Минвата виды: виды, их характеристики, свойства и область применения

Содержание

виды, их характеристики, свойства и область применения

При выборе утеплителей одним из лидирующих материалов является минеральная вата, характеристики и свойства которой позволяют повысить пожаробезопасность, звуко- и теплоизоляционные параметры объекта. Она имеет натуральный состав, легко монтируется, её срок службы составляет до 50 лет. При этом минвата доступна по цене и выпускается в виде рулонов или плит, что делает её использование экономически выгодным.

Характеристики и свойства минеральной ваты

Выбор в пользу конкретного утеплителя обусловлен их техническими характеристиками и свойствами. Именно от них зависит удобство монтажа и длительность эксплуатации материала. Характеристики минеральной ваты следующие:

  • коэффициент теплопроводности изменяется в пределах от 0,03 до 0,052 Вт/м·К, в зависимости от толщины и плотности слоя;
  • длина волокон составляет от 15 до 50 мм, а их диаметр – 5-15 мкм;
  • максимальная предельная температура эксплуатации от +6000С до +10000С;
  • материал волокон: стекло, горные породы (базальт, доломит и др. ), шлак из доменных печей;
  • ширина плит и рулонов составляет 0,6-1 м, а толщина от 30 до 200 мм;
  • плотность материала от 25 до 200 кг/м3.

К основным свойствам менераловатных утеплителей относятся:

  • гибкость, позволяющая выполнять монтаж на поверхности практически с любой геометрией и формировать герметичные швы;
  • высокая огнестойкость, за счёт которой достаточно легко можно обеспечить контакт нагреваемых конструкций с легко воспламеняемыми материалами;
  • полностью натуральный состав, отсутствие в процессе эксплуатации выделения токсичных или вредных веществ;
  • оптимальная паропроницаемость, не допускающая образования конденсата на поверхности с контактируемым материалом в результате резкого перепада температур;
  • стойкость к биологическим воздействиям: грибку, плесени, грызунам и другим вредителям;
  • звукоизоляционные свойства;
  • гигроскопичность: в результате попадания влаги материал теряет изоляционные свойства, поэтому при монтаже необходимо уложить поверх него качественную гидроизоляцию.
Рулонная минеральная вата

Виды минеральной ваты

Выпускаются следующие виды минеральных ват, характеристики и свойства которых имеют существенные отличия:

  • стекловата;
  • шлаковата;
  • каменная вата;
  • базальтовая вата.

Стекловата

Стекловата является самым дешевым материалом, так как производится из переработанного стекла, песка, извести и химических реагентов в печах при высоких температурах с последующим выдувом под давлением из центрифуги через специальную решетку. Толщина волокон 5-15 мкм, длина от 15 до 50 мм. Из-за содержания формальдегида применяется для утепления нежилых помещений: промышленных цехов, складов, мастерских и т. д.

При монтаже из-за хрупкости стеклянных волокон необходимо использовать индивидуальные средства защиты, чтобы предотвратить их попадание на открытые участки тела или в глаза.

Коэффициент теплопроводности стекловаты варьируется в пределах от 0,03 до 0,052 Вт/м·К. Предельный нагрев, при которых сохраняются все свойства материала, составляет до +4500С. Минимальная температура эксплуатации -600С. При эксплуатации не теряет первоначальный объём и не деформируется.

Стекловата

Шлаковата

Шлаковую вату изготавливают из отходов металлургического производства, а именно – доменных шлаков. По этой причине она имеет остаточную кислотность, из-за которых, при контакте с металлическими поверхностями могут протекать процессы окисления. Кроме того, материал гигроскопичен, что требует применения качественной гидроизоляции.

Толщина волокон варьируется от 4 до 12 мкм, а длина – до 16 мм. Коэффициент теплопроводности – 0,046-0.048 Вт/м·К. Температурный интервал, при котором допускается эксплуатировать материал, составляет от -500С до +3000С.

Технические характеристики минеральной ваты на основе шлаковых волокон не позволяют её эксплуатировать для изоляции труб, утепления фасадов и различных наружных поверхностей. Кроме того, она также, как и стекловата, обладает хрупкостью, поэтому при монтажных работах потребуется применение индивидуальных защитных средств.

Каменная вата

Каменная вата лишена недостатков стекловаты и шлаковаты – не имеет хрупкости, обладает высокой прочностью на разрыв, со временем практически не даёт усадки, выдерживает высокие температуры до +6000С и низкие от -450С. Однако при этом является менее гигроскопичной.

Изготавливается каменная вата из волокон диабаза и габбро диаметром 5-12 мкм и длиной 16 мм. Обеспечивает коэффициент теплопроводности от 0,048 до 0,077 Вт/м·К.

Подходит для контакта с любыми материалами, легко гнётся, не требует использования индивидуальных средств защиты.

Базальтовая вата

Базальтовая вата, как и каменная, изготавливается из габбро-базальтовых волокон с диаметром 5-15 мкм и длиной 20-50 мм, однако не содержит минеральных или связующих добавок. За счёт этого повышается температурный интервал её использования от -1900С до +10000С и обеспечивается самый низкий уровень гигроскопичности, по сравнению с другими минераловатными утеплителями.

Коэффициент теплопроводности варьируется в пределах от 0,035 до 0,039 Вт/м·К. Уровень звукоизоляции составляет 0,9-99 дБ. Материал относится к классу негорючих, благодаря чему может контактировать с нагретыми конструкциями. Срок службы базальтовой ваты составляет до 80 лет.

Базальтовая минеральная вата в форме плит

Марки минеральной ваты и их характеристики

Параметры и характеристики утепления минеральной ваты классифицируются в зависимости от плотности утеплителя следующим образом:

  • П-75;
  • П-125;
  • ПЖ-175;
  • ППЖ-200.

Минвата П-75 имеет плотность 75 кг/м3 и обладает высокой гибкостью. Подходит для теплоизоляции ненагружаемых горизонтальных или с минимальным наклоном конструкций, а также коммуникаций. Применяется также для теплоизоляции кровли, чердаков, потолков, полов по лагам, водопроводных и отопительных труб, вентиляционных каналов.

Минеральная вата П-125 с плотностью 125 кг/м3 отличается от предыдущей марки тем, что обладает отличными звукоизоляционными свойствами, высокой прочностью и оптимальной гибкостью. Основная сфера её применения – утепление газо- или пенобетонных стен, межкомнатных перегородок, фасадов, балконов.

Характеристики видов минеральной ваты с маркировкой ПЖ-175 имеют существенное отличие от обычных утеплителей, благодаря повышенной жёсткости, которая позволяет выполнять монтаж на нагружаемые и вертикальные конструкции. Их плотность составляет 175 кг/м3, обладают отличными звукоизоляционными и минимальными противопожарными свойствами. Укладываются на стальные, деревянные и бетонные плоские поверхности.

Минвата ППЖ-200 имеет плотность 200 кг/м3 и обладает повышенной жёсткостью и отвечает всем требованиям негорючих материалов по противопожарной безопасности. Используются для утепления промышленных, складских и торговых объектов. Монтаж возможен только на плоские поверхности со статическими нагрузками, так как плиты имеют минимальную гибкость за счёт использования армирующего внутреннего слоя.

Базальтовая фольгированная вата в рулоне

Критерии выбора минеральной ваты

При выборе подходящего типа минераловатного утеплителя рекомендуется опираться на следующие критерии:

  • коэффициент теплопроводности и толщину материала;
  • плотность листов, характеризующие нагрузку на утепляемые конструкции;
  • показатели гигроскопичности;
  • тип поставки материала: рулоны или плиты;
  • звукоизоляционные свойства;
  • тип волокон и наличие в составе вредных химических компонент;
  • прочность на разрыв и гибкость для утепления поверхностей сложной формы.

Опытные специалисты дают следующие рекомендации и советы по выбору качественной минеральной ваты:

  • несмотря на дороговизну продукции брендовых производителей, рекомендуется использовать именно её, так как она обладает гарантированными характеристиками и, самое главное, имеет заявленную долговечность;
  • выбор рулонов или плит зависит от типа и сложности работ по утеплению, но всегда должен сводиться к получению минимального количества стыковочных швов;
  • от материала с волокнами, расположенными горизонтально или вертикально по длине, лучше отказаться в пользу с хаотичными, так как он обладает большей прочностью;
  • стоимость ваты определяется не только типом волокон, а и их плотностью, поэтому важно в первую очередь изучать технические характеристики, а не смотреть на цену;
  • нужно находить оптимальный вариант для получения достаточного уровня теплоизоляции и при этом не перегружать несущую конструкцию;
  • для утепления жилых домов следует подбирать минвату с минимальным содержанием формальдегидных смол;
  • утеплитель даже с минимальным уровнем гигроскопичности необходимо гидроизолировать, чтобы максимально продлить срок его эксплуатации, поэтому заранее нужно внести соответствующие изменения в смету затрат;
  • перед покупкой важно убедиться в соответствии материала заявленным характеристикам: размеру листов, толщине, гибкости, сохранению формы.
Продукция брендовых производителей обладает гарантированными характеристиками

Кроме того, для удобства монтажа важно подбирать минеральную вату по жёсткости, которая позволит плотно стыковать её с обрешёткой, исключать появление воздушных пазов, зазоров и других дефектов. На данный параметр может влиять не только толщина слоя, а и наличие фольгированного слоя или армирующих волокон.

Качественно по жёсткости можно выделить следующие типы минваты:

  • мягкие, применяемые для изоляции трубных коммуникаций (дымоходов, труб) или кровельного пирога;
  • полужёсткие, используемые для наружной теплоизоляции фасадов и в качестве среднего слоя в сэндвич-панелях;
  • жёсткие, предназначенные для изоляции плоских металлических или деревянных поверхностей стен, полов, потолков, кровель и т. д.
Мягкая минеральная вата применяется для изоляции трубных коммуникаций

При подборе материала с подходящим коэффициентом теплопроводности следует руководствоваться следующими критериями:

  • данными о средних температурах в зимний и летний периоды в конкретном регионе;
  • толщине стен здания и теплопроводностью материалов, из которых они были возведены.

Обычно при покупке материалы приобретают с небольшим запасом по параметрам. Однако при этом важно не забывать про экономическую выгоду от получения реальных теплоизоляционных свойств по сравнению с требуемыми и не допускать переплат.

