользованием органических добавок

Технологии с использованием органических добавок предусматривает применение в смеси воска. Когда температура поднимается выше температуры плавления восков, обычно происходит снижение вязкости. По мере охлаждения смеси эти добавки затвердевают и образуют микроскопически мелкие и равномерно распределенные частицы, которые увеличивают жесткость вяжущего точно так же, как и армированные волокном материалы. Тип воска должен быть тщательно выбран, чтобы избежать возможных проблем с температурой. Другими словами: если температура плавления воска ниже температуры эксплуатации, это может привести к осложнениям. Правильный выбор воска сводит к минимуму охрупчивание вяжущего при низких температурах. Таким образом, воски должны быть прочными и твердыми при рабочей температуре. Температура, при которой воск плавится, находится в прямой зависимости от длины углеродной цепи (C45 или более) [6]. Количество добавляемого воска обычно составляет 2–4 % от общей массы. Снижение температуры, обычно достигаемое добавлением этих восков, составляет 20–30°С [3]. В настоящее время существуют три основные технологии, которые различаются по типу воска, используемого для уменьшения вязкости: воск Фишера-Тропша, амид жирной кислоты и воск Монтана.

Воск Фишера-Тропша представляет собой метод синтеза углеводородов и других алифатических соединений из газов (CO/h3). Эта добавка представляет собой чистый углеводород без функциональных групп и характеризуется высокой химической стабильностью и устойчивостью к старению. Хотя воск плавится при температуре около 100°С в чистом виде, при смешивании с битумом его температура плавления понижается до 80–85°С, что позволяет уплотнять асфальтобетонную смесь при температуре менее 100°С [6].

Другой технологический процесс с брендовой добавкой Sasobit® был предложен компанией Sasol Wax (бывшая компания Schümann Sasol из Южной Африки). Sasobit называют средством для увеличения текучести битума. Парафиновый воск Sasobit характеризуется преобладающей длиной углеводородных цепей в диапазоне от 40 до 115 атомов углерода. Для сравнения: у содержащихся в битумах парафинов длина этих цепей — 22–45 атомов углерода. Поэтому Sasobit, в отличие от содержащихся в битумах парафинов, имеет высокую температуру плавления — 102 °C. Sasobit поставляется в виде гранул или порошка. При температуре выше 120 °C он полностью растворяется в битуме, а при температуре же ниже 102 °C образует в битуме кристаллообразную сетчатую структуру. Добавка Sasobit в количестве от 1 до 3 % по массе битума снижает его вязкость, что позволяет понизить температуру приготовления смеси на 18–50°C, а также улучшает уплотняемость смеси [6].

G. Zhao в 2012 году [3,6] исследовал образцы горячего и теплого асфальтобетона при температуре смешения соответственно 175°C и 145°C. Исследователь обнаружил, что разница в процентном содержании пустот в горячей и теплой смесях невелика, а добавка Sasobit может снизить температуру уплотнения смеси примерно на 30°C, о чем свидетельствуют данные таблицы 1.

Таблица 1

Характеристики образцов [3,6]

Тип смеси

Температура уплотнения (℃)

Теоретическая максимальная плотность (g/cm3)

Объемная плотность (g/cm3)

Процент пустоты (%)

Горячая смесь

165

2,500

2,399

4,04

Sasobit — теплая смесь

135

2,500

2,398

4,08

К другому виду органических добавок принадлежат амидные воски, которые представляют собой синтетические амиды жирных кислот с различными торговыми названиями. Они производятся синтетически, вызывая реакцию аминов с жирными кислотами. Эти воски плавятся при температуре 140–145°С, тогда как затвердевание происходит при 135–145°С. В течение нескольких лет аналогичные продукты были модификаторами вязкости в асфальте и использовались в кровельном асфальте с конца 1970-х до начала 1980-х годов. По мере того как амиды жирных кислот охлаждаются, они образуют кристаллиты в битуме, тем самым повышая стабильность асфальта и сопротивление деформации [6].

Воск Монтана (Воск Montan) — это лигнитовый воск, который добывается из специального воскового лигнита. В химическом отношении воск Монтана состоит в основном из сложных эфиров жирных кислот. Это комбинация сложных эфиров карбоновых кислот с длинноцепочечными цепями, свободных длинноцепочечных органических кислот, длинноцепочечных спиртов, кетонов, углеводородов и смол. Поскольку температура плавления этого воска в чистом виде составляет приблизительно 75°С, его часто смешивают с материалами с более высокой температурой плавления, такими как амидные воски. Воск Montan можно подавать непосредственно в смеситель, что требует дополнительного времени перемешивания [6].

Следует отметить, что органические добавки имеют свои преимущества и недостатки. С одной стороны, они снижают вязкость асфальтового вяжущего при высоких температурах и, таким образом, снижают старение и температуры смешивания и уплотнения, а также увеличивают стойкость колееобразования при промежуточных температурах для асфальтового вяжущего. С другой стороны, органические добавки могут увеличить вероятность усталости и низкотемпературного растрескивания при средних и низких температурах. Поэтому важно оптимизировать характеристики вяжущих с модифицированными органическими добавками в диапазонах высоких, низких и промежуточных температур путем тщательного выбора типа и источника вяжущего и содержания органических добавок.

5- Технология производства ТАС сиспользованием методов вспенивания

Эта технология в основном предусматривает добавление небольших количеств воды, либо впрыскиваемой в горячее вяжущего, либо непосредственно в смесительную камеру [8]. Когда вода смешивается с горячим битумом, высокие температуры вызывают ее испарение и захват пара. В результате образуется большой объем пены, который временно увеличивает объем вяжущего и снижает его вязкость. Этот эффект значительно улучшает покрытие и обрабатываемость смеси, но его продолжительность ограничена. Это означает, что смесь должна быть уложена и уплотнена вскоре после производства [8]. Процессы пенообразования могут происходить либо с водосодержащими продуктами (водосодержащие технологии), либо на водной основе (водные технологии).

Водосодержащие технологии для обеспечения процесса вспенивания используют цеолит Aspha-min®. Продукт состоит из алюмосиликатов щелочных металлов (кальция, натрия, калия) и подвергся гидротермической кристаллизации. Кристаллизация — это примерно 20 % воды [8]. Структура цеолитов имеет большие воздушные пустоты, в которых могут быть размещены катионы и даже молекулы или катионные группы (такие как вода). Их способность терять и поглощать воду, не повреждая кристаллическую структуру, является основной характеристикой этого силикатного каркаса [5,8].

Компания Eurova рекомендует добавлять гранулы цеолита в количестве 0,3 % по массе асфальтобетонной смеси. Компания Eurova утверждает, что рекомендуемого количества добавки (цеолита) достаточно для снижения температуры смешивания и укладки на 30°C [5].

К 2006 г. в США Aspha-min был применен в асфальтобетонных смесях на четырех объектах. Оптимальное содержание битума определяли по обычной методике (в отсутствие цеолита). Смеси приготовляли при температуре приблизительно на 30–35°C ниже обычной для горячего асфальтобетона. Уплотняемость смеси после добавления цеолита улучшилась –остаточная пористость снижалась примерно на 0,8 % [5]. По результатам испытаний на лабораторном гамбургском стенде устойчивость к образованию колеи снизилась, что можно объяснить уменьшением старения вяжущего вследствие понижения температуры приготовления смеси.

Собственно водные технологии используют воду более прямым способом. Это означает, что вода, необходимая для получения эффекта пенообразования, впрыскивается непосредственно в поток горячего вяжущего, обычно с помощью специальных форсунок. Поскольку вода быстро испаряется, это производит большой объем пены, которая медленно разрушается. Эта категория добавок может быть разделена на типы продуктов, используемых для приготовления смеси [8]:

Double Barrel Green, Ultrafoam GX, LT Asphalt: хотя оборудование для впрыска воды в поток горячего вяжущего отличается (поскольку каждая компания производит свое оборудование), основной принцип остается тем же. Несколько форсунок используются для впрыскивания холодной воды с целью микроскопического вспенивания вяжущего;

WAM Foam — это двухкомпонентная система вяжущих (также известная как двухфазный метод), которая предполагает разновременную подачу мягкого и твердого вспененного вяжущего в период смешивания в процессе производства. Мягкий битум сначала смешивают с заполнителем, чтобы предварительно покрыть его, затем к смеси добавляют твердый битум, который был вспенен предыдущим впрыском холодной воды в количестве от 2 % до 5 % от массы твердого вяжущего [8]. Эта комбинация мягкого вяжущего и вспенивания твердого вяжущего вместе с вспениванием твердого битума снижает вязкость смеси для обеспечения необходимой обрабатываемости, как показано на рис. 2.

Рис. 2. Технология WAM-Foam [8]

Следует отметить, что пока доля производства теплых смесей в Европе не превышает 1 % [8] от всего производства асфальтобетонных смесей, а время наблюдений за поведением таких смесей в период эксплуатации еще недостаточно для определенных суждений о перспективах их применения. Остается целый ряд невыясненных вопросов, связанных с процедурой проектирования состава и расчетными характеристиками для проектирования дорожной одежды; устойчивостью к образованию колеи; водо- и морозостойкостью. Для их решения требуется проведение дополнительных исследований с целью изучения и анализа прошлого опыта, а также более точного выбора существующих добавок, необходимых для улучшения эксплуатационных и транспортных характеристик этой многообещающей технологии.

6- Выводы изаключение

  1. Можно предложить следующую классификацию преимуществ ТАС:

− экологические выгоды — снижение выбросов и выхлопных газов на заводах по производству асфальтобетона;

− экономические выгоды — снижение энергопотребления и финансовых затрат;

− технические выгоды — повышение работоспособности смеси и эффективности уплотнения, увеличение расстояний между перевозками смеси и ускорение движения транспорта благодаря сокращению времени ее охлаждения;

− производственные выгоды — наибольшая свобода выбора места расположения завода с возможностью размещения его в городских районах.

  1. Результаты предыдущих исследований различных технологий производства ТАС показали, что рабочие характеристики смесей ТАС могут быть, по меньшей мере, эквивалентны ГАС. Это возможно благодаря часто лучшей работоспособности и, следовательно, лучшему уплотнению, которое может быть достигнуто с их использованием.
  2. Однако, несмотря на то, что более низкие температуры являются многообещающими, они все-таки недостаточно изучены. По этой причине требуются более глубокие исследования в отношении конструкции смеси, долгосрочной производительности, экономической эффективности и эксплуатации дорожного покрытия.
  3. Технология ТАС должна найти свое отражение в ГОСТ, национальных и местных стандартах. Это будет стимулировать промышленность и предоставит обществу инновационные решения для ТАС.

Литература:

1. Capitão S. D., Picado-Santos L. G., Martinho F. Review on the use of warm-mix asphalt // Constr. Build. Mater. — 2012. — № 36. — С. 1016–1024.

2. Vidal R., Moliner E., Martínez G., Rubio M. C. Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement // Conserv. Recycl. — 2013. — № 74. — С. 101–114.

3. EAPA. The Use of Warm Mix Asphalt // European Asphalt Pavement Association. — Brussels, Belgium, 2010:, 2010. — С. 67.

4. Almeida-Costa A., Benta A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt // J. Cleaner Prod. — 2016. — № 112. — С. 2308–2317.

5. Королев И. В. Дорожный теплый асфальтобетон. — Киев: Вища школа, 1975. — 165 с.

6. Zhao G., Guo P. Workability of Sasobit Warm Mixture Asphalt // International Conference on Future Energy, Environment, and Materials. — 2012. — № 16. — С. 1230–1236.

7. Hurley G. C., Prowell B. D. Evaluation of Evotherm® for Use in Warm Mix Asphalt // National Center for Asphalt Technology (NCAT). — 2006:, 2006. — С. 49.

8. Радовский Б. С. Технология нового асфальтобетона в США // Устройство асфальтобетонного покрытия — Дорожная техника. — 2008. — № 19. — С. 24–28.

Основные термины (генерируются автоматически): добавок, смесь, температура, воск, вод, дорожное покрытие, снижение температуры смешивания, Технология производства, этап производства, асфальтовая промышленность.

Технология приготовления асфальтобетонной смеси и контроль. ГОСТ 9128-97

— Для приготовления а/б смеси необходимо предварительно разработать в  лабораторных условиях его состав (количества щебня, песка, минерального порошка и битума).
— Для обеспечения точного состава а/б смеси необходимо предварительная сортировка  этих материалов (сортировочные устройства устанавливаются до холодного вертикального элеватора).

— Количество материалов,   отпускаемых со складов завода в смеситель, должно соответствовать составу смеси, предложенного лабораторией.

— Для восстановления кровель применяется а/б смесь, используемая для всех типов дорог:
Тип А
Марки I,

где содержание щебня должно составлять 50-60% (гос. стандарт 9128-97)
— Для приготовления смеси в смеситель в первую очередь подается щебень, песок, минеральный порошок; после получения смеси подается соответствующее количество битума для последующего смешения.
— Температура щебня и песка в процессе смешивания должна составлять 165-185 С°
— Минеральный порошок подается в холодном виде.
— Температура битума должна составлять 140-160 С°
— После выпуска из смесителя температура смеси должна составлять 140-160 гр. С.
— Состав щебня должен быть таким, чтобы его зерна проходили:
через 20-мм сито – 90-100%,
через 15-мм сито – 75-100%.
— Допустимое отклонение в количестве материалов в процессе приготовления а/б смесей должно быть не более:
щебня – 3%,
песка – 3%,
битума – 1,5%,
мин. порошка – 1,5%.
— температура битума проверяется каждые 2 часа.

— Контроль за остальными компонентами смеси ведется непрерывно.
— Температура готовой смеси проверятся при каждой погрузке в самосвал.
— Качество а/б смеси проверяется  в каждую смену в лабораторных условиях.
— Время доставки а/б смеси не должно превышать 1, 5 часа при температуре воздуха свыше 10 С°.
— Работа механизмов  предварительной сортировки и устройств по взвешиванию компонентов проверяются каждые 2 недели, а при возникновении подозрений в неточности – немедленно.
— При визуальном осмотре а/б смесь должна выглядеть однородной, рыхлой, не должна прилипать к кузову автомобиля.
В случае возникновения сомнений она должна быть проверена в лабораторных условиях.
— Состав зерен а/б смеси проверяется раз в 3 смены, а содержание щебня – каждую смену, ускоренным методом.
— Прочность используемых в  а/б смесях (тип А) щебня не должна быть ниже 1000.
— В щебне (тип А) допустимо наличие  не более 15% плоских и игольчатых зерен.
— Содержание глинистых или пылевых частиц в щебне и песке не должно превышать 1%.
— Пористость минерального остова  не должна превышать 23%.
— А/б смесь должна соответствовать следующим требованиям:

 

Наименование показателейКлиматические зоны
lll, llllV, V

Водонасыщенность в % по объему

Тип А

Б и Г

В и Д

Остаточная пористость по % объема

2.0-3.5

1.5-3.0

1.0-2.5

2.0-3.5

 

2.0-5.0

1.5-4.0

1.0-4.5

2.0-5.0

 

3.0-7.0

2.5-6.0

2.5-6.0

3.0-7.0

Состав зерен а/б смесей типа А марки I должен составлять:

 

Тип смеси
Состав зерен в % меньше мм
20151052. 51.250.630.3150.140.071
А90-10075-10062-10040-5028-3820-2814-2010-156-124-10

— Нагретый до рабочего состояния битум необходимо использовать в течение 5 часов.
— После готовности а/б смеси его необходимо загрузить в автомашины или в складское хранилище
— В зависимости от консистенции битума, используемые материалы в процессе приготовления а/б смеси должны иметь следующую температуру:

Вид смесиМарка битумаТемпература в С°
БитумЩебень и песокА/б смесь
горячий

БНД: 40/60 60/90 90/130 БН: 60/90, 90/130

130-150165-185140-160
Холодный

БНД: 130/200, 200/300, 130/200 БН: 200/300

110-130145-165120-140

АГ: 130/200 МГ: 130/200

80-100
90-100

115-135
125-145

90-110
100-120


— Для приготовления а/б смеси необходимо иметь необходимое количество щебня, песка, минерального порошка и битума.
— В ходе приготовления смеси необходимо произвести предварительное дозирование по объемам – в соответствии с зерновым составом, разработанным в лаборатории.
Влажный щебень и песок определенного зернового состава в установленных объемах  поступает в сушильно-нагревочную печь. После печи поступает на сита двойной сортировки, а оттуда – в соответствующие бункеры. 
Из этих бункеров щебень, песок и минеральный порошок в определенных дозах подаются в смеситель (битум подается отдельно).
— Цикл приготовления смеси считается завершенным, когда она поступает в машину по перевозке смеси  или в заводское складское хранилище.

5.Определение оптимального содержания битума в асфальтобетоне

Содержание битума в асфальтобетоне выражается в % от массы минеральной части, т.е. сверх 100 % минеральной части. Для определения оптимального содержания битума готовят пробную асфальтобетонную смесь выбранного зернового состава с заведомо пони­женным содержанием битума в расчете на изготовление 3-х образцов;

Таблица 7- Расход минеральной части и битума для пробной смеси

Диаметр, высота образцов, мм

Расход компонентов на три образца

Минеральной части, г

Битума

%

г

50,5

750

5,5

41,2

71,4

2000

4,5

90,0

100,9

5800

3,5

203,0

Из приготовленной смеси формуют 3 образца в соответствии с требованиями стандар­та и гидростатическим взвешиванием определяют их фактическую среднюю плотность , кг/м3;

Вычисляют насыпную плотность минеральной части в образцах р*»и, кг/м3 по форму­ле:

Где Б-содержание битума, % массы минеральной части.

Среднюю плотность минеральной части кг/м3 вычисляют по формуле:

где Щ, П, МП — содержание соответственно щебня, песка и минерального порошка, % массы минеральной части;

средняя плотность зерен соответственно щебня и песка, кг/м³;

рмп— истинная плотность минерального порошка, кг/м .

Межзерновую пустотность минеральной части в образцах Рмч, % объема, вычисляют по формуле:

Рассчитывают содержание битума Б, % массы, по формуле:

где истинная плотность битума, кг/м³.

Снова готовят асфальтобетонную смесь в расчете на формование 3-х образцов. Расход минеральной части принимают по табл. 12, битума — в соответствии с расчетом по форму­ле (20). Остальные действия повторяют. Кроме того, определяют:

Расчетную среднюю плотность асфальтобетона по формуле:

Фактическую остаточную пористость асфальтобетона, % объема, по формуле:

Если значение Рмчпри первом расчетном содержании битума не изменилось, а значе­ние Рмчи соответствуют требованиям технического задания и ГОСТ 9128-09, то гото­вят такую же асфальтобетонную смесь в количестве, достаточном для 15 образцов, фор­муют образцы и проводят все контрольные испытания по полному перечню показателей свойств.

Если значение Ртстало меньше, то делают расчет по формуле (20) при новом значе­нии Рмчи повторяют вышеописанные действия.

Цель проектирования состава асфальтобетона считается достигнутой, если пустотность минеральной части и остаточная пористость находятся в требуемых пределах, а остальные показатели свойств асфальтобетона соответствуют требованиям ГОСТ 9128-09 Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Технические условия.

6. Физико-механические свойства асфальтобетона

К физическим свойствам асфальтобетона относятся:

  • средняя плотность асфальтобетона,

  • истинная плотность смеси,

  • набухание асфальтобетона,

  • водонасыщение асфальтобетона,

  • пористость остова (минеральной части) асфальтобетона,

  • остаточная пористость асфальтобетона

К механическим свойствам асфальтобетона относятся:

  • предел прочности асфальтобетона при сжатии;

  • коэффициент водостойкости асфальтобетона;

  • коэффициент водостойкости асфальтобетона при длительном водонасыщении

Расход битума на 1 м2 асфальтового покрытия. Расход асфальта на 1м2 асфальта дорожного покрытия


Расход битумной эмульсии на 1 м2

Наиболее эффективным способом защиты дорожных покрытий от преждевременных разрушений является применение продуктов переработки нефтяного дорожного битума — битумной эмульсии.

Помимо отличных гидроизоляционных свойств данный продукт обладает высокой адгезией, которая обеспечивает отменное сцепление между конструкционными слоями дорожной одежды и поэтому широко применяются при подгрунтовке покрытий и оснований.

В это небольшой информационной заметке мы хотим показать любознательному читателю расход битумной эмульсии на 1 квадратный метр при устройстве основания/покрытия.

Расход любого продукта зависит, прежде всего, от физико-химических свойств материала, который подвергается грунтованию.

В дорожном строительстве при подгрунтовке конструкционных слоев, согласно строительным нормам и правилам, приняты следующие расходы битумной эмульсии:

— по способу пропитки он составит около 1 литра эмульсии на 1 см толщины (в случае устройства основания) и 1,5-2,0 литра при устройстве покрытия,

— при подгрунтовке нижних слоев асфальтобетонного покрытия расход составит 0,3-0,4 литра/м2,

— при подгрунтовке отфрезерованного под дальнейшую укладку покрытия расход составит 0,3-0,5 литра/м2,

— для основания из цементобетона расход составит 0,5-0,8 литра на м2,

— при устройстве оснований из щебня расход составит 0,5-0,9 л/м2.

Все вышеуказанные значения являются примерными и приведены с той целью, чтобы помочь Вам разобраться с расходами на подгрунтовку, оценить примерные объемы и затраты на них. Точная цифра расхода должна рассчитываться исходя из конкретных условий отдельно взятого объекта.

Если у Вас возникла трудность с расчетом, наши специалисты всегда готовы помочь Вам и соориентировать по текущим ценам на подгрунтовку оснований и покрытий на рынке Москвы и ближнего Подмосковья.

Мы рады, если чем-то смогли Вам помочь.

Другие статьи на данную тему, которые могли бы Вас заинтересовать:

​1. Расход асфальта на 1 м2

2. Расход щебня на 1 м2

3. Расход песка на 1 м2

4. Расход битумной мастики на 1 м2

  1. Главная
  2. Блог
  3. Заметки
  4. Расход битумной эмульсии на 1 м2

roadtm.com

Расход асфальта на 1м2 асфальта дорожного покрытия

Укладка асфальтного дорожного покрытия обычно сопряжена с большим объемом строительных работ и предполагает значительные расходы заказчика. Именно в этом случае необходимо произвести детальный расчет расхода асфальта на 1 м2. Это обязательно нужно сделать, чтобы исключить переплату за ненужные объемы стройматериала и не допустить раздувания сметы.

Но прежде, чем приступать к таким расчетам, нужно получить общую информацию об асфальте и узнать возможности его применения.

Асфальтом называют соединение битумов, нефтепродуктов и малого количества минерального сырья тягучего смолистого качества, произведенное натуральным либо искусственным образом. В асфальте природного происхождения часть битума будет колебаться в пределах 60-75 %, тогда как искусственный содержит битум только на 15 % от общего объема и достигает максимум 60 %.

Применение асфальта

В каждодневной жизни под асфальтом понимают преимущественно дорожные покрытия, в то время как он имеет предназначение связующего стройматериала. Благодаря этому асфальт также применяется как строительная шпаклевка, клей, кровельный и даже лакокрасочный стройматериал. Но все же основное потребление искусственного и натурального асфальта остается в орбите дорожного строительства, где и будет подсчитан расход асфальта на 1м2 асфальта.

Определение объема потребления асфальта

Любые работы по укладке дорожного полотна определяются ГОСТами. Но имеются основные факторы, влияющие на потребление асфальта. К таковым относятся:

  • Размеры участка.
  • Толщина слоя покрытия.
  • Структура несущей и конечной поверхности.

Еще необходимо подобрать оптимальную асфальтобетонную смесь, зависящую от области ее использования и влияющую на расход асфальта на 1 м2. Различают такие виды смеси:

  • Горячая, теплая или холодная.
  • Песчаная, мелкозернистая, крупнозернистая.
  • Плотная, пористая, высокопористая.

Классифицирование смесей

Природный асфальт представляет собой смолистую породу и образуется естественным образом из тяжелых фракций нефтяного происхождения в результате окисления нефти. В действительности этот продукт получается в процессе преобразования нефти в мягкий битум.