Преимущества и недостатки минеральной ваты

Независимо от конкретного вида и характеристик, минеральная вата обладает рядом следующих преимуществ:

  • простота монтажа на любые типы материалов, применяемых в строительстве объектов;
  • повышенная стойкость к химическим веществам;
  • сохранение всех свойств в течение минимум 30 лет;
  • минимальная усадка (1-5%, в зависимости от типа волокон) за весь период эксплуатации;
  • повышенная огнестойкость и пожаробезопасность;
  • лёгкость обработки;
  • допустимость установки в любых типах помещений с оптимальным уровнем влажности;
  • минимальный коэффициент теплоизоляции;
  • паропроницаемость, предотвращающая накопление капель конденсата на поверхности контакта с другими материалами;
  • относительно невысокая стоимость.

К недостаткам минераловатных утеплителей следует отнести:

  • гигроскопичность: при накоплении влаги безвозвратно теряются все свойства;
  • выделение при нагреве формальдегида и соединений на его основе;
  • вредность мелких волокон, попадающих в органы дыхания и зрения.

Области применения

Применение минеральной ваты на основе подбора характеристик допустимо в следующих целях:

  • теплоизоляции фасадных стен;
  • изоляции нагретых коммуникаций, печей, дымоходов и производственного оборудования;
  • утепления кровельного пирога, стен, полов, потолков, перекрытий;
  • изоляции холодильных установок;
  • в качестве звукоизолирующего материала.

Несмотря на то, что в составе утеплителя есть небольшое количество формальдегидных соединений, их концентрация не представляет опасности для здоровья людей. Главное, полностью соблюдать все требования технологии монтажа, чтобы минимизировать влияние влаги и исключить прогрев выше допустимых пределов.

Использование минваты отдельно в качестве звукоизоляционных материалов не является выгодным, однако в виде дополнительного свойства к теплоизоляции – весьма выгодным вложением финансовых средств. В некоторых случаях, например, при утеплении фасада, для создания оптимальной акустической обстановки внутри помещений, не потребуется укладка слоя звукоизоляции.

При сравнении срока службы минваты с аналогами оказывается, что они примерно одинаковы. При этом волокнистые утеплители пожаробезопасны и не выделяют токсических веществ при эксплуатации в разрешённом температурном режиме. Кроме того, их легче транспортировать и укладывать.

Минеральная вата – утеплитель, характеристики которого ничуть не уступают другим типам теплоизоляционных материалов, является наиболее востребованным при строительстве и ремонте различных объектов. Волокнистая структура из различных минеральных пород обладает различными свойствами и различается по стоимости, что позволяет подобрать наиболее выгодный вариант для монтажа.

характеристики и разновидности этого теплоизоляционного материала в структуре эффективного утепления дома

Попытки многих жителей домов повысить комфортность проживания в зимнее время мотивировали установку эффективных отопительных систем. Но стабильная температура в этих случаях граничит с повышенными затратами на оплату энергоносителей. А утепление потолка минватой и всего дома решает одновременно две проблемы – и поддержание стабильного температурного режима и минимизацию расходов на отопление. При этом еще и достигается неплохой показатель по звукоизоляции.

Технические характеристики минеральной ваты

Минвата известна тем, что имеет один из самых эффективных показателей теплопроводности. Если сравнивать его с аналогичными параметрами других утеплителей, то минвата находится в одном ряду по эффективности с пенопластом и значительно превосходит многие другие утеплители.

  • Коэффициент теплопроводности минеральной ваты для разных ее вариантов колеблется в пределах 0,036-0,042 ВТ/(м*К). На этот параметр влияет плотность утеплителя
  • Плотность минваты устанавливается производителем в зависимости от ее функционального назначения и формы выпуска. Стандартные показатели – 100,150,200 кг/м3. Чем выше плотность, тем эффективнее способность материала удерживать тепло
  • Еще одной важной характеристикой минеральной ваты есть ее способность противостоять влиянию биологических форм. Обладая конвекцией в достаточном объеме, минвата не является оптимальным местом для развития грибковых форм и плесени
  • Свойство минеральной ваты относительно гигроскопичности тоже играет роль в ее функциональности. Влага не накапливается на ее волокнах и свободно проникает сквозь них. Это обстоятельство дает основания не опасаться насчет смещения точки росы в толщу утепляемой поверхности. Кроме того, относительная гигроскопичность позволяет использовать материал для устройства вентилируемых фасадов

Важно! Хотя волокна минваты и не впитывают влагу в себя, они способны сохранять ее в структуре материала между волокон. Поэтому рекомендуется использовать этот материал только при утеплении наружной части строения или внутри конструкции стен.

  • Важным положительным свойством минеральной ваты есть ее устойчивость к высоким температурам. Возгорание материала практически исключено, так как фенолформальдегидные смолы, включаемые в ее состав, не имеют склонности к горению. Даже при риске возникновения пожара, волокна минваты не загораются, а лишь слегка плавятся, выдерживая при этом температуру до 800 градусов
  • Относительно теплоемкости и способности сохранять тепло свидетельствует тот факт, что минвата без последствий выдерживает понижение температуры до – 160 градусов.

Однако при утеплении минватой любых конструкционных поверхностей здания надо иметь в виду, что минвата со временем подвергается деформации, образуя при этом мостики холода. Однако подобные проявления можно ожидать по истечении 8-10 лет эксплуатации.

Еще одним недостатком минеральной ваты есть то, что ее волокна доступны для грызунов. И хотя они не интересуются материалом в качестве еды, но могут устраивать в толще утеплителя свои гнездовья.

Минеральную вату используют для утепления не только частных домов, но и квартир, а также отдельных её частей. Если вы живете на первом этаже и знаете, как правильно утеплить балкон, то можно утеплить его снаружи минватой.

Для внутренних стен балкона чаще используют пенопласт. Читайте о том, что лучше (пенопласт или минвата) здесь. В статье приведено подробное сравнение этих двух материалов.

Какие виды минеральной ваты выпускаются сегодня

Производство этого утеплителя основано на использовании минеральных компонентов, имеющих идентичные свойства. Структура каждого типа минеральной ваты представляет собой хаотичное переплетение волокон, что способствует прочности сцепления и изоляционным свойствам.

Наиболее распространенными видами минваты сегодня есть:

  • Каменная вата
  • Стекловата
  • Шлаковата

Несмотря на общие параметры, эти категории минваты имеют некоторые особенности.

Стекловата

Эта категория минеральной ваты производится путем плавления нескольких компонентов:

  • Песка
  • Известняка
  • Доломита
  • Буры
  • Соды

В результате достигается материала с коэффициентом теплопроводности 0,038-0,040 Вт/м*К. При этом полученная длина волокон достигает 0,5 см, а их толщина – 12 микрон.

Стекловата – один из первых материалов этой категории. Она обладает всеми присущими достоинствами, но имеет один существенный недостаток.

Стекловата в структуре волокон содержит мельчайшие частицы стекла, которым очень часто ранятся рабочие в процессе утепления, поэтому главное требование при работе с минватой – соблюдение мер предосторожности.

В остальном этот материал пригоден для утепления полов, стен, кровельных конструкций.

Шлаковата

Характеристики этого типа минеральной ваты несколько скромнее. Причиной тому – ее действующие компоненты. Шлаковату изготавливают из отходов доменного производства. Отработанные шлаки проходят те же стадии обработки, что и в процессе производства стекловаты. При этом образуются волокна длиной до 15-16 мм и диаметром от 5 до 8 микрон.

  • Компоненты шлаковаты содержат повышенную остаточную кислотность, способную вступать в реакцию с металлическими компонентами и вызывать возникновение коррозии
  • Теплопроводность шлаковаты несколько выше и составляет 0,048-7-0,052 Вт/(м*К). Менее привлекательны и параметры огнеупорности – шлаковата способна выдерживать температуру до 400 градусов, после начинает деформироваться

Каменная вата

В последние годы этот материал стал наиболее популярен среди аналогов. Каменная вата производится из горных пород базальта. Характеристики базальтового утеплителя, а точнее показатель теплопроводности у него самый эффективный – от 0,032 до 0,038 Вт/(м*К).

Обладает каменная вата и достаточной плотностью, что увеличивает период ее эксплуатации до десяти лет. Она менее подвержена деформации и не представляет опасности в экологическом отношении.

Устойчивость к температуре также высокая – выдерживает до 900 градусов.

Советы по выбору минваты

Выбирая минвату для утепления, нужно принимать во внимание условия ее эксплуатации и место размещения. Утеплитель в форме матов прослужит дольше и обеспечит больший уровень теплоемкости.

Обращать внимание надо и на плотность и толщину минеральной ваты. Цена минваты часто обоснована ее технологическими характеристиками, но это не решающий признак в выборе материала.

При покупке надо больше уделять внимания показателям теплопроводности и пароизоляции.

И тогда можно будет уверенно находится многие годы в комфортной обстановке со стабильной температурой при любых морозах за окнами.

Видео о характеристиках минеральной ваты

Характеристики каменной ваты Роквул. Преимущества каменной ваты.

Как делают стекловату. Показан процесс изготовления стекловолоконной теплоизоляции на производстве.

Минвата – виды, свойства, характеристики

С ISOVER Вам решать чем утеплять: каменной ватой или минватой на основе кварца.

Вы привыкли самостоятельно решать и контролировать все вопросы по строительству и обустройству вашего дома? Отлично! Здесь Вам решать чем свой дом утеплять. Отдаете ли вы предпочтение базальтовой вате или минеральной вате на основе кварца – ваше право. Приоритет ISOVER —  производить качественную теплоизоляцию и широкую продуктовую линейку, чтобы каждый мог найти оптимальное решение для утепления любого типа конструкции.
 
А если вы столкнулись с вопросом утепления впервые, эксперты ISOVER помогут разобраться в типах и особенностях минеральной ваты и выбрать оптимальное решение для любого типа конструкций.

Ведь только ISOVER производит в России как минеральную вату на основе кварца, так и базальтовую вату. В чем сходства и отличия, что подойдет именно вам? Читайте и определяйтесь.

Для утепления своего дома, квартиры или дачи многие выбирают теплоизоляцию, ориентируясь в первую очередь на цену. Выбирая самый дешевый утеплитель, зачастую покупка приносит ряд неудобств в процессе монтажа и дополнительные расходы: как минимум, на крепежи, т.к. материал не держится в конструкции самостоятельно, и как максимум на новый ремонт через год. Ведь утеплитель низкого качества со временем сползает или осыпается, что приводит к потерям тепла, повышению счетов на отопление и большим затратам на новый ремонт. Всего этого можно не допустить, сделав правильный выбор материала для утепления своего дома и разобравшись в технологии монтажа.

Рассмотрим самый популярный на сегодняшний день утеплитель — минеральную вату или как ее сокращенно называют минвату.

Согласно ГОСТ 31309-2005 и Национальному стандарту РЕН ИСЩ 9229 термин «минеральная вата» используется в качестве объединяющего понятия изоляционной продукции, производимой на основе разных видов волокон. Например, минвата на основе каменного волокна, стекловолокна или волокон из кварца. Разные виды минеральной ваты имеют свои особенности производства, влияющие на качество и свойства утеплителя.

Остановимся подробнее на  старой-доброй классике — каменной вате, и новой, амбициозной и весьма перспективной для российского рынка минеральной вате на основе кварца. Именно эти два направления объединил мировой лидер в утеплении и защите от шума —  ISOVER. Имея 80-летний опыт в данной области, компания ISOVER стала первым в России производителем минеральной ваты как на основе базальта, так и на основе кварца. Зная все от этапа разработки продукции, добычи сырья, до производства, установки и утилизации,  эксперты ISOVER готовы дать объективную информации о разных видах минваты. Поэтому если вам предстоит утеплить дом, дачу, квартиру, баню или любую другую постройку, сравнение минваты на основе базальта и кварца будет актуально и полезно.

Состав и способ производства минеральной ваты ISOVER на основе кварца и базальта

В обоих случаях используются натуральные природные компоненты.  Основой минеральной ваты на основе базальта является расплав горных пород, а главным компонентом при производстве минваты на основе кварца выступает кварц (утеплители на основе кварца на 70% состоят из одноименного компонента).  Отличаются эти виды минеральной ваты как составом, так и свойствами волокон, которые образуются в результате расплава сырья при крайне высокой температуре. У базальтовой ваты они более короткие, а у минеральной ваты на основе кварца – длинные, легкие и упругие.
 

Интересный факт — именно ISOVER более 50 лет назад  разработал технологию TEL  для производства минеральных утеплителей c использованием кварцевого расплава, которую сейчас успешно применяют по всему миру. В 1957 году во Франции эксперты компании «Сен-Гобен», которая к тому времени уже 20 лет производила и поставляла тепло- и звукоизоляцию ISOVER, изобрели инновационную технологию создания длинных, прочных и упругих волокон минеральной ваты. Они выглядят как сахарная вата, и создаются схожим образом. Именно процесс производства сладкой ваты лежит в основе создания минеральной ваты на основе кварца. Изобретатель новой технологии Фредерик Розенгарт, увидев на ярмарке аппарат по изготовлению этого лакомства, смастерил его прототип для кварца. В процессе экспериментов многое было перевернуто с ног на голову, включая сам аппарат (при производстве волокон минеральной ваты они выдуваются теперь сверху вниз) и даже название технологии (переименована с LET на TEL). Такой инновационный подход позволил минеральной вате максимально сохранять тепло в доме, а слову ISOVER стать нарицательным для определения высококачественной теплоизоляции во многих странах мира.

Но из какого бы сырья и по какой технологии не производились бы утеплители из минеральной ваты, все они нацелены на создание тепла в доме. Однако, есть еще ряд ключевых характеристик минваты, на которые важно обращать особое внимание.


Минеральная вата. Характеристики и свойства. 
  • Теплопроводность, т.е. насколько материал теплый.
Чем ниже его значение, тем меньше вам необходимо будет платить за отопление. В линейке продуктов ISOVER из минваты на основе кварца самый теплый материал – ISOVER Теплые Стены Стронг, а на основе базальтовой ваты — ISOVER Мастер Теплых Стен.
 
  • Долговечность
Согласно заключению НИИСФ РААСН: «При корректно спроектированной и выполненной конструкции изделия ISOVER могут использоваться не менее 50 лет с сохранением основных эксплуатационных характеристик в климатических условиях РФ». Читать об исследованиях>>
  Как камень, так и кварц – не горят, поэтому вся минеральная вата без дополнительных покрытий относится к группе негорючих материалов. 

Смотрите видео о том, как материалы ISOVER прошли проверку на прочность: 
 

 

  • Качество утеплителя
Минвата ISOVER из кварца, как и из базальта всегда на высоком уровне. На заводах ISOVER как сырье, так и готовый продукт проходят многоступенчатый контроль качества. Помимо этого, ISOVER постоянно проходит обязательные и добровольные испытания продукции, а также является первым и на сегодняшний день единственным производителем тепло- и звукоизоляционных материалов на Российском рынке, который подтвердил соответствие продукции ГОСТ. Об этом свидетельствуют сертификаты, которые в открытом доступе представлены на сайте. Смотеть сертификаты>>
 
  • Области применения
Области применения плит из каменной ваты и теплоизоляции на основе кварца одинаковы. Они подходят как для специализированного утепления и звукоизоляции стен, крыш, мансард, полов, потолков отдельным продуктом, например, ISOVER Теплые Стены Стронг, ISOVER Теплая Крыша Стронг, так и для комплексного утепления всего дома одним решением – ISOVER Профи, ISOVER Шумка и т. д. Отметим, что только на одном заводе в России, предприятие ISOVER в Подмосковном Егорьевске,  существует технология кримпинга, которая позволяет производить жесткую минеральную вату из кварца с высокой механической прочностью для применения в профессиональном строительстве в конструктивах штукатурных и вентилируемых фасадов, плоских кровлях и трехслойных ЖБИ панелях для многоэтажного строительства.
 
  • Безопасность для здоровья
Об экологичности материалов говорит природное сырье, применяемое для производства теплоизоляции на основе кварца и базальта. Помимо этого, ISOVER получил наивысшую оценку за экологичность продукции и производства — EcoMaterial Absolut Plus и теперь его тепло- и звукоизоляция признана как экологически чистый высокотехнологичный материал. На заводе ISOVER используется полностью замкнутый цикл водопотребления, благодаря этому абсолютно отсутствуют сбросы технологической воды в водные объекты. Немаловажное значение имеет отсутствие слив ливневых и дренажных стоков: вся вода с дорог, крыш и соседнего предприятия «Сен-Гобен» собирается, проходит процесс отчистки и снова отправляется на завод. Это в свою очередь помогает предприятию снизить водопотребление из систем городских систем.Поэтому заводы минимально воздействуют на окружающую среду. Еще одним подтверждением безопасности минваты являются открытые данные о влиянии утеплителей на окружающую среду. С этой информацией можно ознакомиться в экологических декларация продукции на сайте.
 
  • К отличительной особенности минваты на основе кварца можно отнести ее легкий вес, облегчающий процесс монтажа, а также упругость материала, благодаря которой плиты и рулоны сжаты в несколько раз. Это в свою очередь дает ощутимую экономию при перевозке теплоизоляции. Есть возможность даже перевезти необходимый объем для утепления небольшого помещения в легковом автомобиле.
  
  • Формостабильность

Однако, все эти характеристики могут обойти вас стороной, если утеплитель не будет держаться в конструкции. Именно поэтому ISOVER уделил особенной внимание ФОРМОСТАБИЛЬНОСТИ производимой минеральной ваты.

Благодаря специальной разработке, все теплоизоляционные и шумоизоляционные материалы ISOVER отвечают трем НЕ: НЕ ломаются, НЕ сползают, НЕ осыпаются, как минимум, 50 лет. Гарантия формостабильности позволяет просто установить утеплитель из минваты в каркас с небольшим припуском без применения каких-либо крепежей. Многие бригадиры при тестировании минваты ISOVER на основе кварца были счастливы отметить, что для утепления стены или скатной крыши не нужно тратить время, силы и деньги на крепежи в виде веревок и гвоздей, строительных грибков или дополнительных балок.


Какие материалы выбрать для утепления своего дома  
ДЛЯ УТЕПЛЕНИЯ СТЕН:ДЛЯ УТЕПЛЕНИЯ КРЫШИ И МАНСАРДЫ:
                                   
Для утепления стен выбирайте специализированный продукт ISOVER Теплые Стены Стронг с технологией Formostability, которая гарантирует устойчивость в конструкцииДля крыши используйте материал ISOVER Теплая Крыша Стронг с технологией AquaProtect, которая обеспечивает материалу повышенную влагостойкость

Минвата создает максимальное тепло и комфорт в доме или квартире. Материал производится из природных компонентов: кварц, сода, известняк. Рекомендован для применения даже в медицинских и детских учреждениях, т.к. минвата является безопасным материалом для здоровья человека и окружающей среды.

  • Сохраняет комфортную температуру в доме благодаря низкому коэффициенту теплопроводности
  •  Не требует дополнительных крепежей при установке за счет высокой упругости
  •  Обладает усиленной влагостойкостью
  •  Удобен в работе – уже нарезан на плиты под стандартный шаг каркаса
  •  Безопасен для здоровья человека и окружающей среды
  • Относится к группе негорючих материалов (НГ)

Производится из природных компонентов: кварц, сода, известняк. Минвата безопасна для здоровья человека и окружающей среды, сертифицирована для применения в частном домостроении, а также для утепления детских и медицинских учреждений.

 
  • Отличается усиленной влагостойкостью благодаря технологии AquaProtect
  • Надежно фиксируется в каркасе без заломов и сползаний за счет высокой упругости материала
  • Остается минимум отходов при утеплении крыши с разным шагом стропил
  • Удобно нарезать рулон на нужные размеры благодаря специальной разметке на упаковке
  • Безопасен для здоровья человека и окружающей среды
  • Относится к группе негорючих материалов

Область применения:

Область применения:

    */ ]]>
ПараметрISOVER Теплые Стены 50 мм.ISOVER Теплые Стены 100 мм.ISOVER Теплая Крыша 50 ммISOVER Теплая Крыша 100 ммISOVER Теплая Крыша 150 мм
Толщина минваты, мм5010050100150
Ширина минваты, мм610610122012201220
Длина минваты, мм10001000410041004100
Кол-во в упаковке, м26,13,051054,88
Кол-во в упаковке, м30,3050,3050,50,50,735
Кол-во в упаковке, шт105211
Теплопроводность при температуре (10±2)0С, λ10, не более (Вт/(м•К), ГОСТ Р 319240,0340,0340,0340,0340,034
Группа горючести, ГОСТ 30244-94НГНГНГНГНГ

   

Хотите приобрести ISOVER прямо сейчас?
Перейдите в каталог ISOVER MARKET и оформите Ваш заказ!  