Если по сути своей природный асфальт – ископаемое, то искусственный асфальт получают в результате перегонки нефти. Этот строительный материал используется для приготовления следующих асфальтобетонных смесей:

  • Горячие из вязкого битума с температурой укладки 120о С (являются наиболее качественными и износостойкими).
  • Теплые на основе маловязкого битума с укладкой при температуре 40-80о С.
  • Холодные на основе жидкого битума с уплотнением и укладкой при температурном режиме не ниже -5о С. Влажная погода во время проведения работ допускается. Движение транспорта открывается практически сразу по завершении работ. Характеризуются высокой уплотняемостью даже при отрицательных температурах и позволяют продлить строительный сезон. Эффективны осенью, зимой и весной.

По типу асфальтобетонные смеси разделяются на:

  • Песчаные (применяются для заливки трещин на покрытии, при ямочном ремонте и для гидроизоляции. Размер зерен не менее 10 мм).
  • Мелкозернистые (применяются для укладки верхних слоев полотна или его выравнивания. Зерна не менее 20 мм).
  • Крупнозернистые (для укладки нижних слоев покрытия. Размер зерен не больше 40 мм).

Характеристики асфальтобетонных смесей по величине пористости:

  • Плотные (применяются для верхнего покрытия дорожной части ввиду высокой прочности, износоустойчивости, шероховатости и беспыльности).
  • Пористые и высокопористые (применяются в нижних слоях дороги для обеспечения стойкости к нагрузкам).

В зависимости от предусмотренного режима эксплуатации дорожного участка выбирается толщина основания и количество слоев асфальтного покрытия. В случае таких незначительных нагрузок, как пешеходное либо эпизодическое движение легковых автомобилей вполне можно ограничиться основанием толщиной до 15 см и однослойным покрытием в 4-5 см. Но если ожидается постоянное движение тяжелого грузового транспорта (территории промышленного назначения, АЗС и т. д.), то основание должно составить не меньше 25-35 см с 2-3 слоями асфальта.

Определившись с асфальтобетонной смесью, можно приступать к вычислению расхода асфальта.

Расчет расхода асфальта

В среднем использование горячего асфальта на 1 м2 асфальта дорожного полотна толщиной в 1 см составляет 25 кг/м2 и варьируется, исходя из вышеуказанных характеристик асфальтобетонной смеси.

Расход холодного асфальта на 1 м2 примерно вчетверо выше горячего, но и дает вышеописанные преимущества.

Но чтобы произвести непосредственный расчет, необходимо учесть размеры участка для укладки, толщину слоя покрытия и тип смеси, определяемой назначением покрытия.

В итоге, если планируется уложить асфальт толщиной 5 см одним слоем, то потребуется 125 кг асфальта на 1 квадратный метр асфальтовой дороги.

В данной статье приведен примерный расчет расхода асфальта на 1 м2 асфальта. Для точного вычисления объемов затраченного материала и составления подробной сметы необходимо пригласить специалиста на место проведения работ.

fb.ru

Расход асфальта на 1 м2

Очень часто мастера дорожных участков, которым предстоит укладывать асфальтобетонную смесь, задаются вопросом, а сколько этой самой смеси необходимо заказать, чтобы не получилось так, что в конце осталась машина уже остывшего асфальта, которую необходимо срочно куда-то девать.

Так от чего же зависит расход асфальта?

В первую очередь – тип асфальтобетонной смеси.

Для щебеночно-мастичных  асфальтобетонных смесей (ЩМАС) расход будет самым большим – около 25,5 кг на 1 сантиметр толщины. Это объясняется оптимально подобранной непрерывной кривой гранулометрического состава ЩМАС (высокой степенью заполнения каркаса зернами щебня различной величины).

Расход на 1 м2 для холодного асфальта составит 25 кг (толщиной 1 см).

Для крупнозернистых смесей он будет меньше – около 24 кг на см, в силу того, что согласно ГОСТ их гранулометрическая кривая является прерывистой, т.е. между крупными зернами щебня пространство заполняется песком, а не мелким фракционным отсевом дробления щебня, как в случае производства ЩМАС.

Для песчаных – около 23,5 кг, так как плотность песка меньше плотности щебня.

Те цифры, которые мы Вам привели, являются приблизительными и будут всегда незначительно изменяться в большую, или меньшую сторону в зависимости от вида используемого щебня, или песка, так как плотности минеральных материалов и их прочностные физико-механические характеристики разнятся в зависимости от места добычи(карьера).

Пример:

Если Вам необходимо заасфальтировать участок с ЩМАС-20 общей площадью 500 м2, толщиной 4 см, то весь Ваш расчет сведется к простой формуле:

25 кг * 4 см = 100 кг = 0,100 т. – объем асфальтобетонной смеси (абс) необходимой для укладки 1-го квадратного метра покрытия.

В нашем примере площадь укладки составляет 500 м2, значит умножив данную площадь на 0,100 т. мы получим 50 тонн абс – искомый объем смеси.

Получается, что одной тонной асфальтобетонной смеси (при толщине 4 см) мы можем заасфальтировать 10 квадратных метров покрытия.

PS В данной заметке мы не ставили своей целью размещение информативной таблицы расхода асфальта в зависимости от типа смеси и толщины слоя, мы всего лишь хотели простыми словами с минимумом цифр показать, от чего зависит расход и какую примерно величину он составляет. Надеюсь, у нас это получилось.

Другие статьи на данную тему, которые могли бы Вас заинтересовать:

​1. Расход щебня на 1 м2

​2. Расход песка на 1 м2

3. Расход битумной эмульсии на 1 м2

4. Расход битумной мастики на 1 м2

  1. Главная
  2. Блог
  3. Заметки
  4. Расход асфальта на 1 м2

roadtm.com

Расход асфальта на 1 м2 асфальтобетонного покрытия

Как и на любые дорожные работы, существуют также требования гост на укладку асфальта, в которых прописаны все этапы проведения работ и технология, которая должна соблюдаться на каждом из них.

Норма расхода асфальта рассчитывается по определенной формуле, которая учитывает длину, ширину асфальтируемого участка, профиль и высоту слоя покрытия, структуру несущей и конечной поверхности, а также многие другие факторы.Приблизительный вес асфальта, объемом в 1 м3 – 2 тонны. Учитывая это и зная толщину слоя, можно вычислить расход асфальта на квадратный метр покрытия.

Расход асфальта на 1 м2, при толщине слоя в 1 см, составляет примерно 25 кг. Зернистость асфальта в данном случае роли практически не играет. Значит, если Вы, к примеру, планируете уложить покрытие толщиной 5 см, то в таком случае расход асфальта на 1 м2 составит 25Х5=125 кг.

 

 

Процесс укладки асфальтного покрытия состоит из многих этапов работ, объем и сложность которых зависит от способа укладки и применяемых материалов (вида асфальтобетонной смеси и битума).

Битум применяется для связки между обрабатываемой поверхностью и асфальтным покрытием при проведении ремонтных работ с использованием горячих асфальтобетонных смесей. Битум способен обеспечить наилучшее сцепление нового асфальтобетона со старым.

При проведении ремонтных работ, поверхности уже очищенной карты обрабатывают битумом средней густоты (с вязкостью 40/70), нагретым до температуры 60-70°С, расход битума на 1м2 асфальта при этом составляет 0,5 л/м2, а битумных эмульсий — 0,8 л/м2. нагрев производят в специальных агрегатах, за неимением таковых, используют передвижные котлы.

Конечно же, расчет материалов производить нужно для каждой ситуации отдельно, поскольку параметры места проведения работ (площадь, наличие основания, удаленность объекта, планируемая нагрузка и др.) могут быть самыми различными.

stroy-bit.ru

Узнаем, какой расход битума на 1 м2 гидроизоляции

Содержание статьи

От автора: приветствуем вас на нашем ремонтно-строительном сайте, уважаемый читатель. В нашей статье мы рассмотрим важную тему, которая встает в полный рост перед началом строительства любого сооружения. Буквально, начиная с этапа заложения фундамента. И тема эта — расход битума на 1 м2 гидроизоляции для фундамента.

Важность гидроизоляции для фундамента сложно переоценить. Зачем она нужна? — все просто, — чтобы защитить фундамент от излишней влаги и последующего разрушения. В общем, — использование мастики — это важнейший этап при строительстве домов и построек хозяйственного назначения.

Теперь рассмотрим вопрос более подробно, и поговорим о разновидностях битумных мастик. Но прежде чем мы выясним, каков расход битума на гидроизоляцию фундамента, — поговорим о разновидностях вещества, так как начать тему будет правильно именно с этого раздела.

Какие бывают виды битумных мастик?

По факту, их всего два: горячая и холодная. В свою очередь — горячие можно подразделить на три подвида в зависимости от степени нагревания:

  • битумная — t≈160–180°C;
  • резинобитумная — t≈170–180°C;
  • дегтевая — t≈130–150°C;
  • гудрокаполимерная — t≈70°C.

Так условное обозначение «МБК-Г-75» — говорит нам, что перед нами «Мастика Битумная Горячего применения», а температура ее плавления составляет 75°C.

Для большей ясности повествования ниже представлена таблица, позаимствованная с сайта ant-snab.ru, где указаны характеристики битумной мастики МБК-Г.

Второй вид мастик — холодная. Данный вид не нужна нагревать перед использованием. В основе ее состава содержится растворитель (h4O).

Расход при гидроизоляции битумом

В чем же принципиальная разница между этими двумя видами? С использованием горячего состава у вас будет возможность создать слой строго заданной толщина, в то время как холодный состав всегда дает усадку.

Чтобы внести ясность и помочь вам разобраться в сути вопроса, — введем в словесный обиход нашей статьи специфический термин «содержание сухого остатка». Это — тот объем материала, что остается на рабочей поверхности после того, как холодная мастика перейдет в стадию полного высыхания.

Удобнее всего выразить этот остаток в процентах от общей массы нанесенного на поверхность материала. Чем меньше данный процент — следовательно, — тем больше расход. Если мы сопоставим две холодные мастики с различным процентом содержания сухого остатка (скажем, 30% и 60%), — то чтобы достичь одной и той же толщины, — той мастики, у которой процент содержания составляет 30%, — понадобится приблизительно в два раза больше. Потому ее применение нельзя назвать целесообразным, экономичным решением. Этот момент обязательно нужно учитывать (!)

Для ясности и информативности ниже представлена таблица с сайта roadtm, в которой приведены показатели расхода.

Источник: http://www.roadtm.com

Теперь можно сделать короткий вывод: чтобы правильно рассчитать расход, — необходимо четко знать необходимую толщину слоя гидроизоляции и процент содержания сухого остатка.

По сфере применения различают:

  • мастики, применяемые для кровли;
  • для фундамента;
  • для применения при дорожных работах. Такими мастиками заделываются швы между дорожными плитами, температурные швы и так далее.

Что касается расхода дорожных мастик, — здесь многое зависит, собственно — от фронта работ и от вида дорожного покрытия.

Во время ремонта швов (как, впрочем, и при заделке трещин), — как правило, расход составляет ≈145 кг материала/100 м шва (трещины).

Заполняя швы цементобетонного покрытия, — на 100 м используется ≈30 кг — на шов сжатия; ≈25 кг — на поперечный; ≈150 кг — на продольный швы.

Теперь вы имеете представление о сферах применения данного стройматериала и знаете, каков его расход, а также — как его определить и от чего он зависит. Теперь переведем разговор в несколько иное русло — и поговорим о рабочем процессе.

Как наносить мастику

Естественно, все начинается с правильной подготовки рабочей поверхности. Здесь нет ничего принципиально сложного: ее необходимо очистить от грязи (если таковая присутствует) и дать ей просохнуть.

Мастику можно смело наносить на поверхность, где уже присутствует старая мастика (при условии, что держится она достаточно хорошо), также — на металлоконструкции, где присутствуют следы коррозии металла. Избавиться от коррозии — безусловно благородное решение, но в данном случае в этом нет необходимости.

Важно! Различные острые выступы могут нарушить целостность гидроизоляционного покрытия, а допускать этого нельзя. Потому перед нанесением вещества, — необходимо избавиться от таких опасных участков.

На фундамент следует нанести не один, а три или даже четыре (!) слоя вещества. Для этого используйте валик или кисточку. Специфические инструменты для этого нам не понадобятся. Общая толщина всей гидроизоляции должна быть приблизительно 5 см. Только в этом случае от нее будет должный эффект, и она сможет защитить фундамент от пагубного воздействия влаги.

Как мы понимаем, — чем глубже фундамент, — тем больше слоев нужно нанести на рабочую поверхность. Иногда это количество доходит до пяти-шести слоев.

В сущности, специфических моментов при нанесении средства — нет и быть не может. Если вы знаете, как, например, грунтовать стены, — справиться с данной задачей для вас не составит труда. Главное — наносите каждый последующий слой только после высыхания предшествующего.

Для большей ясности и визуализации процесса — обратите внимание на иллюстрацию ниже.

Источник: https://znaytovar.ru

Вывод

В данной статье мы разобрали, какие бывают виды мастик, каков их расход и сфера применения, а также — вкратце рассмотрели, как с ними работать. Спасибо, что ознакомились со статьей. Если у вас остались вопросы по теме, — задайте их, заполнив форму для комментариев под текстом или найдите ответ самостоятельно на нашем сайте, используя навигацию. До новых встреч, уважаемый читатель, спасибо, что остаетесь с нами!

P.S. Чтобы увидеть, как проходит процесс гидроизоляции фундамента из ФБС блоков, — ознакомьтесь с видео.

seberemont.ru

Расход битума на 1 м2 гидроизоляции: правила определения

Битум считается универсальным гидроизоляционным материалом

Битум – это асфальтоподобный материал, который получают искусственным образом. Он образуется вследствие переработки натуральных битумов, широко используется в области строительства. Вещество обладает хорошими защитными свойствами, предотвращает негативное воздействие влаги на основание. Чтобы понять, сколько смеси потребуется для проведения тех или иных задач, требуется определить расход битума на 1 м2 гидроизоляции.

ХарактеристикиБитумные мастики
Холодная мастика на растворителяхХолодная мастика на водной основеГорячая мастикаБитум
КровляФундаментКровляФундаментКровляФундамент
Толщина слоя, мм10,5 — 1,010,5 — 1,021
Расход на 1 слой, кг/м²1,0 — 2,01 — 1,51,51,0 — 1,52,0 — 2,51
Время высыхания при +20ºС, влажности 50%2454
Температура, ºСот -10 до +40от+5 до +40от -10 до +40
Влажность основания не более, %484

Затраты материала могут отличаться в зависимости от нескольких важных факторов:

  • вид битумной мастики;
  • тип поверхности;
  • вид работ;
  • качество основания.

Важно! Обычно расход битума определяется всего за несколько минут, потому как это указывает производитель на упаковке. Здесь представлены затраты на один квадратный метр из расчета толщины покрытия – 1 мм. Далее останется только высчитать нужный показатель, учитывая общую площадь и особенности наносимого слоя.

Нормы расходования смеси

Случается так, что на этикетке емкости со строительным материалом нет необходимых показателей. Тогда приходится искать данные в таблицах и нормах, чтобы высчитать оптимальный объем требующейся смеси. Сразу отметим, что главным критерием, определяющим расход битума на 1 м2, является тип выполняемых работ и вид состава.

 

Рассмотрим подробнее.

  1. Если требуется выполнить обмазку, направленную на защиту бетонного основания от влаги и других негативных факторов, битум изначально расплавляется. Он наносится в жидком виде при помощи специальной кисточки или щетки. Тратится горячий битум в объеме 1,5-2 кг на каждый квадратный метр. Толщина покрытия не может быть меньше 2 мм.
  2. Когда осуществляются гидроизоляционные процедуры, направленные на защиту кровли, смесь затрачивается в большем количестве. Это связано с тем, что важно обеспечить полную изоляцию, предотвратив попадание влаги внутрь. Расход битума на 1 м2 кровли при условии толщины слоя 2 мм составляет 2-2,5 кг. Если планируется отделка поверхности дополнительным листовым материалом, расходование смеси будет меньше. На 1 кв. м потребуется около 1 кг вяжущего. После обработки на него уложится рубероид.
  3. Дорожное строительство – еще одна сфера, в которой битумные составы используются для выполнения широкого круга заданий, например, подгрунтовки. При выполнении пропитки на каждый сантиметр толщины используется литр эмульсии, если говорить про основание. Для тех же показателей по отношению к покрытию понадобится 1,5-2 литра смеси. Для подгрунтовки нижних слоев асфальта расход битума на 1 м2 приравнивается к 0,3-0,4 л. Примерно такие же затраты наблюдаются при распределении эмульсии по предварительно отфрезерованной под последующую укладку поверхности. Если основание обустраивается из щебня расход при разливе битума на 1 м2 составит 0,9 литра.

Здесь указаны приблизительные параметры, поэтому закупать материал рекомендуется с небольшим запасом – около 10%. Это позволит избежать часто случающейся нехватки в процессе выполнения работ, дополнительных трат времени на закупку недостающего объема.

Пропитка щебневого слоя

Когда речь идет про обустройство каких-либо покрытий и оснований, имеющих в своей основе подушку из щебня, часто возникает необходимость в обеспечении прочности поверхности и ее защите от влаги. Тогда используется горячий битум, который равномерно распределяется по фракциям.

При пропитке щебня глубина проникновения состава будет зависеть от типа пропитки: легкая или глубокая. В первом варианте состав пропитывает щебневую подушку на 4-6 см, в последнем – на 6-8 см.

Определить расход битума на проливку щебня несложно. За средние показатели принимают 1-1,1 литра на каждый сантиметр. За основу взят один квадратный метр. Так, несложно подсчитать расход жидкого битума на полный объем работ, которые предстоит выполнить.

Строительный битум

Примеры марок битума

Перед началом выполнения задачи важно подобрать марку материала, который будет использоваться. Наиболее широкое распространение получил строительный битум БН 70/30. Главное предназначение – гидроизоляция различных типов конструкций. Его используют в таких целях:

  • гидроизоляция кровли;
  • гидроизоляционные процессы на фундаментах и межпанельных стыках;
  • грунтовка бетонных и деревянных поверхностей;
  • обработка металлических конструкций.
Марка битумаТемпература размягчения, не ниже, ºСГлубина проникновения иглы при 25ºС, 10−¹ммРастяжимость при 25ºС не менее, см
Строительные битумы (по ГОСТ 6617 — 76)
БН 50/50

БН 70/30

БН 90/10

50

70

90

41 — 60

21 — 40

5 — 20

40

3

1

Кровельные битумы (по ГОСТ 9548 — 74)
БНК 45/180

БНК 90/40

БНК 90/30

40 — 45

85 — 95

85 — 95

140 — 220

35 — 45

25 — 35

Не нормируется

Перед началом материал разогревается. После наносится на поверхность нужной толщиной. Расход колеблется в пределах 1-1,5 кг на квадрат. Высота покрытия будет составлять 1,5-2,5 мм. Если нужно сделать гидроизоляцию в 2 слоя затраты возрастут соответственно. Но на последующий пласт нужно будет немного меньше защитного вещества – около 1 кг на квадратный метр.

vseovanne.ru

Расход щебня на 1 м2 дороги

При устройстве дорожного основания/покрытия из щебеночного материала, перед началом производственных работ, может возникнуть вопрос: сколько тонн каменного материала необходимо для устройства одного квадратного метра?

Для того, чтобы рассчитать количество материала и исключить неприятный момент его нехватки на завершающем этапе производства работ, необходимо знать следующие параметры:

— толщину дорожного основания/ покрытия,

— удельный вес щебня (его можно уточнить по техническому паспорту на конкретную партию и, как правило, данное значение числа находится в пределах от 1,3 до 1,47 т/м3, в зависимости от типа щебня),

— коэффициент уплотнения щебня при укатке катком или виброплитой — 1,3.

Для наглядности и более лучшего усвоения информации ниже приведем примерный расчет основания из гранитного щебня толщиной 15 см:

Расход щебня на 1 м2 = 0,15 м (толщина слоя) х 1,0 м (ширина слоя) х 1,0 м (длина слоя) х 1,47 т/м3 (удельный вес щебня) х 1,3 (коэффициент уплотнения для гранитного щебня) =0,306 т/м2=306 кг/м2.

Таким образом, для устройства одного квадратного метра щебеночного основания толщиной 16 сантиметров из гранитного щебня потребуется около 306 кг материала.

В случае использования иного вида щебня и других проектных решений согласно типовым альбомам (толщина слоя, размера фракции и др.) расход материала так же будет изменяться.

Надеемся, что помогли Вам.

 

Другие статьи на данную тему, которые могли бы Вас заинтересовать:

​1. Расход асфальта на 1 м2

2. Расход песка на 1 м2

3. Расход битумной эмульсии на 1 м2

4. Расход битумной мастики на 1 м2

  1. Главная
  2. Блог
  3. Заметки
  4. Расход щебня на 1 м2 дороги

roadtm.com

Содержание битума — обзор

2.3.2 Свойства

Свойства нефтеносного песка, представляющие общий интерес, — это объемная плотность, пористость и проницаемость. Пористость, по определению, представляет собой отношение совокупного объема пустот между частицами к общему объему и выражается в процентах. Высококачественный нефтеносный песок обычно имеет пористость в диапазоне от 30% до 35%, что несколько выше, чем пористость (5-25%) большинства песчаников месторождений. Более высокая пористость нефтеносного песка объясняется относительным отсутствием минерального цемента (химически осажденный материал, который связывает соседние частицы вместе и придает прочность песку, который в большинстве песчаников занимает значительную часть того, что было пустотами в исходных отложениях. ).

Проницаемость — это мера способности отложений или горных пород пропускать жидкости. Это в значительной степени зависит от размера и формы пор, а также каналов (каналов) между порами; тем меньше размер канала; тем сложнее передать пластовую жидкость (воду, битум). Мелкозернистые отложения всегда имеют более низкую проницаемость, чем крупнозернистые отложения, даже если пористость эквивалентна. Неудивительно, что проницаемость безбитумного песка из месторождений Альберты достаточно высока.С другой стороны, битум в отложениях, неподвижный при пластовых температурах (приблизительно 4 ° C, 40 ° F) и давлениях, фактически предотвращает любое значительное перемещение флюидов через пески при неизменных условиях пласта.

Для канадских нефтеносных песков содержание битума от 8% до 14% по весу может считаться нормальным (или средним). Содержание битума выше или ниже этого диапазона объясняется факторами, влияющими на пропитку песка битумом (или предшественником битума).Существуют также случаи, когда содержание битума, превышающее 12% по весу, объясняется осаждением под действием силы тяжести на стадиях образования битума. Таким образом, неподвижность битума предотвращает дальнейшую миграцию самого битума или его составляющих.

Что касается конкретных геологических и геохимических аспектов формации, большая часть работ, опять же, проводилась на месторождении Атабаска. Внимание неоднократно фокусировалось на изменении физических свойств сырой нефти, добываемой на многозонных месторождениях или, в некоторых случаях, на одном.Из всех свойств обычно наблюдается изменение удельного веса или плотности Американского института нефти. Это может просто отражать различия в составе, например, содержание бензина или асфальта, но анализ может также показать значительные различия в содержании серы или даже в пропорциях различных типов углеводородов (Speight, 2005a, b, 2007, 2009).

В более локализованном контексте месторождения Атабаска несоответствия возникают предположительно из-за недостаточной подвижности битума при температуре пласта (приблизительно 4 ° C, 39 ° F).Например, доля битума в нефтеносном песке увеличивается с увеличением глубины пласта. Кроме того, доля нелетучих асфальтеновых составляющих или нелетучей асфальтовой фракции (асфальтеновые составляющие плюс смолы) в битуме также увеличивается с глубиной внутри пласта, что приводит к снижению выхода дистиллята из битума, полученного из более глубоких частей пласта. В соответствии с концепцией более высоких пропорций асфальтовой фракции (составляющих асфальтенов плюс смолы), ранее были отмечены вариации (горизонтальные и вертикальные) свойств битума, а также вариации в содержании серы, азота и металлов (Speight, 2005a). , 2007, 2009).

Более богатые залежи нефтеносного песка встречаются ближе к основанию формации. Однако битум, как правило, более низкого качества, чем битум, полученный в верхней части месторождения, поскольку доли нелетучих коксообразующих компонентов (составляющих асфальтенов плюс составляющих смолы) выше (с повышенными долями азота, серы и металлов. ) у основания формации. Определяющим фактором является специфичность сайта (Speight, 2005b).

Содержание битума в нефтеносных песках США варьируется от 0% до 22% по весу.Однако есть отмеченная взаимосвязь между битумом, водой, мелкими частицами и минеральным содержанием канадских битуминозных песков. Аналогичные отношения могут существовать и для нефтеносных песков США, но полное отсутствие исследований не позволило получить такие данные.

Горячий асфальт | Калькулятор асфальта

Обзор

Горячее асфальтовое покрытие (HMA) относится к связанным слоям гибкой конструкции дорожного покрытия. Асфальтовый материал для дорожного покрытия — это тщательно спроектированный продукт, состоящий примерно на 95 процентов из камня, песка и гравия по весу и примерно из 5 процентов асфальтового цемента, нефтепродукта.Асфальтовый цемент действует как клей, скрепляющий тротуар. Наш HMA смешивается на наших предприятиях по производству асфальта, расположенных по всей северной части Новой Англии.

Укладываемые и уплотняемые при повышенных температурах, покрытия из горячего асфальта обычно наносятся в несколько слоев, при этом нижние слои служат опорой для верхнего слоя, известного как поверхность или слой трения. Агрегаты в нижних слоях выбираются для предотвращения колейности и разрушения, в то время как агрегаты в поверхностном слое выбираются из-за их фрикционных свойств и долговечности.При проектировании дорожного покрытия HMA используемый заполнитель должен быть прочным и долговечным, а также иметь хорошую угловую форму, чтобы помочь противостоять колейности. Мелкий заполнитель (минеральный наполнитель) используется для заполнения пустот между крупными частицами, что увеличивает плотность асфальтобетона и обеспечивает передачу нагрузки между более крупными частицами. Асфальтовое связующее обычно составляет 5-6% смеси и служит для связывания заполнителей. Асфальтовое вяжущее является производным нефти, хотя для изменения свойств вяжущего часто добавляют дополнительные материалы.

Pike также производит специальные продукты, такие как покрытие из теплого асфальта (WMA) и пористое покрытие. Покрытие из WMA можно производить при более низких температурах сушки, тем самым снижая расход топлива и выбросы. Покрытие из WMA также можно укладывать при более низких температурах окружающей среды, что полезно в северном климате Новой Англии. Пористое покрытие — это асфальтовое покрытие, которое позволяет ливневой воде проходить через структуру для подпитки нижележащих грунтов. Пористый тротуар — это новый продукт, который хорошо подходит для управления ливневыми стоками в жилых и коммерческих помещениях.Pike гордится тем, что является лидером отрасли в этих двух новых технологиях.

Посмотреть торговый персонал

Три типа горячего асфальта

Горячий асфальт, широко используемый из-за его удобства, является наиболее распространенным гибким покрытием в США. Его также называют асфальтом или битумом, а иногда и просто горячей смесью. Дорожные покрытия из горячей смеси подразделяются в основном на плотные смеси, смеси для каменной основы и открытые асфальтовые смеси с горячей смесью. Существуют также другие типы асфальта, но они ограничиваются ремонтными и восстановительными работами.

Плотные смеси

Эта смесь горячего асфальта является наиболее часто используемой смесью, поскольку она может обеспечивать отличные характеристики водонепроницаемости, позволяя воде стекать с поверхности. Название происходит от размера заполнителя, используемого при смешивании сырья для производства асфальтовой композиции. Его также можно подразделить на мелкозернистый или крупнозернистый, в зависимости от большинства агрегатов в конечном продукте.

Этот тип асфальта идеально подходит для любых дорожных условий и имеет отличные характеристики в структурных условиях, трении, а также для покрытия и ремонта.

Каменно-матричный асфальт

Эта смесь была разработана для обеспечения максимальной устойчивости к колейности и высокой прочности. Эта асфальтобетонная смесь в связи с технологическим процессом производства дороже обычных плотных смесей. Его конструкция основана на более высоком содержании асфальта, модифицированном битумном вяжущем и волокнах. Этот тип асфальта используется с 1980-х годов и может использоваться на многих дорогах и подъездных путях.

Из-за высокой стоимости его рекомендуется использовать на межгосударственных автомагистралях с большим объемом движения, чтобы получить преимущества от его прочности и долговечности.Это также повысит безопасность водителя за счет впечатляющих характеристик трения с шинами; это также минимизирует шум шин и уменьшит образование трещин при отражении.

Минеральные наполнители и добавки используются для минимизации стекания асфальтового вяжущего во время строительства, одновременно увеличивая количество асфальтового вяжущего, используемого в смеси, и для улучшения ее прочности.

Смеси открытого типа

Отличие от первых двух смесей с открытой фракцией заключается в характеристике проницаемости.Эта горячая асфальтовая смесь разработана только с использованием щебня и нескольких песчинок в смеси. Есть две основные классификации этого типа смеси:

  • Полоса трения с открытыми ступенями — минимальные требования к воздушным пустотам составляют 15%, максимальный процент воздушных пустот не указан. Эта смесь используется только для поверхностных слоев. Он имеет более гладкую поверхность, чем плотный. Его низкая стоимость размещения противодействует высокой стоимости его производства. Однако убедитесь, что вы не забиваете и не закупориваете поры, так как это резко снизит и ухудшит характеристики и стабильность асфальта.
  • Проницаемые основания, обработанные асфальтом. Используется только под плотным слоем бетона из каменной смеси или портландцементного бетона для дренажа. Он используется для дренажа под плотным слоем бетона из каменной смеси или портландцементного бетона.

Советы по укладке асфальта

Теперь, когда вы знаете три основных типа асфальта, вам необходимо помнить о следующих советах в процессе строительства. Прежде всего, горячая асфальтобетонная смесь должна быть доставлена ​​с ближайшего завода на строительную площадку, и чем ближе, тем лучше поддерживать надлежащую температуру.Обязательно добавляйте продукт не на нефтяной основе в платформу грузовика, чтобы смесь не прилипала к поверхности грузовика. Перед укладкой новой асфальтовой смеси рекомендуется подготовить поверхность путем фрезерования участка.

Процесс удалит старые поверхности, обеспечивая лучшее сцепление с новым укладываемым слоем асфальта. Дополнительным преимуществом процесса фрезерования является то, что он позволяет воде течь должным образом к бордюрам и водосточным желобам, сохраняя дренажные характеристики местности и дорожного покрытия.

Процесс уплотнения необходимо выполнять осторожно, чтобы избежать ухудшения состояния дорожного покрытия, и его следует начинать, пока смесь еще горячая, для достижения лучших результатов. Для получения лучших результатов используйте пневматические или стальные ролики. Обязательно проверьте плотность асфальта перед отделкой, чтобы определить, можно ли разрешить движение по поверхности тротуара.

Что такое асфальт — EAPA

Асфальт — это смесь заполнителей, вяжущего и наполнителя, используемая для строительства и содержания дорог, парковок, железнодорожных путей, портов, взлетно-посадочных полос аэропортов, велосипедных дорожек, тротуаров, а также игровых и спортивных площадок.

Заполнители, используемые для асфальтовых смесей, могут представлять собой щебень, песок, гравий или шлаки. В настоящее время некоторые отходы и побочные продукты, такие как строительный мусор и строительный мусор, используются в качестве заполнителей, что повышает устойчивость асфальта.

Для связывания агрегатов в связную смесь используется связующее. Чаще всего в качестве вяжущего используется битум, хотя в настоящее время также разрабатывается ряд вяжущих на биологической основе с целью минимизировать воздействие дорог на окружающую среду.

Среднее асфальтовое покрытие состоит из дорожной конструкции над уровнем пласта, которая включает несвязанные и битумно-связанные материалы. Это дает возможность дорожному покрытию распределять нагрузку от транспортных средств до того, как они достигнут уровня формации. Обычно тротуары делают из разных слоев:

Асфальт производится на асфальтовом заводе. Это может быть стационарная установка или даже мобильная смесительная установка. На асфальтобетонном заводе можно производить до 800 тонн в час.Средняя температура производства горячей асфальтовой смеси составляет от 150 до 180 ° C, но в настоящее время доступны новые технологии для производства асфальта при более низких температурах. (См. ниже).

Горячий асфальт (HMA)

Горячие асфальтовые смеси обычно производятся при температуре от 150 до 180 ° C. В зависимости от использования можно использовать другую асфальтобетонную смесь. Для получения более подробной информации о различных асфальтовых смесях перейдите в раздел «Асфальтовые продукты»

.

Теплая асфальтовая смесь (WMA)

Типичный WMA производится при температуре примерно на 20-40 ° C ниже, чем у эквивалентной горячей асфальтовой смеси.Требуется значительно меньше энергии и, следовательно, меньше дыма (как показывает практика, снижение на 25ºC приводит к сокращению выбросов дыма на 75%). Кроме того, при укладке дорожного покрытия температура материала ниже, что приводит к улучшению условий труда бригады и более раннему открытию дороги.

Холодная смесь асфальта

Холодные смеси производятся без нагрева агрегата. Это возможно только благодаря использованию эмульгированного в воде битума, который разрушается либо во время уплотнения, либо во время перемешивания.Изготовление покрытия из заполнителя. По прошествии времени отверждения вода испаряется и прочность увеличивается. Холодные смеси особенно рекомендуются для дорог со слабым движением.

границ | Новый метод создания смесей для холодной заделки асфальтобетонной смеси

Введение

Горячий асфальтобетон широко используется при укладке и ремонте дорог благодаря его отличным характеристикам в качестве дорожного покрытия (Yang et al., 2011). Однако в процессе смешивания, транспортировки и укладки горячей асфальтовой смеси необходимая температура и ее контроль относительно высокие и строгие, соответственно (Li et al., 2017). Высокая температура вызывает не только большое потребление энергии, но и серьезное загрязнение окружающей среды (Diaz, 2016). Плохой контроль температуры приведет к старению асфальтовой смеси, что влияет на ее усталостные характеристики и срок службы (Khan et al., 2016; Liu et al., 2020). Горячую асфальтобетонную смесь нельзя производить при низких температурах и в дождливую погоду. Повреждения дорожного покрытия зимой можно отремонтировать только после апреля следующего года, что не только усугубляет повреждение дороги, но и влияет на ее комфорт и безопасность (Ling et al., 2007). Ввиду этих проблем, асфальтобетонная смесь для холодного ямочного ремонта (CPAM) очень популярна при ремонте дорожного покрытия благодаря своим превосходным характеристикам, таким как экологичность, низкая стоимость энергии, удобная процедура укладки и экологичность, а также тот факт, что она почти всегда готова к использованию. использовал.

В настоящее время на рынке представлено много видов CPAM. По типу раствора их можно разделить на три типа: тип растворителя, тип эмульсии и тип реакции (Doyle et al., 2013). В существующих исследованиях CPAM в стране и за рубежом основное внимание уделяется повышению производительности. Подходы включают разработку влагостойкого CPAM, высокопрочного CPAM и стойкого к трещинам CPAM. Бентонит (разновидность наноглины с сильным водопоглощением) или осаждение микробного карбоната (MCP) был добавлен в CPAM с целью улучшения его способности к влагостойкости. Кроме того, эти добавки улучшают характеристики осушения и предотвращения повреждения водой, связанные с CPAM (Ling et al., 2016; Донг и др., 2018; Alenezi et al., 2019; Аттаран Довом и др., 2019). Кроме того, такого же эффекта можно добиться применением вяжущего материала вместо эмульсии. Обычно цемент добавляют в CPAM, когда от этой асфальтовой смеси требуется высокая прочность (Shanbara et al., 2018). Волокно добавляется к CPAM с целью значительного повышения его модуля упругости (Gómez-Meijide and Pérez, 2014). Улучшение свойств при растяжении играет жизненно важную роль в замедлении роста трещин в асфальтовой смеси, а остаточная деформация также значительно снижается.Асфальтобетонная смесь для холодного ямочного ремонта широко использовалась при ремонте дорожных покрытий и достигла определенных результатов (Guo et al., 2014; Ma et al., 2016). Однако исследования, связанные с CPAM, не столь зрелы, как исследования, связанные с горячим ямочным ремонтом асфальтовой смеси. Ранняя производительность CPAM хуже, чем у горячей асфальтовой смеси. На механические свойства смеси сильно влияют последовательность перемешивания и образующаяся граница раздела. Стабильность каркаса заполнителя и прочность связи между заполнителем и связующим положительно связаны с сопротивлением колейности (Ma et al., 2018; Zhang et al., 2019; Чен и др., 2020). Не существует зрелого метода для разработки набора пропорций смеси для CPAM (Song et al., 2014; Saadoon et al., 2017). В настоящее время в большинстве исследований используется метод расчета пропорции смеси горячей асфальтобетонной смеси (метод расчета смеси Маршалла) для расчета CPAM (Li et al., 2010; Dash and Panda, 2018). Кроме того, методы эмпирических формул Калифорнийского университета и Университета Тонгжи также используются для расчета количества холодного битумного вяжущего (Song and Lv, 1998).Битумная смесь холодного ямочного ремонта отличается от горячей асфальтобетонной смеси тем, что не требует подогрева во время строительства. Метод расчета смеси Маршалла не подходит для проектирования CPAM, а параметры расчета смеси Маршалла (стабильность и величина потока) слабо коррелируют с дорожными характеристиками CPAM (Xu et al., 2018). На метод эмпирических формул сильно влияют градации и местный климат, а в методе расчета отсутствует контроль индекса объема, поэтому трудно гарантировать долговечность смеси (Meng et al., 2011).

Основываясь на характеристиках CPAM, в этом исследовании метод расчета смеси Маршалла был изменен. Были протестированы дорожные характеристики трех видов CPAM, разработанных с использованием модифицированного метода расчета смеси Маршалла, метода расчета смеси Маршалла и метода эмпирических формул. Сравнительный анализ подтвердил полезность модифицированного метода расчета смеси Маршалла, который служит справочным материалом для разработки CPAM.

Материалы и методы

Сырье

Объектом исследования данного исследования является растворитель, используемый в CPAM, который состоит из чистого асфальта или модифицированного асфальта, разбавителя, добавки и заполнителя.

Чистый асфальт

Чистый асфальт, использованный в этом исследовании, — это дорожный нефтяной асфальт Sinopec Donghai 70PG #; были получены его основные технические характеристики, результаты представлены в таблице 1.

Таблица 1. Результаты испытаний технических показателей базового асфальта.

Разбавитель

Разбавитель может снизить вязкость асфальта, так что CPAM имеет хорошую обрабатываемость при низких температурах. Разбавитель должен хорошо растворяться в асфальте.Учитывая безопасность, летучесть и экономичность, разбавителем, использованным в этом исследовании, было дизельное топливо.

Добавка

Добавки для холодного ремонта обычно запатентованы производителем. В этом исследовании была оптимизирована добавка PR-JW03A. PR-JW03A был произведен компанией Shenzhen Jiashengwei Chemical Technology Co., Ltd. Эта добавка представляет собой специальный полимерный химический продукт, состоящий из различных полимеров, которые могут улучшить свойства асфальта при добавлении к обычному дорожному асфальту. Его технические показатели представлены в таблице 2.

Таблица 2. Технические показатели асфальтобетонной добавки для холодного ремонта PR-JW03A.

Крупный заполнитель

Крупный заполнитель играет важную опорную роль в каркасе смеси и является основной частью нагрузки на дорожное покрытие. В данном исследовании известняк использовался в качестве крупного заполнителя. Согласно требованиям спецификации получены соответствующие технические показатели крупного заполнителя; результаты испытаний приведены в таблице 3.

Таблица 3. Механический показатель крупного заполнителя.

Мелкий заполнитель

Мелкозернистый заполнитель заполняет зазоры, образованные крупным заполнителем, для достижения плотной каркасной структуры, повышая долговечность дорожного покрытия. Мелким заполнителем, использованным в этом исследовании, был известняк.

Минеральный наполнитель

Минеральный наполнитель может не только заполнить промежутки между заполнителями, но также улучшить водостойкость CPAM. Кроме того, добавление минерального наполнителя увеличивает долю структурного асфальта, что увеличивает прочность CPAM.В данном исследовании выбранный минеральный наполнитель был получен путем измельчения известняка, и его основные свойства соответствовали требованиям спецификации, как показано в Таблице 4.

Таблица 4. Результаты испытаний минерального порошка.

Подготовка асфальта для холодного ремонта

Основным инструментом для приготовления холодного ямочного асфальта является высокоскоростной диспергатор с диапазоном скоростей 0–10 000 об / мин. Также использовались электрическая печь, термометр, духовка, электронные весы и другие вспомогательные инструменты.

Лучшее соотношение для холодного ямочного асфальта, окончательно определенное в этом исследовании, было добавка: асфальт: разбавитель = 1,8: 100: 25. Подготовительные шаги были следующими.

1) Нагрейте чистый асфальт в печи при 135 ° C в течение 2 часов, затем выньте его и нагрейте в электрической печи, чтобы поддерживать температуру около 135 ° C.

2) Добавьте добавку в (1), запустите диспергатор, вращайте со скоростью 200 об / мин и перемешивайте в течение получаса.

3) Добавьте дизельное топливо в (2), контролируйте температуру около 110 ° C и перемешивайте в течение 30 минут.

4) Подготовка завершена.

Подготовка асфальтового покрытия холодным способом и принцип действия показаны на Рисунке 1.

Рис. 1. Приготовление холодного ямочного асфальта с помощью диспергатора и принцип действия. (A) Блок-схема приготовления холодного ямочного асфальта. (B) Принцип приготовления асфальта при холодном ямочном ремонте.

Смешанный дизайн CPAM

Метод расчета смеси Маршалла был использован для определения доли каждого элемента, составляющего горячую асфальтобетонную смесь.Используя этот метод, исследователи накопили богатый практический опыт и данные. Асфальтовая смесь для холодного ямочного ремонта должна иметь не только хорошие дорожные характеристики на более позднем этапе, но и отличную обрабатываемость при низких температурах. На основе метода расчета смеси Маршалла были протестированы показатели теста Маршалла для CPAM. Кроме того, учитывая требования к производительности CPAM, был рассмотрен индекс низкотемпературной обрабатываемости. Объемные параметры готового образца были преобразованы в параметры, относящиеся к исходному образцу.В соответствии с соотношением между каждым индексом и соотношением заполнителей асфальта было определено наилучшее соотношение заполнителей асфальта для CPAM.

Градация

Как правило, для определения номинального максимального размера агрегата CPAM используется соотношение глубины болезни покрытия h и максимального размера D заполнителя. Обычно считается, что h / D должно быть больше или равно 2. Толщина верхнего слоя асфальтового покрытия составляет 4 см, а номинальный максимальный размер зерна верхнего слоя обычно составляет 13.2 мм. Принимая во внимание характеристики поверхности раздела новой и старой смеси и согласно расчету h / D , номинальный максимальный размер заполнителя был определен как 13,2 мм.

В соответствии с Техническими условиями для строительства дорожных асфальтовых покрытий (JTG F40–2004,2004) в данном исследовании была принята градация LB-13. Оценка показана в Таблице 5.

Таблица 5. Градация LB-13.

Подготовка образцов по Маршаллу

В данном исследовании для формирования образца использовался второй метод уплотнения.Для этого сначала нужно уплотнить обе стороны по 50 раз. Затем образец помещают в форму для испытаний в печь при определенной температуре на 24 ч, стоя на боку. После извлечения образца из печи обе стороны сразу же уплотняют по 25 раз и извлекают из формы. Высота образца измеряется штангенциркулем и должна соответствовать критерию 63,5 ± 1,3 мм. Согласно Техническим условиям для строительства дорожных асфальтовых покрытий (JTG F40–2004,2004), начальная температура отверждения образца в этом исследовании была равна 110 ° C, но было обнаружено, что образец был рыхлым и отслоившимся. после отверждения.Этот факт показывает, что температура отверждения 110 ° C была слишком высокой, и она не подходила для CPAM типа растворителя. Поэтому, учитывая скорость улетучивания разбавителя внутри образца и целостность образца, были предварительно выбраны четыре различных температуры отверждения: 60, 75, 90 и 100 ° C. После отверждения была получена стабильность образца по Маршаллу, результаты показаны на рисунке 2.

Рисунок 2. Стабильность CPAM при различных температурах отверждения.

Как видно из рисунка 2, стабильность увеличивается с повышением температуры. Значение быстро увеличивается от 60 до 90 ° C, а затем медленно увеличивается от 90 до 100 ° C. Согласно техническим условиям для строительства дорожных асфальтовых покрытий (JTG F40–2004,2004), устойчивость CPAM по Маршаллу не должна быть менее 3 кН, и образец может соответствовать этому требованию, когда температура отверждения превышает 90 °. С. Принимая во внимание скорость роста стабильности по Маршаллу с температурой, целостность образца для испытаний, а также экономические факторы и факторы затрат на энергию, конечная температура отверждения, принятая в этом исследовании, была равна 90 ° C.

Определение отношения заполнителя асфальта

В соответствии с уровнем улетучивания разбавителя в CPAM, стадия формирования CPAM может быть разделена на два состояния: исходное и окончательно сформированное состояния. Разбавитель внутри CPAM в окончательно сформированном состоянии в основном испарился. Однако разбавитель в CPAM в первоначально сформированном состоянии еще не начал улетучиваться, поэтому CPAM в этом состоянии можно рассматривать как типичную горячую смесь. При постепенном испарении разбавителя объемные параметры CPAM в окончательно сформированном состоянии могут быть получены путем использования всех объемных параметров первоначально сформированного образца.Следовательно, оптимальное содержание связующего в CPAM можно определить не только по параметрам окончательно сформированного образца. Параметр объема, который следует использовать, — это параметр объема первоначально сформированного образца, который можно рассматривать как обычную горячую смесь (Gu, 2017).

Наиболее очевидной характеристикой CPAM является то, что он может быть разработан в нормальных и низкотемпературных условиях. Следовательно, CPAM должен быть рыхлым при низкой температуре, что удобно для распределения и уплотнения.В данном исследовании при разработке смесей учитывались показатели низкой температуры и удобоукладываемости.

Преобразование параметра объема

Все измеренные объемные параметры окончательно сформированного образца были преобразованы в объемные параметры первоначально сформированного образца. Перед уплотнением регистрировали качество m p смеси в каждой испытательной форме.

Объемный удельный вес r pf первоначально сформированного образца был рассчитан по формуле (1),

rp⁢f = mpmf-mw (1)

, где m f и m w — поверхностная сухая масса образца и водная масса образца, соответственно, г.

Теоретический максимальный удельный вес r pt первоначально сформированного образца был рассчитан по формуле (2),

rp⁢t = rt⁢ (ma-mw) + (mp-ma) (ma-mw) + (mp-ma) = rt⁢ (ma-mw) + (mp-ma) (mp-mw) (2).

, где м a — воздушная масса образца, г и r t — теоретический максимальный удельный вес.

По формулам (3) — (5) вычисляется процент пустот в минеральном заполнителе pvma , процент воздушных пустот pvv и процент пустот в минеральном заполнителе, заполненном асфальтом pvfa ,

p⁢v⁢m⁢a = (1-rp⁢frs⁢b × пс) × 100 (3)

p⁢v⁢v = (1-rp⁢frp⁢t) × 100 (4)

p⁢v⁢f⁢a = p⁢v⁢m⁢a-p⁢v⁢vp⁢v⁢m⁢a × 100 (5)

, где r sb — объемная плотность синтетического материала, г / см 3 и p s — отношение качества минерального заполнителя к общему качеству асфальтовой смеси,%.

Объемные параметры первоначально сформированного образца получены по приведенной выше формуле. Была получена взаимосвязь между каждым параметром объема и долей асфальтового заполнителя. В соответствии с методом определения оптимального соотношения асфальтового заполнителя горячей смеси асфальтобетонной смеси, было определено оптимальное соотношение асфальтового заполнителя CPAM.

Определение оптимального отношения заполнителя асфальта

Результаты испытаний готовых формованных образцов по Маршаллу показаны в таблице 6.

Таблица 6. Результаты испытаний объемных параметров и механических показателей готовых формованных образцов.