   

Отзывы о применении материалов ISOVER при строительстве домов:

_____________________________________________________________________________________________________

Виталий Тихонов, бригадир: «Мы с братом решили сделать в родительском доме на мансардном этаже детскую комнату. Это был голый каркас стропильной системы, где свободно гулял ветер. 
Мы выбрали материал на основе минеральной ваты, так как она безопасна для человека, а нам это очень важно, так как это детская комната, в которой будут находится наши дети.
Работа с материалами ISOVER очень проста и удобна. Хорошо производить заполнение межстропильного пространства, так как за счет упругости утеплителя происходит его плотное прилегание к конструкции.
После выполнения работ мы остались довольны полученным результатом: в помещении в жаркую погоду стало находиться комфортней, увеличилась звукоизоляция, и, что немаловажно, материалы, которые мы использовали, негорючи.»

__________________________________________________________________________________________________


Мы надеемся, что помогли вам разобраться в преимуществах, сходствах и отличиях минеральной ваты на основе кварца и каменной ваты, понять главные характеристики и свойства минваты, и теперь вы сможете сделать объективный выбор для того, чтобы в вашем доме было всегда тепло и комфортно.

Живите долго в теплом доме!

 

Понравилась статья? Поделитесь ей в соцсетях.

 

Минеральная вата – плюсы и минусы, технические характеристики, монтаж

Минвату используют для теплоизоляции зданий всех типов, тепломагистралей, трубопроводов. Материал производят на основе натуральных компонентов – горных пород с добавлением синтетического вяжущего. Утеплитель отличается высокой прочностью, низкой теплопроводностью, простым монтажом. Ниже приведены подробное описание и характеристики минеральной ваты для утепления.

Минеральная вата – это теплоизоляционный материал с волокнистой структурой, который производят из минерального сырья из недр земли с применением синтетического связующего. В качестве сырьевых материалов выступают расплавы горных пород.

Минеральная вата имеет следующие разновидности:

  • Базальтовая вата (каменная) – изготовленная из расплавов изверженных пород
  • Шлаковая – изготовленная из расплава доменного шлака
  • Стеклянная – изготовленная из расплава стекла

Другие названия материала – минвата, минераловатный утеплитель.

Состав и технология производства минваты

В состав утеплителя минеральной ваты входят силикатные расплавы доменных шлаков, изверженных и осадочных горных пород. Материалы из земной коры составляют до 80% его состава. Сочетание и процент вхождения того или иного сырья зависит от вида минваты.

Каменная вата в своем составе содержит габбро или диабаз, доменные шлаки, шихту. Минеральные компоненты – глину, доломит, известняк – добавляют в нее в качестве примесей для повышения текучести материала. Их содержание достигает 35%. Связующим выступает вещество на основе формальдегидной смолы, которого в составе намного меньше – 2,5-10%.

Шлаковата также имеет волокнистую структуру. Ее производят из доменных шлаков – отходов металлургической промышленности при выплавке чугуна в домнах. Волокна материала имеют малый размер – толщину 4-12 микрон, длину до 16 мм.

Сырьем для производства стекловаты являются песок, доломит, сода, известняк, бура, стеклянный бой.

Процентное соотношение исходных материалов подбирается так, чтобы обеспечить максимальное качество будущего волокна – гидрофобность, химическую нейтральность, долговечность, высокие теплоизоляционные показатели, сопротивляемость нагрузкам.

Производство минеральных утеплителей начинается с расплавления смеси сырьевых материалов. Для этого их загружают в ванные, вагранки или шахтные плавильные печи. Строго соблюдается температура плавления, которая находится в пределах 1400-1500 С, так как от степени вязкости расплава зависит длина и ширина волокон, следовательно – технические и теплоизоляционные свойства минваты.

Смесь, доведенная до нужной степени вязкости, затем помещается в центрифуги с валками, вращающимися на скорости более 7000 оборотов в минуту. Они разрывают ее на тонкие волокна. В центрифуге волокна покрываются связующим компонентом. После этого мощный поток воздуха забрасывает их в специальную камеру, в которой они образуют ковер нужных размеров.

Далее материал поступает на гофрировочную или ламельную машину, где ему придается необходимая форма и объем. После этого он подвергается высокотемпературному воздействию в термокамере. При этом связующие вещества проходят полимеризацию, и вата приобретает окончательные объем и форму. Завершающая термическая обработка формирует прочностные характеристики утеплителя. Готовую минвату разрезают на блоки и упаковывают.

Понятие «минеральная вата» и материалы, относящиеся к ней, определены в ГОСТ 31913-2011 (международный стандарт ISO 9229:2007).

Маркировка и форма выпуска

Классификация и маркировка минеральной ваты производят на основании ее плотности. В соответствии с этим параметром выделяют следующие марки утеплителя:

  • П-75. Это вата с плотностью 75 кг/куб. м. Ее используют для изоляции горизонтальных ненагруженных поверхностей – чердаков, кровли, а также для утепления трубопроводов теплосетей, нефте- и газопроводов
  • П-125. Плотность ваты этой марки – 125 кг/куб. м. Ее используют для изоляции ненагруженных поверхностей любого положения в пространстве, а также полов и потолков, в качестве среднего слоя в трехслойных стенах зданий малой этажности из керамзитбетона, кирпича, газобетона
  • ПЖ-175. Ватой этой марки изолируют стены и перекрытия из железобетона и профилированного металлического листа
  • ППЖ-200. Область применения идентична предыдущей марке, плюс повышение огнестойкости инженерных и строительных сооружений

Производители минеральной ваты для утепления предлагают потребителям различные формы этого материала, которые имеют некоторые отличия в характеристиках и сфере применения:

  • Плиты на базальтовой основе имеют наибольшую плотность. Их можно использовать под бетонными стяжками и в местах, где утеплитель подвергнется высоким нагрузкам
  • Рулоны и маты имеют небольшую плотность, поэтому предназначены для утепления ненагруженных конструкций – межэтажных перекрытий, стен, кровли и т.д. Маты прошивные теплоизоляционные из минеральной ваты используют для изоляции поверхностей производственного оборудования и труб, имеющих температуру до 400 С.

Цилиндры с отверстием внутри считаются лучшим вариантом для изоляции труб

Характеристики минеральной ваты

  • Прочность. 0,08-06 кг/кв. см в зависимости от марки материала.
  • Плотность минеральной ваты. 35-100 кг/куб. м в зависимости от плотности материала. Плиты утеплителя имеют средний размер 0,6 кв. м, поэтому имеют небольшой вес, что облегчает монтаж.
  • Усадка минваты ничтожно мала и составляет доли процента. Благодаря этому даже при длительной эксплуатации ее свойства, такие как огнестойкость и звукопоглощение, не ухудшаются.
  • Теплопроводность. Коэффициент теплопроводности минеральной ваты зависит от плотности и составляет 0,036-0,060 Вт/мГрад. Теплопроводность утеплителя уступает только материалам из пенополистирола. Нужно учитывать, что за первые годы эксплуатации вследствие поглощения влаги теплопроводность увеличивается в среднем на 50%.
  • Морозостойкость. Точные значения не заданы ГОСТами и ТУ. У разных производителей показатели могут отличаться.
  • Водопоглощение. Гидрофобизированная вата имеет показатель 6-30% при полном погружении в воду. Влажность сухого материала – 1%
  • Паропроницаемость. При отсутствии пароизоляции равна 1.
  • Огнестойкость. Материал относится к негорючим и применяется для изоляции поверхностей с температурой до +400 С. Волокна минеральной ваты начинают плавиться только после 2-часвого воздействия температуры в 1000 С.
  • Стоимость. В зависимости от формы выпуска определяется за кв. м или куб. м. Цена плиты из минеральной ваты зависит от многих факторов – толщины, используемого сырья, плотности и т.д. Магазины также назначают цену за упаковку.
  • Звукоизоляция. Утеплитель применяют в качестве шумоизоляции. Коэффициент звкопоглощения специальных акустических плит из минваты составляет 0,7-09.
  • Токсичность. Результаты последних исследований показывают, что минеральная вата вред для здоровья не представляет. Согласно классификации МАИР, он относится к 3-ей группе канцерогенных веществ, к которой также относятся такие продукты, как кофе и чай.
  • Срок службы. Заявленный производителями срок – 50 лет.

Преимущества и недостатки минваты

К преимуществам относятся:

  • Низкая теплопроводность, что делает ее отличным утеплителем
  • Пожаробезопасность
  • Устойчивость к перепадам температур. Материал не деформируется при нагревании/охлаждении
  • Химическая и биологическая устойчивость
  • Отличная паропроницаемость, благодаря чему материал «дышит»
  • Простота монтажа

Недостатки:

  • Требует обработки водоотталкивающими средствами, чтобы снизить влагопоглощение. При впитывании влаги понижаются теплоизолирующие свойства, образуются мостики холода
  • Большая масса по сравнению с пенопластом, что повышает стоимость доставки материала

Сферы применения

Минвату применяют для тепло- и звукоизоляции зданий и сооружений, а также конструкций и трубопроводов. Конкретные способы применения:

  • Теплоизоляция стен и потолков бань
  • Ненагруженная изоляция ограждающих конструкций любого пространственного положения всех видов зданий
  • Теплоизоляция навесных вентилируемых фасадов
  • Утепление в системах мокрого фасада
  • Изоляция промышленного оборудования, сетей и магистралей
  • Теплозвукоизоляция кровель

Способы монтажа

Плиты из минваты монтируются двумя способами: сухим и мокрым. Первый подразумевает укладку плит в промежуток между стеной и обшивкой. Для этого создается деревянный или металлический каркас. Утеплитель прокладывается в промежутках между профилями. Мокрый способ – это наклеивание плит на поверхность стены с последующим несением грунтовки и армированием сеткой. Монтаж минераловатных цилиндров производят с помощью самоклеящейся ленты или тонкой проволоки.