Сохраняя неизменной стабильность, объемные параметры окончательно сформированного образца были преобразованы в объемные параметры первоначально сформированного образца. Результаты расчетов представлены в таблице 7.

Таблица 7. Объемные параметры и результаты механического индекса исходно сформированных образцов.

На рис. 3 показана взаимосвязь между долей заполнителя асфальта и каждым показателем первоначально сформированного образца.

Рисунок 3. (A) Взаимосвязь между долей заполнителя асфальта и rpf; (B) взаимосвязь между долей асфальтового заполнителя и PVV; (C) взаимосвязь между долей асфальтового заполнителя и PVFA; (D) взаимосвязь между долей заполнителя асфальта и стабильностью.

Суммируя, можно сказать, что коэффициент асфальтобетонного заполнителя a 1 , a 2 , a 3 , a 4 , соответствующий максимальной устойчивости, максимуму r pf , средний расчетный диапазон pvv и средний диапазон pvfa были определены из рисунка 3.Согласно формуле (6), среднее значение четырех соотношений заполнителей асфальта является начальным значением OAC 1 оптимального соотношения заполнителей асфальта.

O⁢A⁢C1 = (a1 + a2 + a3 + a4) / 4⁢ = (5,56% + 5,65% + 5,43% + 4,98%) / 4 = 5,405% (6)

На основании результатов испытаний каждого индекса был определен диапазон содержания асфальта, соответствующий техническим стандартам. Согласно Техническим условиям для строительства дорожных асфальтовых покрытий (JTG F40–2004,2004) устойчивость по Маршаллу должна быть не менее 3 кН. pvma и pvfa относятся к стандарту испытаний Маршалла для горячей асфальтовой смеси. Следовательно, для pvv требуется, чтобы коэффициент асфальтового заполнителя был выше 5,3%. Доля асфальтового заполнителя для pvfa должна быть выше 5%.

CPAM должен иметь отличную обрабатываемость при комнатной температуре. Поэтому в данном исследовании основное внимание уделяется обрабатываемости в условиях низких температур. Битумная смесь холодного ямочного ремонта была приготовлена ​​с вариациями 0.2% в соотношении асфальтового заполнителя. В соответствии с Техническими условиями для строительства дорожных асфальтовых покрытий (JTG F40–2004,2004), CPAM помещали в холодильник при -10 ° C на 24 часа. Если в смеси нет явного явления агломерации, ее можно легко перемешать лопатой. Битумная смесь холодного ямочного ремонта была извлечена из холодильника и показала хорошую обрабатываемость при низких температурах. Результаты испытаний представлены в таблице 8.

Таблица 8. Результаты испытаний низкотемпературной работоспособности CPAM.

Согласно результатам испытаний, приведенным в Таблице 8, доля асфальтового заполнителя должна составлять 5,2–5,4% для низкотемпературной удобоукладываемости. Начальное значение оптимальной доли асфальтового заполнителя OAC 2 было рассчитано по формуле. (7).

O⁢A⁢C2 = (O⁢A⁢Cmin + O⁢A⁢Cmax) / 2⁢ = (5,3% + 5,4%) / 2 = 5,35% (7)

Оптимальная доля асфальтового заполнителя CPAM рассчитывается по формуле (8),

O⁢A⁢C = (O⁢A⁢C1 + O⁢A⁢C2) / 2 = (5.405% + 5,35%) / 2 = 5,38% (8)

Оптимальная доля асфальтового заполнителя в CPAM, полученная с использованием модифицированного метода расчета смеси Маршалла, составила 5,38%.

Проверка ходовых качеств

В этом исследовании оптимальная доля асфальтового заполнителя в CPAM, полученная с использованием традиционного метода расчета смеси Маршалла, была равна 5,52%. Кроме того, эмпирическая формула, предложенная Л.В. Вэйминь из Университета Тунцзи, была использована для определения оптимального соотношения заполнителей асфальта для CPAM. Формула расчета следующая.

P = 0,021⁢a + 0,056⁢b + 0,099⁢c + 0,12⁢d + 1,2 (9)

, где P — доля заполнителя асфальта,%, a — массовый процент заполнителя с размером частиц более 2,36 мм,%, b — массовый процент заполнителя с размером частиц от 0,3 до 2,36 мм,%, c представляет собой массовую процентную долю заполнителя с размером частиц от 0,075 до 0,3 мм,%, и d представляет собой массовую процентную долю заполнителя с размером частиц менее 0,075 мм,%.

Согласно формуле. Согласно (9) коэффициент заполнителя асфальта, рассчитанный с использованием эмпирической формулы, составил 4,5%.

Чтобы проверить полезность модифицированного метода расчета смеси Маршалла, предложенного в этом исследовании, были проведены испытания дорожных характеристик CPAM, разработанного различными методами. Блок-схема испытания показана на Рисунке 4.

Рисунок 4. Блок-схема испытания дорожных характеристик CPAM.

Метод испытаний

Начальная сила

На ранней стадии CPAM разбавитель не улетучивается, и сцепление между минералами невелико.Первоначальная прочность в основном поддерживается интеркалированием и трением между агрегатами (Nassar et al., 2016). Чтобы покрытие могло выдержать неплотное повреждение, вызванное качением транспортных средств на начальном этапе ремонта, необходимо убедиться, что начальная прочность CPAM достигает определенного значения.

Метод испытания начальной прочности был следующим: берут около 1100 г CPAM (в зависимости от высоты образца, соответствующей 63,5 ± 1,3 мм) и помещают его в форму для испытаний по Маршаллу.Упакуйте верхнюю и нижнюю стороны соответственно 75 раз с помощью автоматического компактора Маршалла. Стабильность можно проверить после демонтажа из формы.

Предел прочности при формовании

Метод испытания формовочной прочности следующий. Возьмите 1100 г CPAM (в зависимости от высоты образца, соответствующей 63,5 ± 1,3 мм) и поместите его в форму для испытаний по Маршаллу. Упакуйте верхнюю и нижнюю стороны соответственно 75 раз с помощью автоматического компактора Маршалла. После этого образец с формой для испытаний выдерживают в печи при 90 ° C в течение 24 часов, затем вынимают из печи и уплотняют с обеих сторон 25 раз.После демонтажа из формы проводится испытание на стабильность по Маршаллу.

Стабильность при хранении

CPAM можно разделить на CPAM горячего смешивания и CPAM холодного смешивания в соответствии с условиями смешивания. Горячую смесь CPAM можно хранить около двух лет (Dulaimi et al., 2017). В процессе хранения следует убедиться, что CPAM не испытывает высокой степени агломерации, чтобы облегчить его размещение и уплотнение во время строительства. В этом исследовании CPAM хранился и герметизировался в течение 0, 3, 7 и 28 дней при нормальной температуре.Затем была проверена начальная прочность, и описанный выше метод был использован для оценки удобоукладываемости через 28 дней.

Устойчивость к воде

Водостойкость CPAM была оценена путем проведения иммерсионного теста Маршалла и теста на расщепление при замораживании-оттаивании. Испытание следует проводить в соответствии со Стандартными методами испытаний битума и битумных смесей для дорожного строительства (JTG E20–2011,2011).

Высокотемпературные характеристики

В этом исследовании гамбургский тест на колейность использовался для оценки высокотемпературных характеристик CPAM.В соответствии с методом формирования образца колейности горячей смеси асфальта в сочетании с характеристиками CPAM формирование образца колейности выполняли следующим образом.

Возьмите CPAM, поместите его в испытательную форму и сначала выполните ручное уплотнение. Затем скатайте CPAM два раза в одном направлении и 12 раз в другом, используя гидравлическую колейную машину. Поместите CPAM с испытательной формой в печь при 90 ° C на 24 часа, затем выньте ее и проведите вторую прокатку в соответствии с первым методом прокатки.Гамбургский тест на колейность должен проводиться в соответствии со Стандартными методами испытаний битума и битумных смесей для дорожного строительства (JTG E20–2011,2011).

Результаты и обсуждение

Начальная сила

Была проверена начальная сила трех видов CPAM (метод расчета эмпирических формул, метод расчета смеси Маршалла и модифицированный метод расчета смеси Маршалла). Результаты испытаний показаны на рисунке 5.

Рисунок 5. Результаты для начальной силы CPAM.

Из рисунка 5 видно, что CPAM с долей асфальтового заполнителя 5,38% имеет наибольшую начальную прочность. Начальная прочность 4,5% асфальтового заполнителя самая низкая. Это связано с тем, что количество связующего вещества невелико, а прочность смеси в основном поддерживается трением между агрегатами. Нет никаких конкретных требований к начальной силе CPAM. В США и Сун Цзяньшэн, Китай, требуется начальная сила более 2 кН.Начальная прочность CPAM с долей асфальтового заполнителя 5,38 и 5,52% равна 2,84 и 2,53 кН соответственно, что соответствует этому требованию. Коэффициент асфальтового заполнителя, полученный методом эмпирических формул, слишком низок, так что начальная прочность слишком мала и не соответствует требованиям.

Предел прочности при формовании

Прочность при формовании трех видов CPAM была измерена в соответствии с методом испытаний, описанным в разделе «Прочность при формовании». В этом разделе сравнивается начальная прочность и прочность при формовании; результаты показаны на рисунке 6.

Рисунок 6. Результаты формообразования CPAM.

Формирующая сила складывается из когезии и внутреннего трения. Из рисунка 6 можно заметить, что формовочная прочность трех CPAM в основном вдвое превышает исходную прочность. Это связано с тем, что вязкость связующего увеличивается, а когезия CPAM увеличивается в результате улетучивания разбавителя. Формовочная прочность CPAM с долей асфальтового заполнителя 5,38% достигает наивысшего значения, равного 6.13 кН. Формовочная прочность CPAM с долей асфальтового заполнителя 4,5% имеет наименьшее значение, поскольку количество связующего слишком мало, а когезия недостаточна. Когда доля асфальтового заполнителя равна 5,52%, содержание связующего в CPAM слишком велико, и имеется большое количество свободного асфальта. Большая или меньшая доля асфальтового заполнителя неблагоприятна для прочности на деформацию CPAM. По сравнению с двумя другими методами, прочность формования CPAM, разработанная с использованием модифицированного метода расчета смеси Маршалла, формируется быстрее.

Стабильность хранения

Три CPAM были подготовлены с использованием трех различных методов проектирования. Затем разработанные образцы CPAM хранились и запечатывались в течение определенного периода времени, а затем были проверены их первоначальная прочность и работоспособность. Результаты испытаний представлены в таблице 9.

Таблица 9. Результаты тестирования производительности хранилища для CPAM.

Согласно Таблице 9, соотношение между начальной мощностью и временем хранения трех CPAM является согласованным.Начальная прочность увеличивается с увеличением времени хранения во всех случаях. После 28 дней хранения сила трех видов CPAM мало меняется; отклонение составляет менее 0,2 кН. Начальная прочность относительно стабильна. Уровень удобоукладываемости CPAM, разработанный с использованием метода расчета смеси Маршалла, был равен 4, что означает, что его обрабатываемость при низких температурах была плохой. Результаты показывают, что содержание асфальта в CPAM, разработанном с использованием метода расчета смеси Маршалла, слишком велико, и он легко агломерируется.Тем не менее, работоспособность при низких температурах CPAM, разработанная с использованием модифицированного метода расчета смеси Маршалла, была приемлемой.

Устойчивость к воде

Испытание Маршалла иммерсией и испытание на расщепление при замораживании-оттаивании были проведены с целью тестирования трех видов CPAM с различным соотношением заполнителей асфальта. Изучена водостойкость CPAM с различным соотношением заполнителей асфальта и сравнивается с таковой горячей асфальтовой смеси. Результаты иммерсионного теста Маршалла показаны на рисунке 7, а результаты теста разделения замораживания-оттаивания показаны на рисунке 8.

Рис. 7. Результаты иммерсионного теста Маршалла для CPAM.

Рис. 8. Результаты теста на раскалывание при замораживании-оттаивании для CPAM.

Из рисунка 7 видно, что остаточная стабильность образцов CPAM с долей заполнителя асфальта 5,38 и 5,52% соответствует требованиям остаточной стабильности для горячей асфальтовой смеси. Остаточная стабильность CPAM с долей асфальтового заполнителя 4,5% низкая. Это связано с отсутствием связующего и большим процентом воздушных пустот.Из рисунка 8 можно заметить, что соотношение прочности на раскалывание при замораживании-оттаивании трех CPAM соответствует требованиям для горячей асфальтовой смеси. Порядок соотношений прочности при замораживании-оттаивании следующий: 5,38% CPAM> 5,52% CPAM> 4,5% CPAM. Это показывает, что CPAM, разработанный с помощью модифицированного метода расчета смеси Маршалла, имеет лучшую водостойкость. Остаточная стабильность и коэффициенты прочности при раскалывании при замерзании и таянии трех видов CPAM ниже, чем у горячей асфальтовой смеси.Поскольку разбавитель не испарился полностью, CPAM не полностью сформирован, и, следовательно, его характеристики плохие.

Высокотемпературные характеристики

Гусеницы формировали по методике, описанной в разделе «Высокотемпературные характеристики». Гамбургский тест на колейность был проведен для тестирования трех видов CPAM, результаты показаны на Рисунке 9.

Рис. 9. Результаты теста на высокотемпературную стабильность CPAM.

Из рисунка 9 видно, что динамическая стабильность CPAM, разработанного с использованием модифицированного метода расчета смеси Маршалла, была немного выше, чем у CPAM, разработанной с помощью двух других методов.Динамическая стабильность CPAM с долей асфальтового заполнителя 4,5% показывает наименьшее значение, потому что количество связующего слишком мало, а когезия плохая, что приводит к тому, что смесь имеет сухую текстуру. Динамическая стабильность CPAM с долей асфальтового заполнителя 5,52% ниже, чем у CPAM с долей заполнителя 5,38%. Это может быть связано с тем, что бывший CPAM имеет большее количество связующего и толстую асфальтовую пленку. Увеличение свободного асфальта приводит к перемещению и пластической деформации при высокой температуре.Общая динамическая стабильность CPAM низкая, поскольку прочность смеси еще не сформирована. Устойчивость к колейности в этих условиях не является окончательной характеристикой CPAM.

Заключение

Метод расчета смеси Маршалла был изменен с целью разработки CPAM. Была проведена серия испытаний дорожных характеристик CPAM, разработанного с использованием метода расчета смеси Маршалла, метода эмпирических формул и модифицированного метода расчета смеси Маршалла.Испытания включали испытание на начальную прочность, испытание на прочность при формовании, испытание на стабильность при хранении, испытание на водостойкость и испытание на стабильность при высоких температурах. Результаты сравнительного анализа подтвердили полезность и осуществимость модифицированного метода расчета смеси Маршалла. На основании результатов этого ограниченного лабораторного исследования можно сделать следующие выводы.

• В этой статье рекомендуемая температура отверждения для образца CPAM составляла 90 ° C. Оптимальный коэффициент асфальтового заполнителя CPAM, полученный с использованием модифицированного метода расчета смеси Маршалла, был равен 5.38%. Это значение находилось между оптимальным соотношением заполнителей асфальта, полученным с использованием традиционного метода расчета смеси Маршалла, и значением, полученным с использованием метода эмпирических формул.

• Дорожные характеристики CPAM, разработанного с использованием модифицированного метода расчета смеси Маршалла, были лучше, чем у модели CPAM, разработанной с использованием традиционного метода расчета смеси Маршалла и метода эмпирических формул. Модифицированный метод расчета смеси Маршалла осуществим.

• Сила CPAM увеличивается со временем.Формовочная прочность была примерно в два раза выше начальной прочности.

• Структура микширования CPAM должна учитывать его собственные характеристики. В этой статье преобразование параметров объема и добавление требования к низкотемпературной обрабатываемости позволяют улучшить дизайн CPAM. Рекомендуется использовать модифицированный метод расчета смеси Маршалла в качестве процедуры расчета смеси для CPAM.

Заявление о доступности данных

Все наборы данных, созданные для этого исследования, включены в статью / дополнительный материал.

Авторские взносы

SL руководил всем процессом написания рукописи. SW, CX и CL провели эксперименты и анализ данных. Все авторы проанализировали результаты и внесли свой вклад в написание рукописи.

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Финансирование

Эта работа была поддержана Национальным фондом естественных наук Китая (51578081, 51608058), Научно-технологическим инновационным проектом провинции Хунань для аспирантов университетов (CX2019B ∗∗∗ ), Проектом открытого фонда Национальной инженерной лаборатории (kfh260102 ), Провинция Хунань — Транспортные строительные проекты в области науки и технологий (201701), Транспортные проекты Департамента транспорта и транспорта Автономного района Внутренней Монголии (NJ-2016-35, HMJSKJ-201801), Национальная программа ключевых исследований и разработок Китая ( 2018YFB1600100), Фонд естественных наук провинции Хунань (2018JJ3550), Департамент образования провинции Хунань (18B144) и Проект науки и технологий Департамента транспорта провинции Хэнань (2016Z2).

Благодарности

Мы хотим поблагодарить рецензентов и редакторов за их советы по этой статье.

Список литературы

Alenezi, T., Norambuena-Contreras, J., Dawson, A., and Garcia, A. (2019). Новый тип материала для дорожного покрытия из холодной смеси, состоящий из альгината кальция и заполнителей. J. Clean. Продукт. 212, 37–45. DOI: 10.1016 / j.jclepro.2018.11.297

CrossRef Полный текст | Google Scholar

Аттаран Довом, Х., Мохаммадзаде Могхаддам, А., Карраби, М., и Шахнаваз, Б. (2019). Повышение устойчивости к воздействию влаги холодных асфальтовых смесей, модифицированных экологически чистыми микробными карбонатными осадками (MCP). Констр. Строить. Матер. 213, 131–141. DOI: 10.1016 / j.conbuildmat.2019.03.262

CrossRef Полный текст | Google Scholar

Чен, Т., Луан, Ю., Ма, Т., Чжу, Дж., Хуанг, X., и Ма, С. (2020). Механические и микроструктурные характеристики различных поверхностей раздела в смеси холодного вторичного использования, содержащей цемент и битумную эмульсию. J. Clean. Продукт. 258: 120674. DOI: 10.1016 / j.jclepro.2020.120674

CrossRef Полный текст | Google Scholar

Даш, С. С., Панда, М. (2018). Влияние параметров смеси на конструкцию холодной битумной смеси. Construct. Строить. Матер. 191, 376–385. DOI: 10.1016 / j.conbuildmat.2018.10.002

CrossRef Полный текст | Google Scholar

Диас, Л. Г. (2016). Оценка ползучести смесей для ремонта асфальта холодной смеси. Внутр. Дж.Тротуар Res. Technol. 9, 149–158. DOI: 10.1016 / j.ijprt.2016.04.002

CrossRef Полный текст | Google Scholar

Донг, К., Юань, Дж., Чен, X., и Ма, X. (2018). Снижение влаговосприимчивости холодной асфальтовой смеси с добавками портландцемента и бентонитовой наноглины. J. Clean. Продукт. 176, 320–328. DOI: 10.1016 / j.jclepro.2017.12.163

CrossRef Полный текст | Google Scholar

Дойл, Т.А., Макнелли, К., Гибни, А., и Табакович, А.(2013). Разработка методов оценки зрелости битумных материалов холодных смесей. Construct. Строить. Матер. 38, 524–529. DOI: 10.1016 / j.conbuildmat.2012.09.008

CrossRef Полный текст | Google Scholar

Дулайми, А., Аль-Нагейм, Х., Раддок, Ф., и Сетон, Л. (2017). Высокоэффективная холодная асфальтобетонная смесь для вяжущего слоя с использованием щелочно-активированного бинарного вяжущего наполнителя. Construct. Строить. Матер. 141, 160–170. DOI: 10.1016 / j.conbuildmat.2017.02.155

CrossRef Полный текст | Google Scholar

Гомес-Мейиде Б. и Перес И. (2014). Предлагается методика глобального исследования механических свойств холодных асфальтобетонных смесей. Mater. Проект 57, 520–527. DOI: 10.1016 / j.matdes.2013.12.079

CrossRef Полный текст | Google Scholar

Гу, С. (2017). Структурные характеристики и оценка испытаний битумной смеси холодного ремонта. Магистерская диссертация, Юго-Восточный университет, Нанкин.

Google Scholar

Го, М., Тан, Ю., и Чжоу, С. (2014). Многоуровневое испытание свойств межфазной адгезии холодного асфальта. Construct. Строить. Матер. 68, 769–776. DOI: 10.1016 / j.conbuildmat.2014.06.031

CrossRef Полный текст | Google Scholar

JTG E20–2011 (2011 г.). Стандартные методы испытаний битума и битумной смеси для дорожного строительства. Пекин: China Communications Press.

Google Scholar

JTG F40–2004 (2004 г.). Технические условия на строительство автомобильных дорог с асфальтовым покрытием. Пекин: China Communications Press.

Google Scholar

Хан А., Ределиус П. и Крингос Н. (2016). Оценка адгезионных свойств границ раздела минерал-битум в холодных асфальтобетонных смесях. Construct. Строить. Матер. 125, 1005–1021. DOI: 10.1016 / j.conbuildmat.2016.08.155

CrossRef Полный текст | Google Scholar

Ли, Ф., Хуан, С. К., Сюй, Дж., И Цинь, Ю.С. (2010). Исследования по составлению асфальтобетонных смесей холодного ямочного производства. J. Wuhan Univ. Sci. Technol. 32, 79–82.

Google Scholar

Ли, Дж. Х., Нань, Б. З., и Гао, Дж. Т. (2017). Исследование состава и характеристик битумной смеси холодного ямочного ремонта. шоссе трансп. Technol. 13, 199–200 227.

Google Scholar

Линг, К., Ханц, А., и Баия, Х. (2016). Измерение чувствительности асфальта холодной смеси к влаге с помощью модифицированного теста на кипение, основанного на цифровых изображениях. Construct. Строить. Матер. 105, 391–399. DOI: 10.1016 / j.conbuildmat.2015.12.093

CrossRef Полный текст | Google Scholar

Линг, Дж. М., Чжоу, З. Ф., и Пэн, Дж. К. (2007). Приготовление и выполнение хранения асфальтобетонной смеси для ремонта дорожного покрытия. J. Build. Матер. 10, 195–200.

Google Scholar

Лю, К. К., Львов, С. Т., Пэн, X. Х., Чжэн, Дж. Л., и Ю, М. (2020). Анализ и сравнение различных воздействий старения и частоты нагружения на характеристики усталости асфальтобетона. J. Mater. Civ. Англ. 32: 04020240. DOI: 10.1061 / (ASCE) MT.1943-5533.0003317

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ма, К. Х., Син, Х. Т., Сюй, Х. С., Ли, Дж. З., и Фэн, Х. Х. (2016). Приготовление и анализ характеристик холодного ямочного ремонта асфальтобетонной смеси. J. S. Univ. 46, 594–598.

Google Scholar

Ма, Т., Чжан, Д., Чжан, Ю., Ван, С., и Хуанг, X. (2018). Имитационное моделирование теста слежения за колесом для асфальтобетонной смеси с использованием моделирования дискретных элементов. Road Mater. Дизайн дорожной одежды 19, 367–384. DOI: 10.1080 / 14680629.2016.1261725

CrossRef Полный текст | Google Scholar

Meng, W. Z., Yang, L., Xia, Z., Wang, X. Y., Xue, J., Wu, J. Y., et al. (2011). Приготовление и свойства битумной смеси холодного ямочного ремонта. J. Wuhan Univ. Англ. 33, 49–53.

Google Scholar

Нассар А. И., Том Н. и Парри Т. (2016). Оптимизация конструкции смеси холодных битумно-эмульсионных смесей с использованием методологии поверхности отклика. Construct. Строить. Матер. 104, 216–229. DOI: 10.1016 / j.conbuildmat.2015.12.073

CrossRef Полный текст | Google Scholar

Саадун, Т., Гарсия, А., Гомес-Мейджиде, Б. (2017). Динамика испарения воды в холодных асфальтобетонных смесях. Mater. Проект 134, 196–206. DOI: 10.1016 / j.matdes.2017.08.040

CrossRef Полный текст | Google Scholar

Шанбара, Х. К., Раддок, Ф., и Атертон, В. (2018). Лабораторное исследование высокоэффективных холодных асфальтобетонных смесей, армированных натуральными и синтетическими волокнами. Construct. Строить. Матер. 172, 166–175. DOI: 10.1016 / j.conbuildmat.2018.03.252

CrossRef Полный текст | Google Scholar

Сонг, Дж. С. и Львов, В. М. (1998). Исследование по составу асфальтобетонной смеси для хранения. J. Tongji Univ. 26, 664–668.