огнеупорная для утепления и фольгированная. Сравнение с пенопластом. Характеристики и ГОСТ, производство, вес и состав

Для утепления помещений используются специальные материалы, которые позволяют защитить здание от влияния холода. Большим спросом пользуется минеральная вата, которая обладает массой положительных качеств и преимуществ. Данное изделие делится на несколько разновидностей, выпускается в разных формах, поэтому следует ознакомиться с их особенностями, чтобы правильно подобрать материал для дальнейшей работы.

Основные характеристики

Любое строительство состоит из разных этапов, а если речь идет о жилых помещениях, утепление является одной из важных процедур. Для этого чаще всего используют минеральную вату, удельный вес которой зависит от плотности и разных характеристик. Теплоизолятор можно приобрести в любом строительном магазине, к тому же он предлагается по низким ценам, однако у него есть и масса других эксплуатационных особенностей.

Минвата обеспечивает не только тепло-, но и звукоизоляцию, она должна отвечать стандартам ГОСТ, быть огнестойкой, надежной и достаточно плотной.

Что касается срока службы, все зависит от того, насколько хорошо уложен материал.

К основным преимуществам изделия можно отнести ряд факторов. Так, в составе минваты нет органических элементов, поэтому срок эксплуатации настолько продолжителен, что можно не беспокоиться о ремонте довольно долго. Многих интересует температура горения материала, и здесь следует отметить, что его горючесть минимальна, минеральная вата не может воспламениться, а это значительный плюс. Это дышащий утеплитель с волокнистой структурой, благодаря чему избыточная влага пропускается, а воздух циркулирует.

Таким образом материал не будет плесневеть и разлагаться, что также подтверждает длительный срок службы. Если вы беспокоитесь о том, живут ли мыши в минвате, это ошибочное мнение – грызунов и насекомых не привлекает данный утеплитель, поэтому его можно хранить, сколько угодно. Колебания температуры не страшны, как и влияние агрессивной среды.

У минеральной ваты низкий показатель теплопроводности: всего 10 см утеплителя равны брусу 25 см, а кирпичной кладке толщиной 117 см. Стоит отметить, что базальтовый тип данного материала является наиболее долговечным – его можно использовать на протяжении 50 лет, не беспокоясь об эксплуатационных характеристиках. У шлаковаты этот период несколько меньше, но ее можно приобрести для утепления складского или подсобного помещения.

Материал нередко применяют для отделки помещений согласно СНиП. Благодаря высокой паропроницаемости минвата выполняет функцию не только утеплителя, но и защищает от лишнего шума, ее можно использовать в деревянных и каменных сооружениях.

Таким образом, основными факторами для выбора этого материала потребителями являются его высокое качество, отличные эксплуатационные показатели и доступная цена.

Вредность для здоровья

Это важный аспект, который следует учитывать. Ломкость волокон является недостатком теплоизолятора, и если проводить монтаж без использования защитных средств, включая респиратор, очки, перчатки и костюм, можно повредить слизистую и столкнуться с раздражением на коже. Наиболее опасными видами минваты являются шлаковая и стеклянная, с которой многие знакомы еще с детства, ведь ее можно было часто увидеть возле жилых домов и подвалов. На сегодняшний день многие решают отказаться от применения этого типа утеплителя, чтобы защитить собственное здоровье.

Стоит отметить, что в составе есть формальдегидные вещества, поэтому лучше использовать минвату для наружных работ. Однако не стоит беспокоиться, если соблюдается обычная температура, – в этому случае материал не несет опасности. Во время монтажных работ важно соблюдать определенные правила и технологию: после установки утеплителя рекомендуется сделать слой пароизоляции, чтобы частицы волокон не проникли в помещение.

Виды по составу

Как упоминалось выше, минвата делится на несколько разновидностей: некоторые из них более огнеупорные, другие изготавливаются на синтетическом связующем, есть фольгированный материал. Поэтому важно ознакомиться с особенностями каждого класса, чтобы найти наиболее подходящий вариант.

Стекловата

Для производства данного материала используется около 80% стеклобоя, остальную часть составляют другие ингредиенты, включая песок, соду, известняк. Компоненты смешиваются, подвергаются плавлению, затем при помощи центрифуг получают тонкие волокна длиной 5 см. У материала отличные эксплуатационные показатели. Единственным недостатком является то, что для работы с ним требуются средства защиты. Стекловата пользуется большим спросом по ряду причин. Прежде всего у нее высокая химическая устойчивость, она подходит для укладки на неровных поверхностях, хорошо поглощает звук, справляется с вибрациями и обладает низкой теплопроводностью.

Материал не возгорается, предлагается по доступной цене. Однако в ходе укладки необходимо позаботиться о парозащите, нужно учесть колкость изделия и обеспечить хорошую изоляцию. Срок эксплуатации стекловаты достигает 10 лет, что также имеет значение.

Перед началом работы с утеплителем важно защитить глаза, дыхательные пути, а также убедиться, что нет открытых участков кожи, так как волокна ломкие, и частицы могут летать во время монтажа.

Каменная

Главными компонентами данного материала являются диабаз и габбро. Толщина волокон может быть от 5 до 12 мкм, длина не превышает 1,6 см. Что касается свойств материала, он похож на шлаковату, однако отсутствует колкость, что является большим плюсом. Работу по монтажу теплоизолятора можно провести самостоятельно в краткие сроки. Этот тип минваты плохо впитывает влагу, поэтому для утепления такой вариант подходит лучше всего.

Шлаковата

В качестве основного ингредиента для сырья используются доменные шлаки, из которых получаются волокна длиной не более 16 мм. В частном строительстве этот материал применяется чаще всего, к тому же им можно утеплить нежилое помещение. К преимуществам можно отнести возможность установки на фигурных и неровных поверхностях, огнеустойчивость, длительный срок эксплуатации, качественную звукоизоляцию и устойчивость к био- и химическим веществам.

Однако следует учитывать, что шлаковата не подойдет для утепления водопровода или фасадов. Во время монтажа необходимо использовать средства защиты – в составе есть фенолформальдегидные смолы, поэтому для жилых зданий его лучше не применять. Чаще всего шлаковатой утепляют подвалы, нежилые постройки и чердаки, промышленные объекты.

У материала минимальная жесткость, но хорошая термоизоляция.

Базальтовая

Доломит или базальт является основным компонентом для изготовления такого материала. Это мелкозернистое изделие с супертонкими волокнами длиной до 5 см. Так как в составе минимальный набор ингредиентов, производство происходит по простой технологии. Что касается теплопроводности базальтовой ваты, она самая низкая по сравнению с другими разновидностями.

Однако следует выделить несколько преимуществ. У материала высокая жесткость на сжатие, поэтому во время монтажа можно не использовать поддерживающие опоры, также он справляется с влиянием химических веществ, может прослужить до 50 лет. Базальт обладает низкой гигроскопичностью, является упругим и довольно прочным, способен поглощать звуки и не горит. Этот вид минеральной ваты является экологичным, поэтому привлекает многих потребителей из-за универсальности и отличных эксплуатационных показателей.

Комбинированная

Такой вид теплоизоляции сочетает в себе базальтовую минвату с фольгой. Этот материал отлично подходит для защиты от огня деревянных и стальных конструкций. Поэтому изделие активно применяется для трубопроводов водоснабжения, канализации и отопления, а также дымовых каналов, в саунах и банях.

Форма выпуска

На рынке можно найти минвату всех категорий, которые предлагаются в разных формах в зависимости от сферы применения. Производители выпускают материал в виде матов, плит и рулонов, при этом последние пользуются наибольшим спросом. Рулонный вариант привлекает тем, что можно самостоятельно выбрать длину, в то время как другие предлагаются в стандартных размерах. Однако есть еще одна разновидность такого утеплителя, который представлен в форме волокнистой массы.

Для ее применения необходимо иметь специальное оснащение, а именно: компрессор.

Сравнение с пенопластом

Так как минеральная вата является материалом для утепления, у многих нередко возникает вопрос: лучше ли она, чем пенопласт, и какие между ними различия. Для этого необходимо изучить показатели обоих изделий, чтобы сравнить характеристики, и обнаружить разницу.

Стоит отметить, что практически во всем утеплители идентичны. При этом важно обратить внимание на структуру материала, чтобы понять, какой из них боится влаги или повышенной температуры. Так как вата напоминает покрывало из стекловолокна, то больше подходит для звукоизоляции помещения. Но если положить ее в воду, она впитает жидкость, станет гораздо тяжелее и потеряет некоторые свойства. Поэтому здесь важно защитить материал от влаги, для чего мастера используют ПВХ-пленку или паробарьер. Такая комбинация дает максимальный эффект, и вода не нарушит целостности утеплителя.

Пенопласт же является гидрофобным материалом, который не способен вбирать воду подобно губке, но влага проникает в структуру, тем самым разрушает соединение между шариками. Плита начнет крошиться и осыпаться. Таким образом, пенопласт необходимо также защищать от влаги, особенно если речь идет о наружном применении.

Сравнивая характеристики, следует отметить, что в отличие от пенопласта минвата устойчива к возгоранию, что преподносит ее в выгодном свете, и поэтому многие выбирают именно этот материал для теплоизоляции.

Какой плотности бывает?

Показатель плотности является важной характеристикой, которую важно учитывать при выборе материала. На рынке могут предлагаться разные варианты минваты, при этом необходимо знать о том, как плотность влияет на другие свойства и качества изолятора.

Мягкая имеет плотность 30-50 кг на кубометр, выпускается рулонами, поэтому подходит для укладки на горизонтальную поверхность. Сжимаемость материала достигает 50%, если утеплитель полужесткий, он используется в технических помещениях.

Изделие средней жесткости – 125 кг на кубометр – имеет сжимаемость до 12%. Что касается более плотной минваты, она сжимается на 2%, показатель плотности от 150 до 175 кг/м3. Если требуется изоляция кровли, такой вариант подходит больше всего. В форме плит выпускается материал плотностью 200 кг на кубометр.

Как производят?

Производство минеральной ваты требует наличия профессионального оснащения и богатого опыта. Основными материалами изготовления являются разные горные породы. В роли побочных продуктов выступают карбонатные и габбро-базальтовые породы, которые получаются в ходе производства металлопроката. На 90% минвата состоит из горной породы, остальная часть – это разные добавки. Чтобы сделать утеплитель более плотным, связать волокна между собой, производители добавляют вяжущие средства – это могут быть смолы с фенолом или бентонитовая глина.

Верхний слой материала состоит из тонкой крафтовой бумаги, которая имеет алюминиевый или полиэтиленовый состав. Компоненты смешивают, после чего плавят в специальном устройстве, которое изготавливает минеральную вату. Затем материал режется на плиты, маты или скручивается в большие рулоны.

Применение

Минеральная вата обладает рядом положительных свойств, поэтому она активно применяется в строительной области:

  • утепление деревянного и бревенчатого дома изнутри;

  • изоляция межэтажных перекрытий балками, потолков;

  • утепление вентилируемых навесных фасадов;

  • минераловатная изоляция системы пола, дорожной коммуникации;

  • прослойка между сэндвич-панелями, чтобы обеспечить больше жесткости материалу, включая бетонные и железобетонные конструкции;

  • отделка перегородок из гипсокартона;

  • утепление крыши, газопровода.

Конечно, это не весь перечень сфер, в которых активно используется минеральная вата, но это самые распространенные области, где невозможно обойтись без такого продукта. Можно с уверенностью сказать, что изделие является лидером теплоизоляционных материалов.

Как выбрать?

Если вы решили заняться утеплением дома, необходимо знать несколько правил, чтобы выбрать подходящий материал. Для этого важно учесть характеристики сооружения, где будет проводиться работа: является оно жилым или коммерческим, какой материал использовался в ходе строительства.

Специалисты рекомендуют заранее рассчитать плотность минваты, которая будет соответствовать задаче. Стоит отметить, что зачастую ошибки происходят не из-за плохого качества материала, что случается довольно редко, но именно при неправильной эксплуатации. Поэтому перед покупкой лучше изучить все технические характеристики и особенности использования той или иной категории минеральной ваты.

Большим спросом пользуются плиты с повышенной плотностью – у них минимальные показатели влагопоглощения, поэтому для отделки фасадов такой вариант подходит лучше всего. Для утепления помещения можно обратить внимание на маты – это рулонный материал, конструкция которого довольно удобна.

Важно учитывать материал, из которого сделаны стены: если они деревянные, плотность не должна быть высокой, ведь поверхность должна дышать, в противном случае она заплесневеет. Существует негласное правило о том, что для тонких стен необходимо брать толстую прослойку теплоизоляции.

Как крепить?

Это важный вопрос, с которым следует разобраться, если вы решили заняться утеплением помещения самостоятельно. Прежде всего позаботьтесь о том, чтобы у вас был защитный костюм для работы и перчатки, чтобы предотвратить аллергическую реакцию и попадание частиц волокон в дыхательные пути и на открытые участки кожи.

Существует несколько вариантов установки минеральной ваты в зависимости от сферы применения и разновидности материала.

Важно учитывать, из чего сделаны стены фасада – пеноблок, гипсокартон, дерево, кирпич и другое.

Если речь идет об утеплении стен внутри, тогда стоит использовать обрешетку. Такой каркас изготовлен из брусков, которые крепятся к стене. Между ними есть ячейки, куда необходимо укладывать плиту теплоизоляции. Такой способ подходит и для работы с перегородками из гипсокартона. Но если вы хотите облицевать наружные стены, такой вариант не совсем подходит. Для крепежа используйте клей-пену или состав вместе с дюбелями. Наружный каркас облицовывают мягкими плитами, используя именно каменную вату. Каркас нужен для того, чтобы облегчить нагрузку на нижние участки, где находится утеплитель. Здесь можно использовать либо деревянный брус, либо металлический профиль, который более прочный.

Таким образом, для крепежа утеплителя можно использовать такие варианты – клеевой состав или пена, дюбели и обрешетка. Все зависит от ваших предпочтений и условий работы, при этом у каждого метода есть свои особенности и плюсы.

Начать следует с обрешетки, которая зачастую используется для вентилируемых фасадов. Мягкий утеплитель не подходит для мокрых стен, у него недостаточно жесткости, поэтому он не сможет выдерживать вес облицовки. Если вам нравится отделка барашком или короедом, тогда следует рассмотреть другие варианты. Обрешетка больше всего подходит для внутренних работ, где она полностью себя оправдывает.

Чтобы получить максимальный эффект, для начала на стену укладывается пароизоляционный материал, который можно закрепить степлером. Затем монтируется цокольный профиль, прикручивается саморезами брус, только после этого можно начинать укладку минваты. Убедитесь, что плиты сидят достаточно туго, чтобы не было сквозных участков, через которые может проходить холод.

Данный вариант отделки отлично подходит для деревянных домов.

Что касается крепления на клей, это один из тех способов, который подходит исключительно для вентилируемых фасадов. Если нужно проводить штукатурные работы, тогда понадобятся дюбели-зонтики, их еще называют «грибки» – такой метод установки минваты составляет 90% случаев, поэтому можно смело рассматривать его.

Чтобы все прошло гладко, необходимо сделать разметку мест, где будут делаться отверстия, куда вставляется дюбель. Убедитесь, что шляпка плотно прижалась к материалу. Стержень необходимо вводить вручную в гильзу, после чего забить его молотком. Шляпка должна быть утоплена, но не переусердствуйте.

Теперь вы знаете все необходимое о минеральной вате, ее технических свойствах, особенностях разных видов материала, а также сферах применения. Такая информация поможет тщательно разобраться в том, какой именно утеплитель подойдет в вашем случае, и как правильно с ним работать, чтобы сделать качественную звуко- и теплоизоляцию.

Смотрите видео о минеральной вате.

Базальтовый утеплитель (каменная вата) — ТЕХНОНИКОЛЬ

Минеральная вата (базальтовая теплоизоляция или базальтовый утеплитель) на сегодняшний день является самым востребованным теплоизоляционным материалом в на территории СНГ и Европы. По исходному составу сырья минеральную вату можно разделить на шлаковату, стеклянную вату и каменную вату, которую и производит корпорация ТехноНИКОЛЬ. Название говорит само за себя – волокна каменной ваты изготавливают из расплава горных пород базальтовой группы, а при помощи синтетического связующего формируют теплоизоляционные плиты. Каменная вата, является абсолютно безопасным продуктом – согласно классификации МАИР/IARC, ее относят к группе 3 «не может быть отнесена к категории канцерогенов», но как и любой строительный материал требует использования СИЗ при монтаже. Ключевые характеристики каменной ваты:

  • негорючесть: волокна каменной ваты имеют температуру плавления свыше 1000°С, что позволяет ее использовать не только как теплоизоляцию, но и как эффективную огнезащиту, препятствующую распространению огня термическому повреждению конструкций.
  • паропроницаемость: каменная вата, не являясь паробарьером, в конструкции способствует выводу влаги, тем самым способствуя поддержанию оптимального микроклимата в помещениях.
  • биостойкость: каменная вата не является привлекательной средой обитания для грызунов и микроорганизмов.
  • cтабильность геометрических размеров: в зависимости от области применения, каменная вата может иметь как способность к сжимаемости с последующим восстановлением первоначальных размеров, так и высокую прочность на сжатие позволяющую ее применять ее в системах испытывающих нагрузки.

Высокая теплоизолирующая способность каменной ваты достигается за счет наличия пустот, пустот между волокнами. Хаотичное расположение волокон и расстояние между ними наделяет каменную вату (базальтовую теплоизоляцию) звукоизолирующими свойствами — звуковая волна, отражаясь от волокон, достаточно быстро теряет свою силу и затухает вне зависимости от частоты.

Базальтовый утеплитель применяется для теплоизоляции практически всех конструкций, а так же используется в качестве огнезащиты. Его используют в качестве теплоизоляции: стен, кровель, перекрытий, покрытий, перегородок и т.д. Учитывая жесткие требования норм пожарной безопасности зданий и сооружений, каменная вата, зачастую, является единственным возможным решением при выборе теплоизоляции конструкций. Базальтовую теплоизоляцию широко применяют в малоэтажном строительстве, благодаря ее уникальному сочетанию тепло-звукоизолирующих свойств.

Виды утеплителей:


Теплоизоляционные материалы
Утепление фундамента
Где купить?

Читайте также:
Где применяется базальтовый утеплитель?
Теплоизоляция стен
Утепление пола

 


виды и характеристики, применение, цены

Минеральная вата более 140 лет используется в строительстве для теплоизоляции зданий. Это упругие маты и рулоны разной толщины, образованные хаотично переплетенными волокнами из расплавленных пород и минералов. Между ними образуется большое количество внутренних воздушных карманов, которые сохраняют тепло защищаемых конструкций.

Оглавление:

  1. Особенности минваты
  2. Разновидности утеплителей
  3. Область применения
  4. Популярные марки и цены

Свойства

Особенности материала обеспечивает ей уникальное сочетание качеств:

  • Морозостойкость и негорючесть (рабочий диапазон может достигать -200..+1000°С).
  • Упругие волокна хорошо поглощают звуковые колебания, проникающие через перекрытия и стены (до 50 дБ).
  • Каменная вата не боится ни химических реактивов, ни воды, но при высокой влажности она утрачивает свои теплоизоляционные свойства.

Также минеральная вата показывает отличную паропроницаемость от 0,3 до 0,55 мг/м·ч·Па, что позволяет ей лучше регулировать микроклимат в помещениях и при этом самостоятельно избавляться от скапливающейся между волокнами влаги, при условии, что для этого были оставлены проветриваемые зазоры размером 2-4 см.

Виды и характеристики

Минеральная вата часто классифицируется по форме выпуска, тесно связанной с плотностью плетения волокон. Утеплители можно купить в виде рулонов большого размера, рыхлых матов, жестких плит и специальных скорлуп для изоляции трубопроводов. Что же касается сырья для производства каменных нитей, то здесь принято различать три основных вида.

1. Базальтовая вата.

Производится из габбро-базальтового волокна, обладающего высокими показателями прочности и упругости. По качеству лучше нее материалов нет, выпускается плотностью от 30 до 180 кг/м3, что позволяет применять в самых разных конструкциях – вплоть до изоляции бетонной стяжки.

Базальтовая вата в зависимости от толщины волокон приобретает уникальные характеристики:

ПоказателиКаменнаяБТВ (тонкое волокно)БСТВ (сверхтонкое)
Размеры волокон, мкм:

-толщина

-длина

 

4 – 12

16

 

5 – 15

20 – 50

 

1 – 3

50 – 70

Огнестойкость минваты, °С+600+700+1000
Суточное водопоглощение, %0,0950,0350,02
Теплопроводность, Вт/м·К0,35 – 0,048
Звукопоглощение (коэффициент)0,75 – 0,950,8 – 0,950,95 – 0,99
Химическая стойкость к щелочам, % потери веса6,42,752,75

Срок службы утеплителя из базальта превышает 50 лет.