Google Scholar

Сонг, X.F., Fan, Z.H., и Wang, Y.F. (2014). Изучение таких же условий твердения бетона большого объема на основе методов созревания. Adv. Матер. Res. 893, 593–596.DOI: 10.4028 / www.scientific.net / AMR.893.593

CrossRef Полный текст | Google Scholar

Сюй, В., Мэй, Х., Луо, Р., Го, X. Л., и Ван, X. (2018). Конструкция материала и характеристики смеси для холодного ямочного асфальта. J. Wuhan Univ. Sci. Technol. 42, 1049–1054.

Google Scholar

Янг, Л., Мэн, В. З., Ван, X. Х., Ся, З., Ван, X. Y., Сюэ, Дж. И др. (2011). Влияние неорганического наполнителя на прочность асфальтобетонной смеси холодного ремонта. Дж.Wuhan Univ. Англ. 33, 47–51.

Google Scholar

Чжан, Ю., Ма, Т., Линг, М., Чжан, Д., и Хуанг, X. (2019). Прогнозирование динамического модуля сдвига асфальтовых мастик с использованием дискретных элементов моделирования и механизмов армирования. J. Mater. Civil Eng. 31: 04019163. DOI: 10.1061 / (ASCE) MT.1943-5533.0002831

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Строительство асфальтового покрытия — Институт асфальта

Хотя есть бесконечное количество вопросов, которые можно задать, мы составили список тех вопросов, которые были адресованы нам больше всего.

Эти часто задаваемые вопросы сгруппированы по тематическим областям, перечисленным в раскрывающемся списке ниже.

Мы постарались, чтобы вопросы и ответы были краткими. Там, где это возможно, дается ссылка на дополнительную информацию для тех, кто ищет более подробную информацию по данной теме.

Для получения дополнительной информации см. Другие области инженерии, веб-сайты журнала Asphalt и APA, интернет-магазин Asphalt Institute и страницу ссылок для получения другой информации, относящейся к этой тематической области.

Мы также рекомендуем вам посещать курсы Асфальтовой Академии на объектах по всей стране, чтобы получить квалифицированные инструкции по асфальтовым покрытиям.

Грунтовка

Что такое грунтовка?

Нанесение низковязкого асфальта на гранулированную основу при подготовке к укладке асфальтового покрытия.

Для чего нужен грунтовочный слой?

  • Для покрытия и приклеивания частиц рыхлого материала к поверхности основы.
  • Для упрочнения или повышения жесткости базовой поверхности, чтобы обеспечить рабочую платформу для строительной техники.
  • Для заполнения капиллярных пустот в поверхности основного слоя, чтобы предотвратить миграцию влаги.
  • Для обеспечения сцепления между основным слоем и последующим слоем.

Какие асфальтовые материалы следует использовать для грунтовок?

Чтобы грунтовка была эффективной, она должна проникать в основной слой. Обычно хорошо подойдет легкая фракция средней твердости, такая как MC-30. Однако во многих областях качество воздуха вызывает озабоченность, и EPA ограничило или исключило использование сокращений.В таких местах необходимо использование эмульгированного асфальта. Есть несколько способов выполнить прайм при использовании эмульсии:

  • Большинство производителей эмульсий выпускают патентованные продукты, одна из которых — эмульсия, специально разработанная для использования в грунтовочных покрытиях.
  • Если гранулированный основной материал имеет несколько пористую градацию, на нанесение грунтовочного покрытия часто можно повлиять, нанеся медленно схватывающуюся эмульсию (SS-1, SS-1 h, CSS-1, CSS-1 h), разбавленную 5. части воды на 1 часть эмульсии.Путем нанесения нескольких (4 или 5) легких аппликаций (0,10 галлона / си) можно получить водонепроницаемую поверхность на основном слое.
  • Добавьте эмульсию в воду для уплотнения, укладывая последние 2–3 дюйма основного слоя. Используйте разбавление и норму внесения, которые обеспечат от 0,1 до 0,3 галлона на квадратный ярд (разведение 3: 1; 4 внесения; расход 0,15 галлона / си).
  • Завершите укладку основного материала курса, затем сделайте рыхление примерно на 3/4 дюйма. Нанесите около 0,20 галлона / си 2 прямой эмульсии (неразбавленной) и смешайте ее со скарифицированным материалом.Затем переложите смешанный материал и уплотните.

Требуется ли грунтовка?

Одно время считалось, что грунтовка является важным элементом хорошей конструкции дорожного покрытия. Однако в последние годы некоторые инженеры отказались от использования грунтовки, особенно когда слой (слои) асфальта (поверхность и / или основание) имеет толщину 4 дюйма или более. Во многих случаях грунтовочные покрытия не использовались, даже если толщина поверхности составляла всего 2 дюйма. За последние 20 лет небольшое количество повреждений дорожного покрытия, если они вообще были, можно объяснить отсутствием грунтовочного покрытия.

Лаки

Зачем нужна закрепка?

Для обеспечения сцепления между последующими слоями дорожного покрытия.

Какой материал следует использовать для закрепления?

Медленно схватывающаяся эмульсия, SS-1, CSS-1, SS-I h или CSS-1 h, хорошо работает при разбавлении водой в соотношении 50/50.

Какую норму применения следует использовать?

Вы хотите добиться очень равномерного нанесения от 0,03 до 0,05 галлона / год остаточного асфальта на приклеиваемый слой (так сказать, покраска).Медленно схватывающиеся эмульсии обычно имеют остаточное содержание асфальта около 2/3. Следовательно, расход разбавленного материала от 0,10 до 0,15 галлонов в год даст вам 0,03-0,05 галлонов в год.

  • Предостережение № 1 : После нанесения липкого слоя необходимо подождать, пока эмульсия не разрушится (превратится из коричневой в черную), прежде чем нанести на нее горячую смесь. Время, необходимое для этого, будет зависеть от погоды. В хорошую погоду это займет всего несколько минут.В непогоду это может занять несколько минут.
  • Осторожно № 2 : Никогда не наносите эмульсионный клейкий слой на холодное покрытие (ниже точки замерзания). Эмульсия разрушится, но вода и эмульгаторы замерзнут и останутся в слое, на которое нанесено липкое покрытие.

Если любое из этих предупреждений нарушено, велика вероятность того, что верхний слой не будет сцепляться с нижним слоем, и возникнет плоскость скольжения.

Когда необходимо связующее покрытие?

Почти всегда! В редких случаях, когда строится тротуар, который не используется путешествующими людьми, и каждый последующий подъемник устанавливается в быстрой смене, липкое покрытие может не понадобиться.Однако хороший дешевый страховой полис — всегда использовать липкие слои.

Асфальтобетонные смеси

Существуют ли какие-либо практические правила для асфальтового покрытия контейнерного терминала относительно максимальной нагрузки, не вызывающей повреждений?

Никакое эмпирическое правило не дает ответа на ваш вопрос, но следует рассмотреть два вопроса:

  1. Соответствует ли конструкция дорожного покрытия (земляное полотно, основание, основание и все слои асфальта) нагрузкам? Вам необходимо приобрести нашу инструкцию MS-23, Расчет толщины асфальта для тяжелых колесных нагрузок .
  2. Является ли поверхность горячего асфальта достаточно жесткой, чтобы противостоять деформации (борозды или вмятины)? Это зависит от многих факторов, таких как жесткость исходной смеси, возраст смеси (становится жестче со временем), температура смеси во время загрузки, сама загрузка, продолжительность приложенной нагрузки и т. Д. Хотя обычно это не проблема, когда бывает, что ее обычно можно решить, поместив несколько стальных (или других твердых материалов) пластин ниже точечной нагрузки, чтобы распределить нагрузку по более широкой области.

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо. Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Правильная техника прокатки и соответствующее оборудование необходимы для достижения достаточного уплотнения.Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату. Ручная работа должна быть сведена к минимуму. Шнеки асфальтоукладчика должны подавать в стык достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с малыми пустотами и проницаемостью.

Есть ли проблема с измельчением и переработкой асфальтобетонных смесей, в которых использовались модифицированные полимером связующие?

Вообще говоря, особых проблем с использованием смесей, модифицированных полимером, в качестве РАП нет.Некоторые люди выражают озабоченность по поводу экологии в связи с проведением измельчения, содержащего измельченный каучук для шин (GTR), через барабанную установку. Флорида использует небольшой процент GTR в большинстве смесей для дорожных покрытий. Калифорния и Аризона также часто используют GTR.

Какова правильная температура смеси?

Температура смеси зависит от марки асфальта, используемого в смеси: менее вязкий асфальт требует более низких температур, в то время как более вязкий асфальт требует более высоких температур. В начале проектирования смеси целевые температуры указываются для надлежащего перемешивания и уплотнения.Эти температуры должны быть адаптированы к условиям проекта (погодные условия, расстояние транспортировки и т. Д.). По возможности избегайте отклонений от расчетной температуры смеси более 25 градусов. Примечание. При работе с модифицированным связующим поставщик связующего должен предоставить рекомендации по температуре смеси.

Какая минимальная температура для асфальтобетонных смесей?

Смеси

должны быть размещены и уплотнены до того, как они остынут до 185 o F, поэтому минимальная температура будет зависеть от температуры слоя, на который она наносится, а также от условий окружающей среды.Как правило, в спецификациях агентства указывается минимально допустимая температура смеси. Некоторые спецификации будут использовать 225 o F, а другие могут использовать 250 o F.

Как убедиться, что HMA непроницаем для воды?

Обычные смеси должны быть водонепроницаемыми до тех пор, пока общее содержание воздушных пустот на месте составляет менее 7-8%. Смеси с более высоким содержанием пустот могут быть проницаемыми для воздуха и воды, что приводит к преждевременному старению и растрескиванию.

Есть ли ограничение на процентную долю RAP, используемого в новых установках? А как насчет использования РАП для ремонта старых асфальтовых дорог? Какие-нибудь ограничения? Если есть ограничения на использование RAP в новых или обновленных установках, кто устанавливает ограничения?

Институт асфальта настоятельно поддерживает использование RAP в асфальтовых смесях.RAP имеет историю положительных результатов. Указывающее агентство или владелец установят лимит для содержимого RAP. Почти все государственные дорожные департаменты теперь разрешают использование РАП. Некоторые ограничивают его использование на курсах ношения; еще меньше (один или два) полностью запрещают его использование. Большинство агентств разработали средства компенсации жесткости регенерированного асфальта из RAP путем выбора конкретного сорта первичного вяжущего. Экспертная группа по асфальтовым смесям FHWA разработала рекомендации, которые рассматриваются Ассоциацией государственных служащих автомобильных дорог и транспорта (AASHTO) в качестве руководства по выбору марки асфальтового вяжущего при использовании RAP.Эти рекомендации кратко изложены ниже.

  • При использовании 15% или менее RAP: «Марка вяжущего для смеси выбирается с учетом окружающей среды и условий движения так же, как и для первичной смеси. Регулировка уклона не производится для компенсации жесткости асфальта в RAP ».
  • При использовании RAP от 16 до 25%: «Выбранный сорт вяжущего для нового асфальта на один класс ниже как по высокой, так и по низкотемпературной жесткости, чем сорт вяжущего, требуемый для первичного асфальта.Например, если указанная марка связующего для первичной смеси — PG 64-22, требуемая марка для переработанной смеси будет PG 58-28 ”.
  • При использовании более 25% RAP: «Марка вяжущего для нового битумного вяжущего выбирается с использованием соответствующей таблицы смешения для высоких и низких температур. Эта низкотемпературная марка на одну ступень ниже, чем марка вяжущего, необходимая для первичного асфальта ».

Обычно приведенные выше инструкции применяются как к новым, так и к существующим покрытиям.Если к проекту применялась гарантия, можно было бы выбрать более консервативный подход — например, использование диаграмм смешения.

Рекомендуется, чтобы вы связались с местным дорожным агентством штата и / или поставщиком асфальтового вяжущего, чтобы узнать о преобладающих местных методах работы.

Допустимо ли использовать теоретический максимальный удельный вес (рис) для материала, полученного из стержней или пилы?

Рис (Гмм) обычно не обрабатывают материалом из сердцевин, так как это не предпочтительный метод сбора материала для этого теста.Фактически, ASTM D5361, Стандартная практика отбора проб уплотненных битумных смесей для лабораторных испытаний, не включает испытания риса в раздел «Значение и использование».

Примечание параграф 3.1 стандарта гласит: 3.1 Образцы, полученные в соответствии с процедурой, приведенной в данной практике, могут использоваться для измерения толщины, плотности, упругости или динамического модуля, прочности на растяжение, устойчивости по Маршаллу или Хвиму или для испытаний на извлечение, чтобы определить содержание асфальта, его свойства и градацию смеси.На это есть несколько причин. Во-первых, отбор керна — это, естественно, деструктивный процесс, который меняет градацию. Уровень, на который смещается градация, зависит от природы родительской градации и материала. то есть полудюймовая SMA, вероятно, будет иметь больший сдвиг градации, чем, скажем, тонкая, плотно разложенная смесь трех восьмых. Во-вторых, и что более важно, путем бурения керна вы создаете заполнитель, не покрытый асфальтом. Отсутствие покрытия может способствовать поглощению воды этими незащищенными поверхностями.Естественно, чем больше усвояемость совокупности, тем серьезнее потенциальная проблема в данной ситуации. Стандарт AASHTO для риса — T-209. В нем рассматривается абсорбция в части 15 стандарта, озаглавленной «Дополнительная процедура для смесей, содержащих пористый заполнитель». Это также известно как «процедура высыхания». Он используется в смесях, произведенных с заполнителем, водопоглощение которого превышает 1,5%. Однако, хотя сбор рисового материала через сердцевины не является предпочтительным методом, это приемлемый метод, когда более предпочтительные альтернативы (образцы, полученные на заводе или в лаборатории) не подходят. доступный.Мне неизвестно о каком-либо состоянии, которое не позволяет использовать ядра для Gmm, когда нет хорошей альтернативы. Помня о предыдущем обсуждении, следует сделать все возможное, чтобы свести к минимуму любые потенциальные проблемы, которые могут возникнуть из-за образцов, вырезанных в полевых условиях. Это приводит к тому, что мышление больше — значит лучше. 6-дюймовая сердцевина будет иметь меньшую процентную долю своего агрегата, затронутого керном, чем 4-дюймовая сердцевина той же дороги. Поэтому настоятельно рекомендуется, если альтернативные методы производства материалов для риса не подходят, использовать по крайней мере 6-дюймовую сердцевину.Если можно собрать более крупный образец, например, при распиловке, то это следует рассмотреть. Суждение и приемлемая на местном уровне практика, безусловно, должны быть задействованы.

Агрегат

Какой номинальный размер заполнителя следует использовать?

Толщина подъема определяет размер заполнителя. Минимальная толщина подъема должна быть как минимум в 3 раза больше номинальной макс. размер заполнителя для обеспечения возможности выравнивания заполнителя во время уплотнения для достижения требуемой плотности, а также для обеспечения непроницаемости смеси.Максимальная толщина подъема зависит также от типа используемого уплотнительного оборудования. При использовании статических катков со стальными колесами максимальная толщина подъема, которая может быть должным образом уплотнена, составляет три (3) дюйма. При использовании пневматических или вибрационных катков максимальная толщина подъема, которую можно уплотнить, практически не ограничена. Как правило, толщина подъема ограничивается 6 или 8 дюймами. Правильная установка становится проблемой для лифтов толщиной более 8 или 8 дюймов. Для смесей с открытой фракцией уплотнение не является проблемой, поскольку предполагается, что эти типы смесей остаются очень открытыми.Следовательно, агрегат максимального размера может составлять до 80 процентов от толщины подъема.

Строительство

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь». С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия.Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия. Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:

  • Дождь охлаждает асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • , асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) — никогда не укладывайте лужи, идет дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • выполнить строительный шов с вертикальной облицовкой
  • правильно утилизируйте весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us вместе с отчетом 05-02.

Какую толщину подъемника следует использовать?

Минимальная толщина подъема должна быть как минимум в 3 раза больше номинальной макс. размер заполнителя для обеспечения возможности выравнивания заполнителя во время уплотнения для достижения требуемой плотности, а также для обеспечения непроницаемости смеси. Максимальная толщина подъема зависит также от типа используемого уплотнительного оборудования.При использовании статических катков со стальными колесами максимальная толщина подъема, которая может быть должным образом уплотнена, составляет три (3) дюйма. При использовании пневматических или вибрационных катков максимальная толщина подъема, которую можно уплотнить, практически не ограничена. Как правило, толщина подъема ограничивается 6 или 8 дюймами. Правильная установка становится проблемой для лифтов толщиной более 8 или 8 дюймов. Для смесей с открытой фракцией уплотнение не является проблемой, поскольку предполагается, что эти типы смесей остаются очень открытыми. Следовательно, агрегат максимального размера может составлять до 80 процентов от толщины подъема.

Какова правильная температура смеси?

Температура смеси будет зависеть от марки асфальта, используемого в смеси. Чем менее вязкий асфальт, тем ниже должна быть температура. Чем более вязкий асфальт, тем выше может быть температура. При смешивании расчетные температуры указываются для правильного смешивания и уплотнения. Это хорошие цели для начала проекта. Однако их придется адаптировать к условиям проекта (погодные условия, расстояния транспортировки и т. Д.).). По возможности избегайте отклонений от расчетной температуры смеси более 25 градусов. Примечание. При работе с модифицированным связующим поставщик связующего должен предоставить рекомендации по температуре смеси.

Какая минимальная температура для асфальтобетонных смесей?

Смеси

должны быть размещены и уплотнены до того, как они остынут до 185 o F, поэтому минимальная температура будет зависеть от температуры слоя, на который она наносится, а также от условий окружающей среды. Графики температурных сеансов представлены на стр. 6-6, рис.6.03 нового МС-22 и стр. 234 старого МС-22. Как правило, в спецификациях агентства указывается минимально допустимая температура смеси. Некоторые спецификации будут использовать 225 o F, а другие могут использовать 250 o F.

Как узнать, правильно ли перемешана смесь?

Когда все частицы заполнителя покрыты асфальтом. Крупные частицы заполнителя всегда покрываются в последнюю очередь. Если крупные частицы заполнителя полностью покрыты слоем, смесь тщательно перемешивается.Обычно мы видим проблемы со смешиванием только на установках периодического действия. Производитель пытается перемешать каждую партию как можно быстрее (вероятно, примерно за 30 секунд), что может быть или не соответствовать времени перемешивания. Типичные спецификации устанавливают минимальное процентное содержание покрытых частиц от 90 до 95 процентов. Процедура счета Росс для определения этих процентов (ASTM-D2489 или AASHTO T195) описана на страницах с 4-41 по 4-44 нового MS-22 и страницах 162 и 163 старого MS-22.

Необходимо тщательно соблюдать минимальное время перемешивания для соответствия указанным требованиям, чтобы избежать избыточного окисления асфальтовых пленок на частицах заполнителя, поскольку он подвергается воздействию воздуха (кислорода) во время процесса перемешивания.

Как правило, мы не видим этой проблемы с барабанными миксами. Смесь остается в смесительной части барабана в течение гораздо более длительных периодов времени (возможно, от 2 до 3 минут), чем в дробилке периодического действия, поэтому частицы заполнителя очень хорошо покрываются. Имейте в виду, что нас не так беспокоит окисление в барабанных смесях, поскольку смесительная часть барабанного смесителя, по сути, представляет собой бескислородную атмосферу.

Другой способ взглянуть на это: в партии смеси в 6000 фунтов содержится около 5600 фунтов.агрегата и около 400 фунтов. асфальта. Плотный заполнитель имеет площадь поверхности около 35 кв. Футов на фунт, или 196 000 кв. Футов / 6000 фунтов партии; 400 фунтов асфальта — это около 48 галлонов. В процессе смешивания требуется 48 галлонов асфальта и красить около 3,8 футбольных полей. Когда частицы заполнителя покрываются, он перемешивается.

Что следует использовать в качестве разделительной смеси для платформ и роликов грузовиков?

Слишком часто мы все еще видим, что дизельное топливо используется в качестве разделительного агента.Дизельное топливо — растворитель. Любое избыточное количество растворяет асфальтовые пленки на частицах заполнителя, тем самым загрязняя смесь. Коммерческие разделительные агенты для смесей легко доступны, и их следует использовать. Обычно они представляют собой мыло, эмульгированный воск или другие устойчивые к прилипанию материалы, которые не загрязняют смесь. Несколько предложений: мешок гашеной извести, смешанный с 1000 галлонами воды, или бутылка средства для мытья посуды (Joy), смешанного с водой. Порции зависят от воды, с которой он смешан.Для мягкой воды не потребуется столько же, сколько для жесткой.

По нашему опыту, для модифицированного асфальта требуется специальный разделительный агент. Обратитесь в местный департамент транспорта штата за списком одобренных антиадгезионных средств.

Какова правильная скорость асфальтоукладчика?

Скорость асфальтоукладчика должна быть приспособлена для смешивания производства и доставки. Необходимо приложить все усилия, чтобы поддерживать постоянную скорость асфальтоукладчика. На эту постоянную скорость влияют несколько факторов. При стабильном производственном и производственном потоке скорость асфальтоукладчика будет зависеть от толщины подъема и ширины прохода укладчика.Толстый подъемник — меньшая скорость; чем тоньше подъемник — тем быстрее скорость. Более широкий проход — более медленная скорость; более узкий проход — более высокая скорость. Большинство производителей оборудования указывают максимальную скорость для своего асфальтоукладчика. Во многих спецификациях агентств указана максимальная скорость, например 30 или 40 футов в минуту.

Почему у проезжей части асфальтоукладчика есть богатая блестящая полоса посередине с тусклыми, рваными краями?

В выглаживающей плите слишком много свинца.

Почему на проходе для асфальтоукладчика появляются яркие блестящие полосы с каждой стороны и тусклый, рваный вид посередине?

В выглаживающей плите не хватает свинцовой коронки. Примечание : Выглаживающие плиты асфальтоукладчика должны иметь немного больший гребень на передней кромке, чем на задней кромке — обычно около 1/8 дюйма. Это может зависеть от производителя оборудования и / или ширины прохода асфальтоукладчика. Даже если задняя кромка стяжки должна быть ровной или ровной, передняя кромка все равно должна иметь увеличенный гребень.

Есть ли ограничение на процентную долю RAP, используемого в новых установках. А как насчет использования РАП для ремонта старых асфальтовых дорог? Какие-нибудь ограничения? Если есть ограничения на использование RAP в новых или обновленных установках, кто устанавливает ограничения?

Институт асфальта настоятельно поддерживает использование RAP в асфальтовых смесях.RAP имеет историю положительных результатов. Что касается ограничения содержания RAP, это решение определяющего агентства или владельца. Почти все государственные дорожные департаменты теперь разрешают использование РАП. Некоторые ограничивают его использование на курсах ношения; еще меньше (один или два) вообще не позволяют его использовать. Большинство агентств разработали средства компенсации жесткости регенерированного асфальта из RAP путем выбора конкретного сорта первичного вяжущего. Экспертная группа по асфальтовым смесям FHWA разработала рекомендации, которые рассматриваются Ассоциацией государственных служащих автомобильных дорог и транспорта (AASHTO) в качестве руководства по выбору марки асфальтового вяжущего при использовании RAP.Эти рекомендации кратко изложены ниже.