Сопротивление сжатию – еще один важный показатель для этого материала. Его учитывают при изоляции стен, наклонных и эксплуатируемых плоских крыш. Здесь прочность зависит от количества поперечных волокон – чем выше их число, тем большую нагрузку выдержит минеральная вата без уменьшения толщины и потери свойств. В среднем это около 15-20 кПа для легких утеплителей, 25-40 кПа у фасадных плит и от 45-50 кПа для жестких изделий под стяжку.

2. Стекловата.

Волокна для нее получают путем расплава стеклобоя, так что стоимость невелика. Нити здесь толще и длиннее базальтовых, и, судя по описаниям производителей, должны обладать большей упругостью. Однако эта разновидность минваты имеет одно неприятное свойство. Ломкие стеклянные нити дают огромное количество абразивной пыли, которая поднимается в воздух, попадает в легкие и оседает на коже.

Она столь же эффективна, как и базальтовая вата (0,038-0,046 Вт/м·К), однако прочие ее характеристики не впечатляют:

  • Огнестойкость – +450°С.
  • Сорбционное увлажнение – 1,7-2 %.
  • Коэффициент звукопоглощения – 0,8-0,92.
  • Химическая стойкость к воде и щелочам – 6-6,2 %.
  • Склонность к слеживанию и потере до 70 % эффективности, если сроки эксплуатации минваты превышают 10 лет.

В последнее время производители занялись улучшением свойств стекловаты, так что теперь на рынке появляются материалы с довольно высоким показателем упругости. Это позволяет теплоизоляции восстанавливать свои размеры после снятия нагрузки. Можно приобрести и нестандартные двухслойные плиты, имеющие жесткую поверхность из стекловойлока, паробарьер из фольги или ветрозащиту. Но какими бы идеальными ни были условия эксплуатации, толщина утеплителя даже самого высокого качества со временем уменьшается, и через 15 лет его все равно придется менять.

3. Шлаковая вата.

Продукт переработки металлургических отходов выпускается плотностью от 75 кг/м3. По показателю огнестойкости он серьезно проигрывает основным видам каменной ваты – всего +250..+300°С. Водопоглощение самое высокое – 1,9 % в сутки, да и проводимость не лучше (0,46-0,48 Вт/м·К). А по колкости и химической стойкости этот материал очень близок к стекловолокну.

На рынке шлаковая минвата оказалась в меньшинстве не из-за того, что имеет слабые технические характеристики. Сам утеплитель обладает так называемой остаточной кислотностью, которая при увлажнении вызывает коррозию соприкасающихся с ней металлических элементов.

Применение

Характеристики минеральной ваты определяют сферу ее использования как для внутренней, так и внешней теплоизоляции (при соблюдении требований к влагозащите). Рулоны и плиты поистине универсальны, так что их используют в частном и промышленном строительстве. Особенно ценится огнестойкость каменной ваты, благодаря которой ее применяют в самых «горячих точках», где другие материалы не выдержат воздействия высоких температур:

  • Стены и кровля бани или сауны.
  • Дымоходы.
  • Трубы отопления и ГВС.

Огнестойкость самой изоляции хоть и высока, при температуре свыше +250 °С бесполезна, если на слой утеплителя минеральной ваты оказывается механическое воздействие. В таких условиях происходит разрушение связующих полимеров, удерживающих волокна вместе. А без них каменные нити начинают смещаться, и плита просто осыпается со стены.

Неплохо справляется минеральная вата и с функциями звукопоглощения, а значит, ее можно применять для повышения комфортности жилья. Особенно хорошо себя показывает теплоизоляция из сверхтонких волокон БСТВ, а стеклянная и шлаковая, по отзывам, не дают нужного эффекта даже при толщине слоя на стенах и в перекрытиях 100-150 мм.

Краткий обзор производителей

  • Rockwool – эта марка выпускает лучшую базальтовую изоляцию, цена и качество которой идеально уравновешены. Характеристики утеплителя любой серии Роквул достаточно высоки, поскольку за основу взяты волокна с показателями огнестойкости +1000 °С.
  • Технониколь – ее ассортимент больше ориентирован на теплоизоляцию нагружаемых несущих конструкций и отличается высокой плотностью. Легкая минвата этой марке, по отзывам строителей, пока не удается – разваливается в руках, но ее стоимость за м2 заметно ниже, чем у Роквула.
  • Урса – одна из первых внедрила технологию изготовления минеральной ваты с безопасным акриловым связующим PureOne. Для нее используется штапельное волокно, лишенное основных недостатков стекловаты вроде плохой звукоизоляции или избыточного пылеобразования.
  • Knauf – выпускает силикатные и базальтовые утеплители, так что купить подходящий материал можно для любых видов работ. Особое внимание производитель уделяет уменьшению колкости стекловаты за счет упрочнения волокон, и основные технические характеристики от этого становятся только лучше.

Стоимость

ПроизводительСерия минватыОбъем упаковки, м3Цена руб/уп.
RockwoolСкандик0,29430
РокФасад0,12710
ТехноникольРоклайт0,43660
ТехноФас0,22950
KnaufКоттедж Плюс0,6740
Термо Плита-0370,91390
УрсаPureOne-34PN0,45880
Terra0,3420

Описано различных типов минеральной ваты

Изоляция из минеральной ваты когда-то была наиболее часто используемым типом изоляции, пока около 30-40 лет назад ее не начали заменять изоляцией из стекловолокна. Минеральная вата возвращается во многие новые дома из-за простоты ее производства. Этот тип утеплителя бывает двух типов: минеральная вата и шлаковата.

Минеральная вата против шлаковой ваты

Минеральная вата составляет только 20% минеральной ваты, и ее производят из дробленого природного камня.Остальные 80% утеплителя из минеральной ваты составляет шлаковая вата; он производится из побочного продукта промышленных отходов, известного как железорудный доменный шлак. Этот побочный продукт получают из известняка в сочетании с различными другими химическими веществами и превращают при высокой температуре в прочные волокнистые материалы. Основная характеристика как минеральной, так и минеральной ваты состоит в том, что они на 75% состоят из переработанных материалов.

Вторичные материалы

Каменная и шлаковая вата содержит вторичные материалы, такие как хлопок и целлюлоза.Переработанный хлопок включает в себя смешивание обрезков хлопчатобумажной и полиэфирной фабричной ткани с пластиковыми волокнами и их комбинирование с помощью процессов высокой температуры. Во время этого производственного процесса также добавляются антипирены и связующие вещества. Преимущество минеральной ваты в том, что она не удерживает влагу и, следовательно, не образует плесени или грибка. Рециклированная целлюлоза, используемая в изоляционных материалах из минеральной ваты, в основном получается из переработанных газетных обрезков. Единственный недостаток минеральной ваты, в которой используется переработанная целлюлоза, — это потеря огнезащитных химикатов, несовместимых с остальными волокнами.

Рекомендации по использованию минеральной ваты

Независимо от того, какой тип минеральной ваты вы решите использовать для своих изоляционных нужд, следует помнить о нескольких вещах. Проверьте количество незакрепленных волокон, так как их слишком много может быть сбито с места при сильном ветре; он также может накапливать пыль и грязь в течение длительного времени. Некоторые утеплители из минеральной ваты также могут быть уязвимы для насекомых, сверлящих древесину в определенных районах страны. Обязательно выберите тип изоляции из минеральной ваты, которая достаточно прочна, чтобы противостоять этим возможным проблемам и предотвратить частую замену.

Минеральная вата также обладает тем преимуществом, что действует как пароизоляция, по сравнению с изоляцией из стекловолокна, которая требует одновременной установки отдельной пароизоляции. Благодаря этой особенности минеральная вата более удобна в установке и эффективна против влаги. Обратной стороной минеральной ваты является то, что она имеет те же проблемы со здоровьем, что и стекловолокно, поэтому защита кожи, глаз и легких является обязательной при выполнении этой изоляции.

R-значение и толщина

Изоляция из минеральной ваты может иметь разную толщину и R-значения, которые измеряют скорость теплового потока и удержания.Если у вас есть изоляция из минеральной ваты, которая имеет только более низкие значения R, попробуйте выбрать изоляцию с более толстыми волокнами. Основная мера, которую вы можете предпринять для предотвращения потерь энергии, — это хорошо изолировать ваш дом с помощью панелей из минеральной ваты более высокого качества.

Является ли минеральная вата веганской и экологически чистой?

В поисках энергоэффективного теплоизоляционного или звукоизоляционного материала вы, возможно, столкнулись и задались вопросом — является ли минеральная вата веганской? Фотография минеральной ваты ilovebutter

Да, минеральная вата веганская.Он не имеет ничего общего с овечьей шерстью и не сделан из других ингредиентов животного происхождения. Но это может быть не самый экологичный вариант.

Прочтите, чтобы узнать, как производится минеральная вата, для чего она используется, а также о некоторых экологических проблемах. Я также перечислю некоторые веганские альтернативы минеральной вате.

Что такое минеральная вата?

Минеральная вата относится к любому волокнистому материалу, полученному путем вытягивания или формования различных расплавленных минералов.

Эти минералы включают:

  • Стекло вторичное
  • Базальтовая порода (вулканическая порода, представляющая собой застывшую лаву)
  • Шлак (переработанные отходы металлургической промышленности)
  • Бокситы (осадочная порода с высоким содержанием алюминия)
  • Оливиновый песок

Есть много видов минеральной ваты и еще больше наименований для нее.Минеральная вата может также называться минеральной ватой, каменной ватой, стекловатой, шлаковатой ватой, минеральным волокном, минеральной ватой, минеральным волокном, искусственным минеральным волокном (MMMF) и искусственным стекловолокном (MMVF).

Как производится минеральная вата?

Минералы, подобные перечисленным выше, нагреваются в печи до состояния расплавленной лавы. Затем прядильная машина взбивает лаву на тонкие пряди, как машина для производства сахарной ваты. Пряди образуют пучки, и для их удержания добавляется связывающий раствор. Пучки также опрыскиваются маслом (не уверен, каким именно) для повышения водостойкости.