  • При использовании 15% или менее RAP: «Марка вяжущего для смеси выбирается с учетом окружающей среды и условий движения так же, как и для первичной смеси. Регулировка уклона не производится для компенсации жесткости асфальта в RAP ».
  • При использовании RAP от 16 до 25%: «Выбранный сорт вяжущего для нового асфальта на один класс ниже как по высокой, так и по низкотемпературной жесткости, чем сорт вяжущего, требуемый для первичного асфальта.Например, если указанная марка связующего для первичной смеси — PG 64-22, требуемая марка для переработанной смеси будет PG 58-28 ”.
  • При использовании более 25% RAP: «Марка вяжущего для нового битумного вяжущего выбирается с использованием соответствующей таблицы смешения для высоких и низких температур. Эта низкотемпературная марка на одну ступень ниже, чем марка вяжущего, необходимая для первичного асфальта ».

Обычно приведенные выше инструкции применяются как к новым, так и к существующим покрытиям.Если к проекту применялась гарантия, можно было бы выбрать более консервативный подход — например, использование диаграмм смешения.

Рекомендуется, чтобы вы связались с местным дорожным агентством штата и / или поставщиком асфальтового вяжущего, чтобы узнать о преобладающих местных методах работы.

Размещение

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь».«С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия. Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия.Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:

  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • , асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) — никогда не укладывайте лужи, идет дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • выполнить строительный шов с вертикальной облицовкой
  • правильно утилизируйте весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us вместе с отчетом 05-02.

Как определить, сколько асфальта требуется для проекта?

Вот процесс:

  1. Рассчитайте количество кубических футов для мощения. (Не забудьте преобразовать толщину в футы — разделив на 12 дюймов на 1 фут). 10 ′ x 25 ′ x (4/12) ’= 83,3 кубических фута HMA
  2. Асфальтовая смесь
  3. обычно весит от 142 до 148 фунтов на кубический фут (PCF) на месте.Используйте 148 PCF.
  4. Рассчитайте необходимый тоннаж. (не забудьте перевести фунты в тонны; 2000 фунтов на тонну).

83,3 кубических фута x 148 PCF = 12328 фунтов смеси = 12328/2000 тонн = 6,1 тонны

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо.Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Правильная техника прокатки и соответствующее оборудование необходимы для достижения достаточного уплотнения. Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату.Ручная работа должна быть сведена к минимуму. Шнеки асфальтоукладчика должны подавать в шов достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с низким уровнем пустот и проницаемостью.

Какова правильная скорость асфальтоукладчика?

Скорость асфальтоукладчика должна быть приспособлена для смешивания производства, доставки и уплотнения; с упором на уплотнение. Необходимо приложить все усилия, чтобы поддерживать постоянную скорость асфальтоукладчика. На эту постоянную скорость влияют несколько факторов. При постоянном производственном потоке и подаче скорость асфальтоукладчика будет зависеть от толщины подъема (толще / медленнее; тоньше / быстрее) и ширины прохода асфальтоукладчика шире / медленнее; узкий / быстрее).Большинство производителей оборудования указывают максимальную скорость для своего асфальтоукладчика. Во многих спецификациях агентств указана максимальная скорость, например 30 или 40 футов в минуту. Большинство производителей уплотнителей рекомендуют максимальную скорость роликов 3 мили в час, и чаще всего для уплотнения требуется более одного прохода роликов. Поэтому количество и тип используемых роликов очень важны.

Можно ли сразу охладить уложенный коврик водой для раннего движения?

Мы не рекомендуем распылять воду на свежеуложенную горячую асфальтовую смесь (HMA), чтобы мат быстрее охладился и открылся для движения.Во-первых, распыление воды на горячий коврик не очень эффективно, поскольку вода должна правильно стекать на новую поверхность и лишь временно охлаждает корку, при этом внутренняя температура HMA не сильно изменяется. Кроме того, существует опасение, что вода может вызвать эффект вспенивания горячего битумного вяжущего, что сделает HMA менее устойчивым при движении. Мы считаем, что лучше дать коврику остыть естественным путем.

Что допустимо с точки зрения стоячей воды или образования луж на стоянках и других асфальтовых покрытиях?

Институт асфальта рекомендует использовать поперечный уклон между 1.От 5 до 3,0% на всех поверхностях тротуара и еще более крутой уклон от 3 до 6% на обочинах. Сохранение уклона не менее 1,5% на стоянках обеспечит надлежащий дренаж поверхности (отсутствие луж или ванн для птиц) и минимизирует инфильтрацию, аквапланирование и вредное воздействие воды.

Уплотнение

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь».«С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия. Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия.Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:

  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • , асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) — никогда не укладывайте лужи, идет дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • выполнить строительный шов с вертикальной облицовкой
  • правильно утилизируйте весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Сколько роликов требуется?

Вопреки распространенному мнению, количество катков, необходимых для надлежащего уплотнения, основывается на размещенной площади в ярдах, а не на производственном или доставочном тоннаже. Скорость ролика должна быть ограничена до 3 миль в час. Используя эту скорость и ширину валика, можно рассчитать степень покрытия. Ширина прохода асфальтоукладчика и скорость могут дать вам квадратный метр. Количество необходимых покрытий покажет вам общую площадь в квадратных ярдах, которую каток должен покрыть.Для очень небольших работ может хватить одного ролика. В очень больших проектах может потребоваться шесть или восемь роликов. Многие проекты уплотняются тремя роликами: роликом разрушения, роликом уплотнения и роликом чистовой обработки. В большинстве средних проектов используются два катка — вибрационный каток со стальными колесами для разрушения и уплотнения и тяжелое статическое стальное колесо для чистовой прокатки.

Иногда в соответствии с техническими требованиями агентства требуется использование легкого (контактное давление от 65 до 75 фунтов на квадратный дюйм) пневматического ролика для замешивания или герметизации поверхности перед чистовой прокаткой.

Какое рекомендуемое содержание воздушных пустот для уплотнения асфальтового покрытия?

Следует предпринять меры по контролю за уплотнением воздушных пустот от 7% до 3%. При 8% или выше взаимосвязанные пустоты, которые позволяют воздуху и влаге проникать в дорожное покрытие, снижая его долговечность. С другой стороны, если воздушные пустоты упадут ниже 3%, будет недостаточно места для расширения асфальтового вяжущего в жаркую погоду. Когда содержание пустот падает до 2% или менее, смесь становится пластичной и нестабильной.

Как контролируется содержание воздушных пустот?

Воздушные пустоты обратно пропорциональны плотности уплотненной смеси. При указании требований к плотности количество пустот регулируется обратно пропорционально. Имейте в виду, что плотность — это относительный термин по сравнению с целевой плотностью лабораторно уплотненной смеси, максимальной теоретической плотностью или плотностью контрольной полосы. Процедуры использования трех методов изложены на страницах с 7-17 по 7-21 нового MS-22 и на странице 241 старого MS-22.

Какие должны быть требования к уплотнению?

Тестирование должно проводиться на основе случайной выборки с минимум пятью тестами на партию (требования агентства определяют «партию» как «дневное или полное дневное производство»).Среднее значение пяти определений плотности должно быть равно или больше:

  1. 96% лабораторной плотности без анализа менее 94%
  2. 92% от максимального теоретического значения без теста менее 90%.
  3. 99% плотности контрольной полосы

Как лучше всего проверить плотность?

Ядерные датчики обычно используются для испытания плотности из-за простоты и скорости, с которой может быть выполнено испытание. Это позволяет проводить гораздо больше тестов — более пяти минимумов для лучшего статистического результата. Осторожно : Датчик ядерной плотности должен быть соотнесен с плотностями активной зоны, которые взяты из того же места, что и ядерный датчик. Это нужно делать для каждой отдельной смеси, которую можно использовать.

Как соотносятся воздушные пустоты в лабораторно уплотненных образцах «повторно нагретой» асфальтобетонной смеси с воздушными пустотами в «исходных» образцах смеси (в состоянии производства, без повторного нагрева)?

Не существует предсказуемого значения или «практического числа» для разницы в содержании воздушных пустот в исходных и повторно нагретых образцах.Общая тенденция заключается в том, что повторно нагретые образцы имеют более высокие воздушные пустоты, чем исходные уплотненные образцы. Поглощение и отверждение или повышение жесткости битумного вяжущего в повторно нагретых образцах, вероятно, вызывает эту разницу. Повторно нагретые образцы можно использовать для полной проверки результатов исходного образца. Прежде чем приписывать какую-либо значительную точность результатам повторного нагрева образца, следует разработать корреляцию для пустот повторно нагретого воздуха образца и пустот исходного воздуха образца путем выполнения серии сравнительных испытаний.

Что может вызвать растрескивание поверхности недавно уложенного асфальтобетона? Растрескивание произошло при пробивной и чистовой прокатке.

Не зная, как выглядит растрескивание поверхности, нам трудно определить проблему. Может ли «поверхностное растрескивание» указывать на растрескивание в процессе прокатки? Это мелкие микротрещины на поверхности, расположенные на расстоянии одного-двух дюймов друг от друга и идущие поперек направления прокатки. Причина в том, что коврик катится по слишком горячей и / или слишком нежной смеси.Вы можете обратиться к страницам 6-9 нового MS-22 и страницам 219-220 старого руководства MS-22, если вы не уверены, что такое проверка.

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо. Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы.Плотность также может быть труднее достичь с помощью смесей Superpave. Правильная техника прокатки и соответствующее оборудование необходимы для достижения достаточного уплотнения. Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату. Шнеки асфальтоукладчика должны подавать в шов достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с низким уровнем пустот и проницаемостью.

Что представляет собой процесс или как устанавливается или определяется целевое значение плотности?

Есть несколько способов установить целевые значения плотности. Вот некоторые из наиболее распространенных подходов:

  • Указание процентной доли веса единицы из расчета лабораторной смеси. Пример: 96% веса единицы Маршалла
  • Установление стоимости на основе результатов, достигнутых на тест-полоске на месте проекта. Пример: 98% плотности тест-полоски.
  • Указание процента от максимального веса единицы.Пример: 94% от максимального веса единицы.

Указание некоторого минимального процента от максимального веса единицы продукции получило одобрение многих агентств. Максимальный удельный вес иногда называют «плотностью твердого тела». Это значение основано на максимальном удельном весе асфальтовой смеси, также известном как значение Rice или G мм в Superpave. Максимальный удельный вес определяется путем умножения значения Rice на 62,4 фунта на кубический фут (PCF). Например, 2,500 — это типичное значение Райса.2,500 X 62,4 = 156,0 ПКФ. Тогда, если указано 95% уплотнение, минимально допустимый удельный вес будет: 0,95 X 156,0 = 148,2 PCF. Если указано 93% твердого вещества или допускается максимум 7% воздушных пустот в уплотненном мате, то минимальное целевое значение будет 145,1 PCF (0,93 X 156,0).

Толщина уплотняемого слоя влияет на его уплотняемость. Слишком тонкий мат не обеспечивает достаточной обрабатываемости, а слишком толстый мат может быть нестабильным. Для уплотнения смесь должна иметь контролируемую удобоукладываемость.Обычно для плотных смесей требуется подъемная толщина в 3-4 раза превышающая номинальный максимальный размер (NMS) заполнителя. Например, смесь, содержащая ½-дюймовый камень NMS, следует укладывать на глубину уплотнения, по крайней мере, от 1-½ до 2 дюймов. Если смесь верхнего размера ½ дюйма помещается на глубину уплотнения 1 дюйм, мат может тянуться и порваться, а камни могут быть разбиты роликами. Таким образом, «глубина укладки» действительно влияет на возможность получения надлежащего уплотнения. Целевое значение уплотнения, зависящее от свойства материала — максимального удельного веса — не изменяется, но изменяется вероятность достижения целевой плотности.

Толщина подъема

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь». С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия. Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика.Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия. Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:

  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • , асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) — никогда не укладывайте лужи, идет дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • выполнить строительный шов с вертикальной облицовкой
  • правильно утилизируйте весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо. Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Правильная техника прокатки и соответствующее оборудование необходимы для достижения достаточного уплотнения.Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату. Ручная работа должна быть сведена к минимуму. Шнеки асфальтоукладчика должны подавать в шов достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с низким уровнем пустот и проницаемостью.

Какова рекомендуемая минимальная толщина подъема для размещения HMA?

Минимальная толщина подъема должна быть не менее чем в 3 раза больше номинального максимального размера заполнителя, чтобы гарантировать, что заполнители могут выровняться во время уплотнения для достижения требуемой плотности, а также для обеспечения непроницаемости смеси.Максимальная толщина подъема также зависит от типа используемого уплотнительного оборудования. При использовании статических катков со стальными колесами максимальная толщина подъема, которая может быть должным образом уплотнена, составляет 3 дюйма. При использовании пневматического или вибрационного катка максимальная толщина подъема, которую можно уплотнить, практически не ограничена. Как правило, толщина подъема ограничивается 6 или 8 дюймами. Правильное размещение становится проблемой для лифтов толщиной более 6 или 8 дюймов. Для смесей с открытой фракцией уплотнение не является проблемой, поскольку предполагается, что эти типы смесей остаются очень открытыми.Следовательно, агрегат максимального размера может составлять до 80 процентов от толщины подъема.

Погода

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь». С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия.Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия. Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:

  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • , асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) — никогда не укладывайте лужи, идет дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • выполнить строительный шов с вертикальной облицовкой
  • правильно утилизируйте весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Можно ли укладывать асфальт под дождем (мелкая морось)?

Невозможно начать укладку, если идет дождь. Если дождь начнется после того, как началась укладка, работа может продолжаться до тех пор, пока нет стоячей воды и дождь не будет слишком сильным. Первоочередной задачей является достижение адекватного уплотнения, так как смесь будет охлаждаться намного быстрее из-за испарительного охлаждения, если ее укладывать на влажную поверхность или дождь падает на неуплотненный мат. Потребуются дополнительные усилия по уплотнению, и мониторинг температуры является ключом к достижению адекватной плотности.

Заводские операции

Есть ли проблема с измельчением и переработкой асфальтобетонных смесей, в которых использовались модифицированные полимером связующие?

Вообще говоря, особых проблем с использованием смесей, модифицированных полимером, в качестве РАП нет. Некоторые люди выражают озабоченность по поводу экологии в связи с проведением измельчения, содержащего измельченный каучук для шин (GTR), через барабанную установку. Флорида использует небольшой процент GTR в большинстве смесей для дорожных покрытий. Калифорния и Аризона также часто используют GTR.

Как узнать, правильно ли перемешана смесь?

Когда все частицы заполнителя покрыты асфальтом. Крупные частицы заполнителя всегда покрываются в последнюю очередь. Если крупные частицы заполнителя полностью покрыты слоем, смесь тщательно перемешивается. Обычно мы сталкиваемся с проблемами смешивания только на установках периодического действия, где производитель обрабатывает каждую партию как можно быстрее (вероятно, примерно за 30 секунд), что может быть или не быть адекватным временем смешивания. Типичные спецификации устанавливают минимальное процентное содержание покрытых частиц от 90 до 95 процентов.Процедура счета Росс для определения этих процентов (ASTM-D2489 или AASHTO T195) описана на страницах с 4-41 по 4-44 нового MS-22 и страницах 162 и 163 старого MS-22.

Необходимо тщательно соблюдать минимальное время перемешивания для соответствия указанным требованиям, чтобы избежать избыточного окисления асфальтовых пленок на частицах заполнителя, поскольку он подвергается воздействию воздуха (кислорода) во время процесса перемешивания.

Как правило, мы не видим этой проблемы с барабанными миксами. Смесь остается в смесительной части барабана в течение гораздо более длительных периодов времени (возможно, от 2 до 3 минут), чем в дробилке периодического действия, поэтому частицы заполнителя очень хорошо покрываются.Имейте в виду, что нас не так беспокоит окисление в барабанных смесях, поскольку смесительная часть барабанного смесителя, по сути, представляет собой бескислородную атмосферу.

Другой способ взглянуть на это: в партии смеси в 6000 фунтов содержится около 5600 фунтов. агрегата и около 400 фунтов. асфальта. Плотный заполнитель имеет площадь поверхности около 35 кв. Футов на фунт, или 196 000 кв. Футов / 6000 фунтов партии; 400 фунтов асфальта — это около 48 галлонов. Для смешивания требуется 48 галлонов асфальта и около 3 красок.8 футбольных полей. Когда частицы заполнителя покрываются, он перемешивается.

Перекрестки

Как спроектировать асфальтовую перегородку хорошего качества?

Теперь существуют инструменты для повышения производительности от пересечений HMA. Хорошо спроектированные, правильно построенные перекрестки HMA обеспечивают экономичное и долговечное покрытие с минимальным нарушением движения транспорта. Чтобы получить эти преимущества, мы должны осознавать, что перекрестки подвержены экстремальным нагрузкам.Обычных материалов и методов может быть недостаточно. Должна быть соответствующая структура дорожного покрытия, выбранные материалы, соответствующие методы строительства и особое внимание к деталям в процессе. Чтобы узнать больше о том, как проектировать и строить высокопроизводительные перекрестки с HMA, см. Следующую серию статей журнала ASPHALT.

Существуют ли какие-либо практические правила для асфальтового покрытия контейнерного терминала относительно максимальной нагрузки, не вызывающей повреждений?

Никакое эмпирическое правило не дает ответа на ваш вопрос.Есть две проблемы:

  1. Соответствует ли конструкция дорожного покрытия (земляное полотно, основание, основание и все слои асфальта) нагрузкам? Вам необходимо приобрести нашу инструкцию MS-23, Расчет толщины асфальта для тяжелых колесных нагрузок .
  2. Является ли поверхность горячего асфальта достаточно жесткой, чтобы противостоять деформации (борозды или вмятины)? Это зависит от многих факторов, таких как жесткость исходной смеси, возраст смеси (становится жестче со временем), температура смеси во время загрузки, сама загрузка, продолжительность приложенной нагрузки и т. Д.Обычно это не проблема, но если это так, то, как правило, ее можно решить, разместив несколько стальных (или других твердых материалов) пластин ниже точечной нагрузки, чтобы распределить нагрузку по более широкой площади.

Как соотносятся воздушные пустоты в лабораторно уплотненных образцах «повторно нагретой» асфальтобетонной смеси с воздушными пустотами в «исходных» образцах смеси (в состоянии производства, без повторного нагрева)?

Не существует предсказуемого значения или «практического числа» для разницы в содержании воздушных пустот в исходных и повторно нагретых образцах.Общая тенденция заключается в том, что повторно нагретые образцы имеют более высокие воздушные пустоты, чем исходные уплотненные образцы. Поглощение и отверждение или повышение жесткости битумного вяжущего в повторно нагретых образцах, вероятно, вызывает эту разницу.

Повторно нагретые образцы можно использовать для полной проверки результатов исходного образца. Прежде чем приписывать какую-либо значительную точность результатам повторного нагрева образца, следует разработать корреляцию для пустот повторно нагретого воздуха образца и пустот исходного воздуха образца путем выполнения серии сравнительных испытаний.

Есть ли проблема с измельчением и переработкой асфальтобетонных смесей, в которых использовались модифицированные полимером связующие?

Вообще говоря, особых проблем с использованием смесей, модифицированных полимером, в качестве РАП быть не должно. Некоторые люди выражают озабоченность по поводу окружающей среды по поводу прогона измельчения, содержащего измельченный каучук для шин (GTR), через барабанную установку. Флорида использует небольшой процент GTR в большинстве смесей для дорожных покрытий. Калифорния и Аризона также часто используют GTR.

Какова правильная температура смеси?

Температура смеси будет зависеть от марки асфальта, используемого в смеси.Чем менее вязкий асфальт, тем ниже должна быть температура. Чем более вязкий асфальт, тем выше может быть температура. При смешивании расчетные температуры указываются для правильного смешивания и уплотнения. Это хорошие цели для начала проекта. Однако их необходимо будет адаптировать к условиям проекта (погодные условия, расстояния транспортировки и т. Д.). По возможности избегайте отклонений от расчетной температуры смеси более 25 градусов. Примечание : При работе с модифицированным связующим поставщик связующего должен предоставить рекомендации по температуре смеси.

Обработка поверхности

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us вместе с отчетом 05-02.

Какой тип асфальта следует использовать?

Жидкий асфальт, например, быстроотверждающаяся эмульсия (RS-1,2 или CRS-1,2 включает модифицированную) 1 Обычно используются асфальты с сокращенной структурой в некоторых областях, в зависимости от нормативов EPA, которые включают RC-250, 800 или 3000. .Высококвалифицированные экипажи также могут использовать АС-5 или 10.

Сколько асфальта следует нанести на заполнитель? (фишки)

Количество нанесенного асфальта зависит от трех факторов:

  1. Состояние существующей поверхности
  2. Объем трафика
  3. Средний размер частиц стружки.

Следует сделать поправку на состояние поверхности — сухая, потрескавшаяся, сильно потрескавшаяся, промытая, просачивающаяся и т. Д. Меньшие объемы движения требуют большего количества асфальта, чем более высокие нагрузки.Средний размер частиц должен быть погружен в асфальт на 60-75%. Более высокий трафик должен быть ближе к 60%, а более низкий трафик должен быть ближе к 75% коэффициенту встраивания. Средний размер частиц — это средний размер стружки в градации, для этого числа можно использовать 50% проходной размер.

Нужно ли чистить чипы?

Да — AASHTO T-11 Запыленность должна быть менее 0,75

Что вызывает появление полос на дорожных покрытиях в стружколомах?

Несколько факторов могут привести к такому виду; неправильные размеры форсунок распределителя, давление насоса, высота распылителя, угол форсунки и холодный асфальт.

Смесь разделительных агентов

Что следует использовать в качестве разделительной смеси для платформ и роликов грузовиков?

Слишком часто мы все еще видим, что дизельное топливо используется в качестве разделительного агента. Дизельное топливо — растворитель. Любое избыточное количество растворяет асфальтовые пленки на частицах заполнителя, тем самым загрязняя смесь. Коммерческие разделительные агенты для смесей легко доступны, и их следует использовать. Обычно они представляют собой мыло, эмульгированный воск или другие устойчивые к прилипанию материалы, которые не загрязняют смесь.По нашему опыту, для модифицированного асфальта требуется специальный разделительный агент. Обратитесь в местный департамент транспорта штата за списком одобренных антиадгезионных средств.

Особые приложения

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us вместе с отчетом 05-02.

Можно ли окрасить асфальтовое покрытие в другие оттенки, кроме черного и серого?

Хотя широко не используется, существуют способы окраски асфальтового покрытия, отличные от обычных черных и серых оттенков.Второй и третий варианты считаются специализированными продуктами, и дополнительную информацию можно получить, связавшись с отдельными производителями.

  • Используйте заполнитель естественного цвета. По мере того, как асфальтовое вяжущее изнашивается из-за дорожного движения, цвет заполнителя становится очевидным.
  • Используйте добавку в битумное вяжущее. Различные соединения железа могут придавать дорожному покрытию красный, зеленый, желтый или оранжевый оттенок, в то время как другие цвета могут быть получены с использованием различных металлических добавок.Было использовано специальное «синтетическое» связующее, не содержащее асфальтенов, поскольку оно легче окрашивается. Этот метод колеровки смеси позволяет цвету проникать на всю глубину материала, поэтому не возникает проблем с истиранием поверхности.
  • Покройте поверхность материалом, который проникает в пустоты и хорошо сцепляется с асфальтовым покрытием, например, усиленной эпоксидной смолой акриловой эмульсией. Доступны многие цвета. Следует проявлять осторожность, чтобы не снижать поверхностное трение, особенно если тротуар используется для движения транспортных средств.Одним из возможных недостатков этого метода является то, что поверхность со временем изнашивается и ее необходимо обновлять.

Существуют ли какие-либо практические правила для асфальтового покрытия контейнерного терминала относительно максимальной нагрузки, не вызывающей повреждений?

Нет практических ответов на ваш вопрос. Есть две проблемы:

  1. Соответствует ли конструкция дорожного покрытия (земляное полотно, основание, основание и все слои асфальта) нагрузкам? Вам необходимо приобрести нашу инструкцию MS-23, Расчет толщины асфальта для тяжелых колесных нагрузок .
  2. Является ли поверхность горячего асфальта достаточно жесткой, чтобы противостоять деформации (борозды или вмятины)? Это зависит от многих факторов, таких как жесткость исходной смеси, возраст смеси (становится жестче со временем), температура смеси во время загрузки, сама загрузка, продолжительность приложенной нагрузки и т. Д. Обычно это не проблема, но если это так, обычно можно решить, поместив несколько стальных (или других твердых материалов) пластин ниже точечной нагрузки, чтобы распределить нагрузку по более широкой области.

Как соотносятся воздушные пустоты в лабораторно уплотненных образцах «повторно нагретой» асфальтобетонной смеси с воздушными пустотами в «исходных» образцах смеси (в состоянии производства, без повторного нагрева)?

Не существует предсказуемого значения или «практического числа» для разницы в содержании воздушных пустот в исходных и повторно нагретых образцах. Общая тенденция заключается в том, что повторно нагретые образцы имеют более высокие воздушные пустоты, чем исходные уплотненные образцы. Поглощение и отверждение или повышение жесткости битумного вяжущего в повторно нагретых образцах, вероятно, вызывает эту разницу.

Повторно нагретые образцы можно использовать для полной проверки результатов исходного образца. Прежде чем приписывать какую-либо значительную точность результатам повторного нагрева образца, следует разработать корреляцию для пустот повторно нагретого воздуха образца и пустот исходного воздуха образца путем выполнения серии сравнительных испытаний.

Устранение неисправностей

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь».«С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия. Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия.Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:

  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • , асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) — никогда не укладывайте лужи, идет дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • выполнить строительный шов с вертикальной облицовкой
  • правильно утилизируйте весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us вместе с отчетом 05-02.

Пропуск для асфальтоукладчика имеет насыщенную блестящую полосу посередине с тусклыми, рваными краями.

В выглаживающей плите слишком много свинца.

От чего у прохода для асфальтоукладчика появляются яркие блестящие полосы с каждой стороны и тусклый, рваный вид посередине.

В выглаживающей плите не хватает свинцовой коронки. Примечание : Выглаживающие плиты асфальтоукладчика должны иметь немного больший гребень на передней кромке, чем на задней кромке — обычно около 1/8 дюйма. Это может зависеть от производителя оборудования и / или ширины прохода асфальтоукладчика. Даже если задняя кромка стяжки должна быть ровной или ровной, передняя кромка все равно должна иметь увеличенный гребень.

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие чаще, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо.Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Правильная техника прокатки и соответствующее оборудование необходимы для достижения достаточного уплотнения. Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату.Ручная работа должна быть сведена к минимуму. Шнеки асфальтоукладчика должны подавать в шов достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с низким уровнем пустот и проницаемостью.

Что может вызвать растрескивание поверхности недавно уложенного асфальтобетона? Растрескивание произошло при пробивной и чистовой прокатке.

Не зная, как выглядит растрескивание поверхности, нам трудно определить проблему. Может ли «поверхностное растрескивание» быть контрольным растрескиванием от операции прокатки? «Проверка» — это развитие мелких микротрещин на поверхности, расположенных на расстоянии одного-двух дюймов друг от друга и идущих поперек направления прокатки.Причина — скатывание, когда мат слишком горячий и / или смесь слишком нежная. Вы можете обратиться к нашим страницам 6-6 нового руководства MS-22 и страницам 219 и 220 старого MS-22, если вы не уверены, что такое проверка взлома.

Железные дороги

Есть ли у AI какая-нибудь информация об асфальте и его использовании в полотнах железных дорог?

Информацию о железной дороге можно найти в нашем разделе «Инженерия».

Вы также можете посетить веб-страницу на веб-сайте Университета Кентукки, где вы можете загрузить документы, PowerPoints, а также компьютерную программу KENTRACK, которая представляет собой компьютерную программу для горячего асфальта и железнодорожного полотна с обычным балластом.

Глоссарий терминов — Институт асфальта

Это алфавитный список терминов и описаний, обычно используемых в асфальтовой промышленности.
* Определения ASTM
** Определения Совета по исследованиям в области транспорта

А

Абсолютная вязкость: Измерение вязкости асфальта во времени, измеренное в пуазах, проведенное при 60 ° C (140 ° F). В методе испытаний используется частичный вакуум для создания потока в вискозиметре.
Разбрасыватели заполнителя: Машины, используемые для равномерного распределения заполнителя по поверхности с постоянной скоростью.
Бункеры для хранения заполнителей: Бункеры , в которых хранятся заполнители необходимых размеров и которые подают их в сушилку практически в тех же пропорциях, что и в готовой смеси.
Грузовики-заполнители: Грузовики, оборудованные гидравлическими подъемниками для выгрузки заполнителя на разбрасыватель или склад.
Заполнитель: Твердый инертный материал минерального состава, такой как песок, гравий, шлак или щебень, используемый в дорожных покрытиях сам по себе или для смешивания с асфальтовым вяжущим.
Типы агрегатов:

  • Крупный заполнитель: Частицы заполнителя задерживаются на сите 2,36 мм (№ 8).
  • Мелкозернистый заполнитель: Частицы заполнителя, проходящие через сито 2,36 мм (№ 8), задерживаются на сите 0,075 мм (№ 200).
  • Минеральный наполнитель: Мелкодисперсный минеральный продукт, максимум 3 процента которого остается на сите 0,800 мм (№ 30), и не менее 70 процентов которого проходит через сито 0,075 мм (No.200) сито. Наиболее распространенные минеральные наполнители включают измельченный известняк, прочую каменную пыль, гашеную известь, портландцемент, летучую золу и некоторые природные отложения мелкодисперсных минеральных веществ.

Градация по агрегату: Гранулометрический состав от самых крупных до самых тонких материалов.
Типы совокупной градации:

  • Крупнозернистый заполнитель: Градация, имеющая непрерывную сортировку по размеру частиц от крупных до мелких с большим количеством материала крупнее, чем на первичном контрольном сите.
  • Плотный заполнитель: Градация, которая имеет такое распределение частиц по размерам, что при уплотнении образующиеся пустоты между частицами заполнителя, выраженные в процентах от общего пространства, занимаемого материалом, относительно малы.
  • Мелкодисперсный заполнитель: Градация, имеющая непрерывную градацию размеров частиц от крупных до мелких с большим количеством материала, меньшего, чем на первичном контрольном сите.
  • Агрегат с градацией градаций: Градация, состоящая из более крупных и мелких частиц, но небольшого количества частиц или их отсутствия в середине полосы градации, создающих «промежуток».Stone Matrix Asphalt (SMA) — типичный пример асфальтового покрытия с зазорами.
  • Заполнитель открытого типа: Градация, содержащая небольшое количество минерального наполнителя или не содержащая его, и в котором пустоты в уплотненном заполнителе относительно велики, обычно 10% или более.
  • Хорошо отсортированный заполнитель: Градация с относительно однородными пропорциями от максимального размера до наполнителя с целью получения асфальтовой смеси с контролируемым содержанием пустот и высокой стабильностью.Хорошо рассортированный заполнитель также известен как однородный заполнитель.

Воздушные пустоты: Пустые пространства в уплотненной смеси, окруженные частицами с асфальтовым покрытием, выраженные в процентах от общего объема уплотненной смеси.
Трещины аллигатора: Взаимосвязанные трещины, образующие серию небольших блоков, напоминающих кожу аллигатора или проволочную сетку, и вызванные чрезмерным прогибом поверхности над неустойчивым грунтовым полотном или нижними слоями дорожного покрытия.
Асфальт (асфальтовое связующее или асфальтовый цемент): Вяжущий материал от темно-коричневого до черного цвета, в котором преобладающими компонентами являются битумы, встречающиеся в природе или получаемые при переработке нефти.Асфальт входит в состав большинства сырых нефтепродуктов в различных пропорциях.
Асфальт Нанесение: Нанесение напыленных асфальтовых покрытий без использования заполнителей.
Асфальтовое вяжущее: Асфальтовое вяжущее, классифицированное в соответствии со Стандартными техническими условиями на асфальтовое вяжущее с улучшенными характеристиками, обозначение AASHTO MP1. Это может быть немодифицированный или модифицированный асфальтобетон, если он соответствует спецификациям.
Асфальтобетон: Высококачественная, тщательно контролируемая смесь асфальтового вяжущего и высококачественного заполнителя, которая может быть тщательно уплотнена до однородной плотной массы.
Распределитель асфальта: Грузовик или прицеп с изолированным баком, системой отопления и распределительной системой. Распределитель равномерно укладывает асфальт на поверхность.
Асфальтовая эмульсия: Эмульсия асфальтового связующего и воды, содержащая небольшое количество эмульгатора. Капли эмульгированного асфальта могут быть анионными (отрицательный заряд), катионными (положительный заряд) или неионными (нейтральными).
Смесь битумной эмульсии (холодная): Смесь ненагретого минерального заполнителя и эмульгированного (или измельченного) асфальтового связующего.Его можно смешивать с растениями или на месте.
Смесь асфальтовой эмульсии (теплая): Смесь асфальтовой эмульсии и минерального заполнителя, обычно получаемая на обычном заводе по производству горячего асфальта при температуре менее 95 ° C (200 ° F). Его распределяют и уплотняют при температуре выше 65 ° C (150 ° F).
Асфальтно-эмульсионный шламовый слой: Смесь медленно схватывающегося эмульгированного асфальта, мелкозернистого заполнителя и минерального наполнителя с консистенцией пульпы
Выравнивающий слой асфальта: Курс горячего асфальта однородной или переменной толщины, используемый для устранения неровностей в контур существующей поверхности перед нанесением последующего курса.
Конструкция асфальтового покрытия: Конструкция дорожного покрытия, спроектированная и построенная таким образом, что все слои над земляным полотном выполнены из асфальтобетона (сплошное асфальтовое покрытие).
Асфальтовые покрытия: Покрытия, состоящие из слоя асфальтобетона поверх поддерживающих слоев, таких как асфальтобетонные основания, щебень, шлак, гравий, портландцементный бетон (PCC), кирпич или блочное покрытие.
Asphalt Prime Coat: Нанесение асфальтовой грунтовки на впитывающую поверхность.Применяется для подготовки необработанного основания под асфальтовое покрытие. Грунтовка проникает или смешивается с поверхностью основания и закрывает пустоты, укрепляет верхнюю часть и помогает связать ее с вышележащим слоем асфальта.
Asphalt Primer: Асфальт с низкой вязкостью (очень жидкий), который при нанесении проникает в небитуминозные поверхности.
Асфальт-каучук — асфальтобетон (AR-AC): Высококачественная, тщательно контролируемая горячая смесь асфальтово-каучукового связующего (AR) и хорошо отсортированного высококачественного заполнителя, который может быть тщательно уплотнен до однородной плотной массы.
Асфальтобетонное связующее (AR): Обычный асфальтовый цемент, в который добавлен переработанный измельченный каучук для шин, который при взаимодействии с горячим асфальтовым цементом вызывает набухание и / или диспергирование частиц резины шины.
Asphalt Tack Coat: Относительно тонкий слой асфальтового вяжущего, наносимый на существующий асфальтобетон или поверхность PCC с предписанной скоростью. Асфальтовая эмульсия, разбавленная водой, является предпочтительным типом. Он используется для соединения существующей поверхности и вышележащего слоя.
Асфальтены: Фракция высокомолекулярных углеводородов, осажденная из асфальта с помощью специального парафинового растворителя нафты при заданном соотношении растворитель-асфальт.
Автоматическое управление циклами: Система управления, в которой открытие и закрытие разгрузочной заслонки весового бункера, разгрузочного клапана битумной мельницы и разгрузочной заслонки гидроцилиндра осуществляется с помощью самодействующих механических или электрических механизмов без какого-либо промежуточного ручного управления. . Система включает в себя предварительно настроенные временные устройства для управления желаемыми периодами циклов сухого и влажного смешивания.
Автоматическое управление сушилкой: Система, которая автоматически поддерживает температуру заполнителей, выходящих из сушилки, в заданном диапазоне.
Автоматическое управление дозированием: Система, в которой пропорции заполнителя и фракций асфальта регулируются с помощью заслонок или клапанов, которые открываются и закрываются с помощью автоматических механических или электронных механизмов без какого-либо промежуточного ручного управления.

B

Обратный расчет: Аналитический метод, используемый для определения эквивалентных модулей упругости слоев дорожного покрытия, соответствующих измеренной нагрузке и прогибам.В итеративном методе модули слоев выбираются и корректируются до тех пор, пока разница между расчетным и измеренным прогибами не окажется в пределах выбранных допусков или пока не будет достигнуто максимальное количество итераций.
Сбалансированная укладка: Синхронизированная балансировка четырех фаз укладки асфальта для обеспечения непрерывной укладки. К четырем этапам относятся производство смеси, транспортировка смеси, работы по укладке дорожного покрытия и уплотнение.
Береговой гравий: Гравий, обнаруженный в естественных отложениях, обычно смешанный с мелким материалом, таким как песок, глина или их комбинация; включает гравийную глину, гравийный песок, глинистый гравий и песчаный гравий (названия указывают на относительную пропорцию материалов в смеси).
Базовый слой: Слой материала непосредственно под поверхностью или промежуточный слой. Он может состоять из щебня, дробленого шлака, дробленого или неразрушенного гравия и песка или из горячей асфальтовой смеси, обычно с заполнителем большего размера.
Batch Plant * : Производственное предприятие по производству асфальтобетонных смесей, которое дозирует компоненты заполнителя в смесь взвешенными партиями и добавляет асфальтобетон по весу или по объему.
Связующее: См. Асфальт.
Связующий слой: Горячий асфальтный слой непосредственно под слоем покрытия, обычно состоящий из более крупных заполнителей и меньшего количества асфальта (по весу), чем поверхность.
Битум: См. Асфальт.
Доменный шлак: Неметаллический продукт, состоящий в основном из силикатов и алюмосиликатов извести и других оснований, который образуется одновременно с железом в доменной печи.
Кровотечение или промывка: Движение асфальта по асфальтовому покрытию вверх, приводящее к образованию пленки асфальта на поверхности. Наиболее частая причина — слишком много асфальта в одном или нескольких слоях дорожного покрытия, что является результатом слишком богатой растительной смеси, неправильно построенного герметизирующего покрытия, слишком толстого грунтовочного или липкого покрытия или растворителя, переносящего асфальт на поверхность. Кровотечение или покраснение обычно возникают в жаркую погоду.

С

Калифорния Коэффициент несущей способности (CBR): Испытание, используемое для оценки оснований, оснований и земляных оснований для расчета толщины дорожного покрытия. Это относительная мера сопротивления почвы сдвигу (см. Руководство по грунтам, MS-10).CBR = нагрузка, необходимая для прижатия калиброванного поршня к образцу почвы / нагрузка, необходимая для прижатия аналогичного поршня к образцу щебня, вместимость и ходовые качества системы дорожного покрытия.
Cape Seal: Обработка поверхности, при которой за герметизацией от стружки следует нанесение суспензионного уплотнения или микроповерхности.
Температура прекращения: Уникальная температура для асфальтовой смеси, ниже которой дополнительное уплотнение затруднено и продолжительные попытки могут привести к повреждению мата, обычно около 175-180˚F (80-82˚C) для типичных применений горячей асфальтовой смеси.Для теплых асфальтобетонных смесей температуры прекращения подачи намного ниже.
Каналы (колеи): Желобчатые углубления, которые иногда образуются на дорожках колес асфальтового покрытия.
Химическая модификация асфальта: Химическая модификация асфальта обычно осуществляется полифосфорной кислотой (PPA).
Клинкер: Плавленый или частично плавленый побочный продукт сгорания угля. Также включает лаву и портландцемент, а также частично остеклованный шлак и кирпич.
Каменноугольная смола: Вяжущий материал от темно-коричневого до черного, полученный путем разрушающей перегонки битуминозного угля.
Крупный заполнитель: Заполнитель остается на сите 2,36 мм (№ 8).
Крупнозернистый заполнитель: Агрегат с непрерывной сортировкой по размеру частиц от крупного до мелкого с преобладанием крупных размеров.
Линия холодной переработки на месте: Агрегат, состоящий из большой фрезерной машины, буксирующей сортировочно-дробильную установку, и миксера для добавления асфальтовой эмульсии и производства основы для холодной смеси.
Холодная смесь асфальта: Смесь эмульгированного или измельченного асфальта и заполнителя, произведенная на центральном заводе (заводская смесь) или смешанная на участке дороги (смешанная на месте). Холодная асфальтовая смесь может быть произведена и сохранена для использования в будущем.
Compaction: Действие сжатия заданного объема материала в меньший объем. Недостаточное уплотнение слоев асфальтового покрытия может ускорить возникновение повреждений дорожного покрытия различного типа.
Консенсусные свойства: Агрегатные характеристики, которые имеют решающее значение для хорошей работы горячего асфальта, независимо от источника заполнителя, и чьи предельные значения устанавливаются спецификацией Superpave.
Консистенция: Степень текучести асфальтобетона при любой температуре. Консистенция асфальтового цемента зависит от его температуры; поэтому необходимо использовать обычную или стандартную температуру при сравнении консистенции одного асфальтобетона с другим.
Гофры (обшивка) и толкание: Тип деформации покрытия. Рифление — это форма пластической деформации, типичной для которой является рябь на поверхности дорожного покрытия. Эти искажения обычно возникают в тех местах, где движение начинается и останавливается, на холмах, где транспортные средства тормозят на спуске, на крутых поворотах или где транспортные средства наезжают на кочки и подпрыгивают вверх и вниз.Они возникают в слоях асфальта, которым не хватает устойчивости.
Трещина: Примерно вертикальный случайный раскол покрытия, вызванный транспортной нагрузкой, термическими напряжениями и / или старением вяжущего.
Трещина и седло: Техника сломанной плиты, используемая при восстановлении покрытий PCC, которая сводит к минимуму воздействие плиты в соединенном бетонном покрытии (JCP) за счет разрушения слоя PCC на более мелкие сегменты. Такое уменьшение длины плиты сводит к минимуму отражающее растрескивание в новых покрытиях HMA.
Слой для снятия трещин: Большой камень, асфальт с открытой сортировкой, укладываемый на поврежденное тротуар, который сводит к минимуму отражающее растрескивание за счет поглощения энергии, возникающей при движении в нижележащем тротуаре.
Crusher-Run: Полный необработанный продукт камнедробилки.
Отверждение: Развитие механических свойств битумного вяжущего. Это происходит после того, как эмульсия разрушится, и частицы эмульсии слипнутся и сцепятся с заполнителем.
Cutback Asphalt: Асфальтовый цемент, который был превращен в жидкое состояние путем смешивания с нефтяным растворителем (также называемым разбавителем) с образованием одного из следующих битумов Cutback Asphalt. При воздействии атмосферных условий растворители испаряются, оставляя асфальтовому цементу выполнять свою функцию.

D

Глубокое прочное асфальтовое покрытие: Дорожное покрытие, содержащее не менее четырех дюймов HMA над нестабилизированными базовыми слоями.
Отклонение: Перемещение участка дорожного покрытия вниз под действием нагрузки.

  • Подставка для отклонения: Идеализированная форма деформированной поверхности дорожного покрытия в результате циклической или ударной нагрузки, как показано на основе пиковых измерений пяти или более датчиков отклонения.
  • Отклонение отскока: Величина отскока поверхности при снятии нагрузки.
  • Типичный прогиб отскока: Среднее значение измеренного прогиба отскока на испытательном участке плюс два стандартных отклонения, скорректированных с учетом температуры и наиболее критического периода года для характеристик покрытия.
  • Остаточный прогиб: Разница между исходной и конечной отметками поверхности дорожного покрытия, возникающая в результате приложения и снятия одной или нескольких нагрузок с поверхности.

Датчик отклонения: Термин, который следует использовать для обозначения электронного устройства (а), способного измерять вертикальное движение дорожного покрытия; и установлен таким образом, чтобы свести к минимуму угловое вращение относительно его плоскости измерения при ожидаемом перемещении.Типы датчиков включают сейсмометры, преобразователи скорости и акселерометры.
Допуски при поставке: Допустимые отклонения от точных желаемых пропорций заполнителя и битумного материала, произведенного на асфальтовом заводе.
Плотный заполнитель: Агрегат, размер частиц которого такой, что при уплотнении образующиеся пустоты между частицами заполнителя, выраженные в процентах от общего пространства, занятого материалом, составляют менее 10%.
Плотность: Степень твердости, которая может быть достигнута в данной смеси, которая будет ограничена только полным устранением пустот между частицами в массе.
Densification: Действие увеличения плотности смеси в процессе уплотнения.
Конструкция ESAL: Общее количество эквивалентных нагрузок на одну ось 80 кН (18 000 фунтов), ожидаемых в течение всего периода проектирования.
Расчетная полоса: Дорожка, на которой больше всего равнозначных 80 кН (18000 фунтов.) нагрузки на одну ось (ESAL). Обычно это будет либо полоса двухполосной проезжей части, либо внешняя полоса многополосной автомагистрали.
Срок проектирования: Количество лет от первоначального применения трафика до первого запланированного капитального ремонта или перекрытия. Этот термин не следует путать с сроком службы покрытия или периодом анализа. Добавление слоев горячего асфальта по мере необходимости продлит срок службы покрытия на неопределенный срок или до тех пор, пока геометрические соображения (или другие факторы) не сделают покрытие устаревшим.
Расчетный модуль упругости грунтового основания: Значение модуля упругости грунтового основания (MR), используемое для расчета конструкции покрытия. Это процентное значение распределения данных испытаний модуля упругости земляного полотна, которое зависит от проектного ESAL.
Разрушение: Разрушение дорожного покрытия на мелкие рыхлые фрагменты, вызванное движением транспорта или погодными условиями (например, дрейфом).
Искажение: Любое изменение поверхности дорожного покрытия от его первоначальной формы.
Барабанный смесительный завод: Производственное предприятие по производству асфальтобетонных смесей, которое дозирует, сушит и смешивает заполнитель с пропорциональным количеством асфальта в барабане.Варианты этого типа установки используют несколько типов модификаций барабана, отдельные (и меньшие) смесительные барабаны, устройства для нанесения покрытий (устройство для нанесения покрытий) или двухствольные конфигурации для выполнения процесса смешивания.

  • Барабанная установка противотока: Барабанная установка для смешивания, в которой горелка размещается на нижнем конце барабана, а заполнитель поступает на противоположный, верхний конец. Таким образом, воздушный поток и агрегат движутся встречно друг другу через барабан.
  • Параллельная барабанная установка: Барабанная установка для смешивания, в которой горелка размещается на том же (верхнем) конце, что и ввод заполнителя, так что воздушный поток и заполнитель перемещаются через барабан в одном направлении.

Сушилка: Аппарат, который сушит агрегаты и нагревает их до заданных температур.
Пластичность: Способность вещества вытягиваться или растягиваться до тонкости. В то время как пластичность считается важной характеристикой асфальтовых цементов во многих областях применения, наличие или отсутствие пластичности обычно считается более значительным, чем фактическая степень пластичности.
Прочность: Свойство асфальтовой смеси для мощения, которое отражает ее способность противостоять разрушению из окружающей среды и движения.

E

Трещины краевого шва: Разделение стыка между дорожным покрытием и обочиной, обычно вызванное попеременным смачиванием и высыханием под поверхностью уступа. Другими причинами являются оседание уступа, усадка смеси и переезд грузовиков в стык.
Эффективная толщина: Отношение толщины существующего материала дорожного покрытия к эквивалентной толщине нового слоя HMA.
Эмульгированный асфальт: Комбинация асфальтового цемента, воды и небольшого количества эмульгатора.Это гетерогенная система (содержащая две обычно несмешивающиеся основные фазы: асфальт и воду), в которой вода образует непрерывную фазу эмульсии, а мельчайшие шарики асфальта образуют прерывистую фазу. Эмульгированный асфальт чаще всего бывает анионным — электроотрицательно заряженные глобулы асфальта — или катионными — электроположительно заряженными глобулами асфальта — в зависимости от эмульгатора.
Эмульгатор или эмульгатор: Химикат, добавляемый в воду и асфальт, который удерживает асфальт в стабильной суспензии в воде.Эмульгатор определяет заряд эмульсии и контролирует скорость разрушения.
ESAL (эквивалентные нагрузки на одну ось): Влияние на характеристики покрытия любой комбинации осевых нагрузок различной величины, приравненных к числу 80-кН (18000 фунтов) одноосных нагрузок, необходимых для создания эквивалентных эффект.