Пышная каменная вата складывается в несколько слоев и сжимается роликами для получения более плотного материала. Эта новая плотная шерсть запекается в промышленной печи для отверждения связующих, которые сохраняют форму шерсти.

Для чего используется минеральная вата?

Водонепроницаемость и огнестойкость минеральной ваты делают ее полезной в различных промышленных и потребительских областях. Потребительские применения включают звукоизоляцию, теплоизоляцию и в качестве среды для гидропоники.

Я впервые столкнулся с минеральной ватой, когда искал способы звукоизоляции своей домашней студии звукозаписи. Я задавался вопросом, веганский ли это, и хотел поделиться ответом с другими.

Однако, хотя минеральная вата технически веганская, она может быть не самым экологически чистым решением для вашего проекта.

Заботы об окружающей среде

Хотя минеральная вата имеет некоторые «зеленые» аспекты, такие как потенциальная переработка промышленных отходов и повышение энергоэффективности домов за счет ее использования, у нее также есть некоторые недостатки, о которых недавно говорили в новостях.

Чаще всего печи на минеральной вате работают на угле. Установки, работающие на угле, в том числе производящие минеральную вату, выделяют десятки веществ, которые, как известно, крайне вредны для здоровья человека. Этот вид загрязнения воздуха был связан с болезнями сердца и легких, раком, астмой, неврологическими проблемами и глобальным потеплением, а также с другими воздействиями на окружающую среду.

Когда минеральная вата вступает в контакт с влагой, она также может выделять запахи в окружающее пространство.

Если вы устанавливаете минеральную вату, имейте в виду, что, как и в случае со стекловолокном, контакт кожи с минеральной ватой может вызвать зуд и / или сыпь.

Экологичные, веганские звукоизоляционные и теплоизоляционные материалы.

Я попытался найти альтернативу минеральной вате, которая также является веганской. Строительный сектор — это еще не та область, которую я изучал в плане испытаний на животных. Я исключил несколько очевидных кандидатов, но вот лучшие варианты, которые я нашел до сих пор.Я обновлю этот список, если получу дополнительную информацию.

Какие веганские, экологически чистые материалы вы использовали для изоляции? Дайте нам знать об этом в комментариях.

Изоляционные связующие на основе минеральной ваты

Минеральная вата считается наиболее известным типом изоляции среди множества изоляционных материалов. Минеральная вата бывает трех видов: стеклянная, каменная (каменная) и шлаковая вата. Описываются общие производственные процессы, а также такие особенности, как спецификации и характеристики каждого из этих типов, а также роль связующего в процессе.Из множества связующих на основе минеральной ваты, таких как силикаты натрия, полиэфиры, меламино-мочевиноформальдегид, полиамиды, смолы на основе фурана и другие, связующие на основе фенольных смол по-прежнему занимают видное место в качестве предпочтительного связующего для минеральной ваты. Представлены оптимальные условия для приготовления резола с низкой вязкостью (<50 мПа · с), неограниченной разбавляемостью водой, содержанием твердых веществ (SC) от 45 до 55%, низким содержанием тетрадимера (≤ 18%), фенолом с низким содержанием свободного (<0,4%) и адекватным стабильность при хранении при использовании молярного отношения F / P ~ 4: 1.Описаны различные катализаторы на основе неорганических и органических оснований, а также сильные и слабые стороны этих катализаторов. Полученное резольное связующее содержит большое количество свободного непрореагировавшего формальдегида, и его содержание снижается до нуля в диапазоне температур 20–40 ° C за счет добавления мочевины перед использованием в качестве связующего. Полученная смола PFU (фенолформальдегид-мочевина) называется «премикс» или «предварительная реакция». Перечислены образование нежелательного тетрадимера [бис (4-гидрокси-3,5-диметилолфенол) метана] и несколько методов минимизации его кристаллизации внутри резола.Даже некоторые селективные основные катализаторы, которые используются для приготовления резольного связующего, обеспечивают некоторую повышенную стабильность против осаждения тетрадимера. Время гелеобразования или B-стадия связующего резола находится в пределах 5–20 минут и регулируется так, чтобы совпадать с общим процессом (от распыления связующего до отверждения в печи). Правильная установка B-стадии позволяет связующему течь к точкам соединения волокон минеральной ваты, когда материал поступает в печь для отверждения и отверждается в течение времени пребывания в печи, чтобы обеспечить необходимые свойства продукта, такие как восстановление, прочность на разрыв и устойчивость к старению.Выбросы различных летучих органических компонентов (ЛОС), таких как монометилолфенолы, триметиламин, аммиак, фенол и формальдегид, происходят на месте производства минеральной ваты. Показано, что образование последних трех летучих органических соединений происходит в результате отверждения смолы (формальдегид), мочевины, ответственной за образование аммиака, и свободного фенола из-за непрореагировавшего количества в смоле. Обсуждается роль некоторых других компонентов (гидроксид аммония, сульфат аммония, силан, эмульгатор, масло для удаления пыли, наполнители и вода), которые вводятся в конечную смесь связующего.Гидроксид аммония доводит pH связующего премикса до значения 9–10 на месте производства минеральной ваты и «временно» стабилизирует высшие олигомерные частицы, такие как димеры и тетрамеры, от осаждения, поддерживая их в растворе. Сульфат аммония (AS) участвует во множестве ролей, таких как высвобождение кислотности только при повышенной температуре для облегчения отверждения резола в печи для отверждения, регулирование времени гелеобразования резола путем изменения pH (определяется графиком зависимости времени гелеобразования от pH от термического отверждения резола от первоначального распыления до покрытых связующим волокном в сборную камеру и, наконец, в сушильную печь), и придает минеральной вате характерный цвет от белого до желтого с интенсивностью желтого цвета, из-за количества присутствующих AS.. Количество AS может составлять 1,03–1,3 моль / моль основного катализатора, используемого при приготовлении смолы, и это количество способствует максимальной прочности на разрыв.

Искусственные минеральные волокна — Искусственные минеральные волокна и радон

  • Олдред Ф.Х. Аспекты изделий из алюмосиликатного волокна, связанные со здоровьем. Анна. ок. Hyg. 1985. 29: 441–442. [PubMed: 4073709]
  • Алсбирк К.Е., Йоханссон М., Петерсен Р. Глазные симптомы и воздействие минеральных волокон в плитах для звукоизоляции потолка (Дан.). Ugeskr.Laeger. 1983; 145: 43–47. [PubMed: 6836763]
  • Американская конференция государственных специалистов по промышленной гигиене (1986) Пороговые значения и индексы биологического воздействия на 1986–1987 гг. , Цинциннати, Огайо, стр. 19, 34.

  • Андерсен А., Лангмарк Ф. 1986 Заболеваемость раком в промышленности по производству минеральной ваты в Норвегии. Сканд. J. Work Environ. Здоровье 12 (1): 72–77. [PubMed: 3026038]
  • Anon. (1986) Факты и цифры. Chem. Англ. Новости, 64 , 32–44.

  • Аноним. (1987a) Волокно из оксида алюминия высокой чистоты, превращенное в бумагу. Jpn. хим. Неделя, 28 , 1.

  • Анон. (1987b) Высокоэффективные волокна находят все более широкое применение в военных и промышленных целях. Chem. Англ. Новости, 65 , 9–14.

  • Аноним. (1987c) На Среднем Западе волшебное слово — керамика. Автобус. Week, 2999 , 123.

  • Arbetarskyddsstyrelsen (Национальный шведский совет по безопасности и гигиене труда) (1981) Измерение и определение характеристик пыли MMMF (частичные отчеты 3–9) , Стокгольм.

  • Arbetarskyddsstyrelsen (Национальный шведский совет по безопасности и гигиене труда) (1984) Предельные значения профессионального воздействия (AFS 1984: 5) , Solna, p. 16.

  • Arledter, H.F. & Knowles, S.E. (1964) Керамические волокна. В: Battista, O.A., ed., Синтетические волокна в производстве бумаги , Нью-Йорк, Interscience, стр. 185–244.

  • Азова С.М., Евлашко Ю.П., Ковалевская И.А. Изменения в крови и метаболизме порфиринов при воздействии пыли из стекловолокна.). Концерт. Тр. проф. Забол. 1971; 15: 38–42. [PubMed: 5088881]
  • Balzer, J.L. (1976) Данные по окружающей среде: концентрации в воздухе, обнаруженные при различных операциях. In: LeVee, WN & Schulte, PA, eds, Профессиональное воздействие на волокнистое стекло (DHEW Publ. No. (NIOSH) 7–151; NTIS Publ. No. PB-258869) , Цинциннати, Огайо, Национальный институт по охране труда, стр. 83–89.

  • Balzer J.L., Cooper W.C., Fowler D.P. Стекловолоконные системы передачи воздуха: оценка их воздействия на окружающую среду.Являюсь. инд. Hyg. Доц. J. 1971. 32: 512–518. [PubMed: 4946492]
  • Бейлисс Д.Л., Демент Дж. М., Вагонер Дж. К., Блейер Х. П. Смертность рабочих производства стекловолокна. Анна. Акад. Sci. 1976a; 271: 324–335. [PubMed: 1069521]
  • Бейлисс, Д., Демент, Дж. И Ваггонер, Дж. К. (1976b) Структура смертности среди рабочих производства стекловолокна предварительный отчет. В: LeVee, W.N. & Schulte, P.A., eds, Профессиональное воздействие стекловолокна ( DHEW Publ.№ (NIOSH) 76–151; NTIS Publ. No. PB-258869), Цинциннати, Огайо, Национальный институт профессиональной безопасности и здоровья, стр. 349–363.

  • Beck E.G. 1976a Взаимодействие между волокнистой пылью и клетками in vitro. Анна. Анат. патол. 12227–236. [PubMed: 788560]
  • Beck E.G. Взаимодействие клеток с волокнистой пылью (нем.). Zbl. Бакт. Hyg. I. Abt. Ориг. B. 1976b; 162: 85–92. [PubMed: 1033650]
  • Beck E.G., Bruch J. Влияние волокнистой пыли на альвеолярные макрофаги и другие клетки, культивируемые in vitro. Биохимическое и морфологическое исследование (фр.). Rev.fr. Mal. респир. 1974; 2: 72–76.

  • Beck, E.G., Bruch, J., Friedrichs, K.-H., Hilscher, W. & Pott, F. (1971) Волокнистые силикаты в