F

Усталостное сопротивление: Способность асфальтового покрытия противостоять возникновению трещин, вызванных многократным изгибом.
Неисправность: Разница отметок двух плит в месте стыка или трещины.
Мелкий заполнитель: Заполнитель, проходящий через сито 2,36 мм (№ 8).
Мелкодисперсный заполнитель: Агрегат с непрерывной сортировкой по размеру частиц от крупного до мелкого с преобладанием мелких размеров.
Гибкость: Способность конструкции асфальтового покрытия приспосабливаться к осадке фундамента. Как правило, эластичность асфальтовой смеси повышается за счет высокого содержания асфальта.
Fog Seal: Легкое нанесение разбавленной битумной эмульсии. Он используется для обновления старых асфальтовых покрытий, заделки мелких трещин и пустот на поверхности, а также для предотвращения растекания.
Технологии трещиноватых плит: Процессы, используемые для восстановления покрытий PCC путем устранения воздействия плиты за счет уменьшения размера плиты (трещина / разрыв и посадка) или измельчения плиты PCC (истирание) в по существу гранулированное основание.
Полноглубинное асфальтовое покрытие: Термин ПОЛНАЯ ГЛУБИНА (зарегистрирован Институтом асфальта при U.S. Patent Office) удостоверяет, что это покрытие, в котором используются асфальтовые смеси для всех слоев над земляным полотном или улучшенного земляного полотна. Полнослойное асфальтовое покрытие укладывается непосредственно на подготовленное земляное полотно.

G

Уровень впадин: Локализованные низкие области ограниченного размера.

H

Тяжелые грузовики: Двухосные грузовики с шестью шинами или больше. Пикапы, панельные и легкие четырехшины не включены. Включены грузовики с мощными шинами с широким основанием.
Бункеры для хранения горячего заполнителя: Бункеры , в которых хранятся нагретые и фракционированные заполнители до их окончательного дозирования в смеситель.
Горячая (или теплая) асфальтовая смесь: См. Асфальтобетон
Горячий асфальтобетон (HMA): Высококачественная, тщательно контролируемая горячая смесь асфальтового вяжущего (цемента) и хорошо отсортированного, высококачественного заполнителя, который может уплотняться в однородную плотную массу.
Наложение горячего асфальта (HMA): Один или несколько рядов HMA поверх существующего покрытия.

I

Водонепроницаемость: Сопротивление асфальтового покрытия пропусканию воздуха и воды в или через покрытие.

К

Кинематическая вязкость: Измерение вязкости асфальта в сантистоксах, проведенное при температуре 275 ° F (135 ° C).

л

Трещины стыка полос: Продольные зазоры по шву между двумя полосами мощения.
Лифт: Слой или слой дорожного материала, нанесенный на основу или предыдущий слой.
Земляное полотно, обработанное извести: Метод подготовки земляного полотна, при котором грунт земляного полотна и добавленная известь механически смешиваются и уплотняются для получения основного материала с более высоким модулем упругости, чем внутренний материал.
Основа извести-летучей золы: Материал дорожной основы, состоящий из смеси минерального заполнителя, извести, летучей золы и воды, которая при смешивании в надлежащих пропорциях и уплотнении дает плотную массу повышенной прочности.
Коэффициент эквивалентной нагрузки (LEF): Число 18 000 фунтов.(80 кН) приложения нагрузки на одну ось (ESAL), создаваемую одним проходом оси.
Продольная трещина: Вертикальная трещина в дорожном покрытии, которая идет примерно параллельно центральной линии.

M

Смесь для ухода: Смесь асфальтовой эмульсии и минерального заполнителя для использования на относительно небольших площадях для заделки ям, углублений и поврежденных участков в существующих покрытиях. Соответствующие ручные или механические методы используются для размещения и уплотнения смеси.
Максимальный размер заполнителя (MAS): На один размер сита больше, чем у NMAS.
Механические разбрасыватели: Распределительные ящики, установленные на колесах. Разбрасыватели прикрепляются к самосвалам и толкаются ими (ящики HMA вытягивают, а разбрасыватели стружки толкают).
Среднеотверждаемый (MC) Асфальт: Обрезанный асфальт, состоящий из асфальтобетона и разбавителя средней летучести.
Ячейка: Квадратное отверстие сита.
Micro-Surfacing: Смесь модифицированной полимером битумной эмульсии, измельченного плотного гранулированного заполнителя, минерального наполнителя, добавок и воды.Он обеспечивает тонкое шлифование от 3/8 до 3/4 дюйма (от 10 до 20 мм) до покрытия.
Фрезерный станок: Самоходный агрегат с режущей головкой, оснащенный инструментами с твердосплавными напайками для измельчения и удаления слоев асфальтового материала с дорожного покрытия.
Минеральная пыль: Часть мелкого заполнителя, проходящая через сито № 200 (0,075 мм).
Минеральный наполнитель: Мелкодисперсный минеральный продукт, не менее 70 процентов которого соответствует требованиям No.200 (0,075 мм) сито. Измельченный известняк является наиболее часто производимым наполнителем, хотя также используется другая каменная пыль, гашеная известь, портландцемент и некоторые природные месторождения, состоящие из минеральных веществ, разделенных на части.
Модифицированный асфальтобетон — асфальтобетон (MAR-AC): Высококачественная, тщательно контролируемая горячая смесь модифицированного битумного каучукового связующего (AR) и хорошо рассортированного высококачественного заполнителя, который может быть тщательно уплотнен до однородной плотной массы.
Модифицированное связующее для асфальтобетона (MAR): Обычный асфальтовый вяжущий, к которому были добавлены переработанный измельченный каучук для шин и компаунды, который при взаимодействии с горячим асфальтовым вяжущим вызывает диспергирование частиц и компаундов резины для шин.
Многократная обработка поверхности: Две или несколько обработок поверхности, помещенных одна на другую. Максимальный совокупный размер каждой последующей обработки обычно составляет 1/2 от предыдущей. Это может быть серия разовых обработок, в результате которой создается слой дорожного покрытия толщиной до 1 дюйма (25 мм) или более. Многократная обработка поверхности обеспечивает более плотный износ и гидроизоляцию, чем однократная обработка поверхности.

N

Природный (природный) асфальт: Асфальт, встречающийся в природе, который был получен из нефти в результате естественных процессов испарения летучих фракций, оставляя фракции асфальта.Наиболее важный природный асфальт находится в отложениях озера Тринидад и Бермудес. Асфальт из этих источников часто называют озерным асфальтом.
Номинальный максимальный размер заполнителя (NMAS): На размер сита больше, чем у первого сита, чтобы удерживать более 10 процентов в стандартной серии сит.
Неразрушающий контроль (NDT): В контексте оценки покрытия, NDT — это испытание на прогиб без разрушения покрытия для определения реакции покрытия на нагрузку на покрытие.
Клиновые соединения с пазами: Конфигурация конструкции с продольным соединением, которая обеспечивает более безопасный переход для водителей по сравнению с стыковым соединением. Геометрически клин с надрезом обычно имеет выемку как в верхней, так и в нижней части по крайней мере одного NMAS с соединительным наклоном в диапазоне от 3: 1 до 12: 1 между ними.

O

Заполнитель открытого типа: Заполнитель, содержащий менее мелкий заполнитель, в котором пустоты в уплотненном заполнителе относительно большие и взаимосвязаны, обычно на 10% больше.
Участок с трением из асфальта с открытым уклоном: Покрытие покрытия, состоящее из высокопористой асфальтобетонной смеси, которая обеспечивает быстрый отвод дождевой воды через дорожку и через обочину. Смесь характеризуется большим процентным содержанием крупнозернистого заполнителя одного размера. Этот курс предотвращает аквапланирование шин и обеспечивает устойчивую к скольжению поверхность покрытия.

-п.

Паскаль-секунды: Единица СИ для вязкости. 1 Паскаль-секунда равна 10 пуазам.
Основание дорожного покрытия: Нижний или нижележащий слой дорожного покрытия на вершине основания или земляного полотна и под верхним слоем или слоем износа.
Структура дорожного покрытия: Покрытие, включая все его слои из смесей асфальт-заполнитель или комбинацию слоев асфальта и необработанного заполнителя, расположенное над земляным полотном или улучшенным земляным полотном.
Степень проникновения: Система классификации асфальтовых цементов, основанная на проникновении 0,1 мм при 25 ° C (77 ° F).Существует пять стандартных степеней проникновения для мощения: 40-50, 60-70, 85-100, 120-150 и 200-300.
Пенетрация: Консистенция битумного материала, выраженная как расстояние (в десятых долях миллиметра), на которое стандартная игла проникает в образец вертикально при определенных условиях нагрузки, времени и температуры.
Оценка эффективности (PG): Обозначение марки асфальтового вяжущего, используемого в Superpave. Он основан на механических характеристиках связующего при критических температурах и условиях старения.
Запланированный этап строительства: Процесс строительства, при котором этапы проекта выполняются последовательно в соответствии с проектом и заранее определенным графиком.
Растительная смесь (холодная): Смесь эмульгированного (или измельченного) асфальта и ненагретого минерального заполнителя, приготовленная на центральной смесительной установке и распределяемая и уплотняемая с помощью обычного оборудования для дорожного покрытия, пока смесь находится при температуре окружающей среды или близкой к ней.
Plant Mix База: Фундамент, произведенный на асфальтосмесительной установке, который состоит из минерального заполнителя, равномерно покрытого асфальтовым цементом или эмульгированным асфальтом.
Грохоты установки: Грохоты, расположенные между сушилкой и горячими бункерами, разделяют нагретые агрегаты на соответствующие размеры горячих бункеров.
Каток с пневматическими шинами: Компактор с несколькими шинами, расположенными таким образом, чтобы их гусеницы перекрывали друг друга, обеспечивая уплотнение с замешиванием.
Пуаз: Сантиметр-грамм-секунда единица абсолютной вязкости, равной вязкости жидкости, в которой значение напряжения в один дин на квадратный сантиметр требуется для поддержания разницы скоростей в один сантиметр в секунду между двумя параллельными плоскостями. в жидкости, которые лежат по направлению потока и разделены расстоянием в один сантиметр.
Полированный заполнитель: Частицы заполнителя на поверхности дорожного покрытия, которые были выглажены дорожным движением.
Полимер-модифицированный асфальт (PMA) Связующее: Обычное асфальтовое вяжущее, в которое для улучшения характеристик добавлен блок-сополимер стирола или стирол-бутадиеновый каучук (SBR) или латекс неопрена.
Ямы: Чашеобразные отверстия в дорожном покрытии, образовавшиеся в результате локального разрушения.
Подметально-уборочная машина: Вращающаяся щетка с механическим приводом, используемая для уборки рыхлого материала с поверхности тротуара.
Текущий индекс эксплуатационной пригодности (PSI): Математическая комбинация значений, полученных из определенных физических измерений большого количества дорожных покрытий, сформулированная таким образом, чтобы определить в установленных пределах Текущий рейтинг эксплуатационной пригодности (PSR) для этих покрытий.
Текущий рейтинг эксплуатационной пригодности (PSR): Рейтинг, присвоенный определенному участку дорожного покрытия.
Текущая пригодность к эксплуатации: Способность определенного участка дорожного покрытия служить его предполагаемому использованию в существующем состоянии.
Первичное контрольное сито: сито, которое определяет точку разрыва между мелкими и крупнозернистыми материалами для каждой номинальной максимальной классификации заполнителей.
Перекачивание: Прогиб плиты под воздействием передаваемых нагрузок, иногда приводящий к сбросу воды и грунта земляного полотна по стыкам, трещинам и краям дорожного покрытия.

Q

Обеспечение качества (QA) ** : Все запланированные и систематические действия, необходимые для обеспечения уверенности в том, что продукт или объект будут удовлетворительно работать.Обеспечение качества включает элементы контроля качества (КК), приемки, независимого подтверждения, разрешения споров, аккредитации лабораторий и сертификации персонала.
Контроль качества (QC) ** : Система, используемая подрядчиком для мониторинга, оценки и корректировки процессов производства или размещения, чтобы гарантировать соответствие конечного продукта заданному уровню качества. Контроль качества включает отбор образцов, тестирование, инспекцию и корректирующие действия (при необходимости) для поддержания непрерывного контроля процесса производства или размещения.

R

Асфальт быстрого отверждения (RC): Обрезанный асфальт, состоящий из асфальтобетонного цемента и бензинового разбавителя с высокой летучестью.
Raveling: Постепенное отделение частиц заполнителя в дорожном покрытии от поверхности вниз или от краев внутрь.
Восстановленное асфальтовое покрытие (RAP): Вынутое из грунта асфальтовое покрытие, измельченное в порошок, обычно путем фрезерования, и которое используется в качестве заполнителя при переработке асфальта.
Рекуператор: Самоходный агрегат, имеющий поперечную режущую и смесительную головку внутри закрытой камеры для измельчения и смешивания существующих материалов дорожного покрытия с асфальтовой эмульсией. Асфальтовая эмульсия (и вода для смешивания) может добавляться непосредственно через машину с помощью системы жидких добавок и распылителя.
Смесь переработанного асфальта: Смесь, полученная после обработки существующих материалов асфальтового покрытия. Переработанная смесь может быть произведена путем горячего или холодного смешивания на заводе или путем обработки материалов на месте и в холодном состоянии.
Трещины отражения: Трещины в асфальтовом покрытии (обычно над поврежденным покрытием PCC), которые отражают рисунок трещин в структуре покрытия под ним.
Остаток: Асфальтовое связующее, которое остается от асфальтовой эмульсии после того, как эмульгатор разрушился и затвердел, или остатки отвердевшего материала после отверждения летучих веществ после бритья.
Модуль упругости и упругости (MR): Лабораторное измерение поведения материалов дорожного покрытия для определения их жесткости и упругости (см. Руководство по грунтам, MS-10).Ограниченный или неограниченный образец для испытаний (керн или повторно уплотненный) многократно загружается и выгружается с заданной скоростью. Модуль упругости является функцией продолжительности нагрузки, частоты нагружения и количества циклов нагружения.
Значение сопротивления (R-значение): Испытание для оценки оснований, подоснов и грунтовых оснований для расчета толщины дорожного покрытия.
Дорожное масло: Асфальтовый цемент и масла с низкой летучестью, обычно аналогичны одной из марок медленно отверждаемых (SC).
Проезжая часть: Все объекты, по которым предполагается движение автотранспортных средств, например второстепенные дороги, межгосударственные автомагистрали, улицы и автостоянки.
Roughometer: Одноколесный прицеп с инструментами, который измеряет шероховатость поверхности дорожного покрытия в миллиметрах или дюймах на милю.
Растирание: Измельчение портландцементного бетонного покрытия на более мелкие частицы с уменьшением существующего слоя дорожного покрытия до прочной структурной основы, совместимой с асфальтовым покрытием.

S

Песок: Мелкий заполнитель (любая фракция ниже сита № 8), образовавшийся в результате естественного разрушения и истирания или обработки породы.
Песок Асфальт: Смесь песка и асфальтобетона, измельченного асфальта или эмульгированного асфальта. Он может быть приготовлен из песка или глины или их комбинаций, включая гравийную глину, гравийный песок, глинистый гравий и песчаный гравий (названия указывают на относительные пропорции материалов в смеси). Может использоваться либо смешивание на месте, либо конструкция заводской смеси. Асфальтный песок используется при строительстве как основания, так и покрытия и может содержать или не содержать минеральный наполнитель.
Сэндвич-уплотнение: Обработка поверхности, состоящая из нанесения крупного заполнителя, затем распыляемой асфальтовой эмульсии и покрытия более мелким заполнителем.
Песчаная почва: Материал, состоящий в основном из мелких частиц заполнителя с размером сита менее 2, 36 мм (№ 8) и обычно содержащий материал, проходящий через сито 75 мкм (№ 200). Этот материал обычно обладает некоторыми характеристиками пластичности.
Saw-Cut and Seal: Метод контроля отражающего растрескивания в перекрытиях HMA, который включает создание стыков в новом перекрытии точно над стыками в существующем покрытии.
Окалина: Отслаивание или разрушение поверхности портландцементного бетона.
Seal Coat: Тонкая обработка поверхности, используемая для улучшения текстуры поверхности и защиты асфальтовой поверхности. Основными типами герметизирующих покрытий являются противотуманные, песочные, жидкие, микроповерхности, накидные уплотнения, многослойные уплотнения и уплотнения для стружки.
Сегрегация: Неравномерность асфальтовой смеси, которая может быть физической сегрегацией частиц заполнителя в смеси или термической сегрегацией.

  • Физическая сегрегация: Неравномерное распределение или разделение крупных и мелких частиц по размеру по всей массе.
  • Термическое разделение: Неравномерное распределение температуры по массе смеси.

Разбрасыватели самоходные: Разбрасыватели с собственными силовыми агрегатами и двумя бункерами. Разбрасыватель тянет самосвал, выгружая его в приемный бункер. Ленточные конвейеры перемещают агрегат вперед к распределительному бункеру.
Листовой асфальт: Горячая смесь асфальтового вяжущего с чистым гранулированным песком и минеральным наполнителем. Его использование обычно ограничивается вкладышами резервуаров и крышками полигонов; обычно укладывается на промежуточный или выравнивающий курс.
Толкание: Форма пластического движения, приводящая к локальному вздутию дорожного покрытия.
Трещины от усадки: Трещины, соединенные между собой, образуют серию больших блоков, обычно с острыми углами или углами.
Сито: Аппарат для лабораторных работ, в котором отверстия в сетке имеют квадратную форму для разделения материала по размеру.
Обработка одной поверхности: Однократное нанесение асфальта на дорожное покрытие с последующим нанесением одного слоя заполнителя. Толщина обработки примерно такая же, как у номинального максимального размера частиц заполнителя.
Опасность заноса: Любое состояние, которое может способствовать снижению сил трения на поверхности дорожного покрытия.
Сопротивление скольжению: Способность асфальтового покрытия, особенно во влажном состоянии, обеспечивать сопротивление скольжению или заносу.Факторы для получения высокого сопротивления скольжению обычно те же, что и для получения высокой устойчивости. Правильное содержание асфальта и заполнитель с шероховатой текстурой поверхности вносят наибольший вклад. Заполнитель должен иметь не только шероховатую текстуру поверхности, но и сопротивляться полировке.
Трещины от проскальзывания: Трещины в форме полумесяца, возникающие в результате вызванных движением горизонтальных сил, которые открываются в направлении осевого давления колес на поверхность покрытия. Они возникают, когда к поверхности прикладываются сильные или повторяющиеся напряжения сдвига и отсутствует связь между поверхностным слоем и слоем под ним.
Медленно отверждаемый (SC) Асфальт: Обрезанный асфальт, состоящий из асфальтобетонного цемента и масел с низкой летучестью.
Slurry Seal: Смесь эмульгированного асфальта, мелкодисперсного заполнителя, минерального наполнителя или других добавок и воды. Шламовый уплотнитель заполнит мелкие трещины, восстановит однородную текстуру поверхности и восстановит значения трения.
Основа грунта / цемента: Затвердевший материал, образованный путем отверждения механически перемешанной и уплотненной смеси измельченного грунта, портландцемента и воды, используемой в качестве слоя в системе дорожного покрытия для усиления и защиты земляного полотна или основания.
Растворимость: Показатель чистоты асфальтобетона. Способность растворимой части асфальтового цемента растворяться в указанном растворителе.
Свойства источника: Критические совокупные характеристики, которые по своей природе зависят от источника, а их использование и ограничивающие значения зависят от источника и устанавливаются агентством-исполнителем.
Отслаивание: Разрушение или скалывание покрытия PCC на стыках, трещинах или краях, обычно приводящее к образованию фрагментов с неровностями.
Стабильность: Способность асфальтобетонных смесей противостоять деформации от приложенных нагрузок. Стабильность зависит как от внутреннего трения, так и от сцепления.
Стандартное отклонение: Среднеквадратичное отклонение от среднего арифметического набора значений.
Стационарные заводы: Асфальтовые заводы, построенные таким образом, что их перемещение не считается экономически целесообразным.
Статические ролики со стальными колесами: Тандемные или трехколесные ролики с цилиндрическими стальными роликами, которые прикладывают свой вес непосредственно к дорожному покрытию.
Вибрационные катки со стальными колесами: Уплотняющий каток с одинарными или двойными цилиндрическими стальными валками, которые прилагают уплотняющее усилие с весом и вибрацией. Величина уплотняющего усилия регулируется путем изменения частоты и амплитуды вибрации.
Сток: Единица кинематической вязкости, равная вязкости жидкости в пуазах, деленная на плотность жидкости в граммах на кубический сантиметр.
Структурное перекрытие: Наложение HMA, созданное с целью повышения структурной ценности и качества движения системы дорожного покрытия.
Основание: Маршрут в структуре асфальтового покрытия непосредственно под основанием. Если грунт земляного полотна имеет соответствующую опору, он может служить основанием.
Земляное полотно: Грунт, подготовленный для поддержки конструкции или системы дорожного покрытия. Это основа конструкции дорожного покрытия.
Земляное полотно, улучшенное: Земляное полотно, которое было улучшено в качестве рабочей платформы: 1) за счет добавления гранулированных материалов или стабилизаторов, таких как асфальт, известь или портландцемент, в грунт земляного полотна; 2) любой слой или ряды избранного или улучшенного материала, размещенный на грунте земляного полотна ниже конструкции дорожного покрытия.
Модуль упругости земляного полотна: Модуль упругости земляного полотна определяется повторной нагрузкой, испытанием на трехосное сжатие на образцах грунта. Это отношение амплитуды принятого осевого напряжения к амплитуде результирующей восстанавливаемой осевой деформации, обычно обозначаемой символом MR.
Superpave : Сокращение от «Высокоэффективное асфальтовое покрытие» — основанная на характеристиках система для выбора и определения асфальтовых вяжущих и для разработки дизайна асфальтовой смеси.
Гираторный уплотнитель Superpave (SGC): Устройство, используемое при проектировании смеси Superpave или контроле качества для уплотнения образцов горячей асфальтовой смеси в образцы, используемые для объемного анализа. Непрерывное уплотнение образца измеряется в процессе уплотнения.
Superpave Mix Design: Система проектирования асфальтобетонной смеси, которая объединяет выбор материалов (асфальт, заполнитель) и объемное соотношение с климатом проекта и расчетным трафиком.

т

Тестовая полоса (Тестовая часть): Пробная конструкция асфальтовой смеси, предназначенная для проверки того, что требования по объему и плотности смеси могут быть выполнены до начала полномасштабного строительства.
Поперечная трещина: Трещина, которая следует по курсу приблизительно под прямым углом к ​​центральной линии.
Передвижные установки: Самоходные дробильные установки, которые дозируют и перемешивают заполнители и асфальт при движении по дороге. Есть три основных типа дорожных растений: 1.Тот, который движется через подготовленный валок из заполнителя на дорожном полотне, добавляет и перемешивает асфальт по ходу движения, а задний выгружает смешанный валок, готовый к аэрации и разбрасыванию. 2. Тот, который загружает щебень в бункер из самосвалов, добавляет и перемешивает асфальт и разбрасывает смесь назад, когда она движется по полотну дороги. 3. Установки периодического смешивания, такие как машины для навозной жижи, которые доставляют материалы на площадку, а затем смешивают и наносят материалы.
Фактор грузовика: Количество ESAL, внесенных за один проход транспортного средства.Факторы грузовых автомобилей могут применяться к транспортным средствам одного типа или класса или к группе транспортных средств разных типов.

U

Подъем: Локальное смещение дорожного покрытия вверх из-за набухания грунтового основания или некоторой части конструкции дорожного покрытия.

В

Вязкость: Мера сопротивления потоку жидкости. Это один из методов измерения плотности асфальта.
Класс вязкости: Система классификации асфальтовых цементов, основанная на диапазонах вязкости при 60 ° C (140 ° F).Также обычно указывается минимальная вязкость при 135 ° C (275 ° F). Цель состоит в том, чтобы установить предельные значения консистенции для этих двух температур. 60 ° C (140 ° F) приблизительно соответствует максимальной температуре поверхности асфальтового покрытия, эксплуатируемой в США.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *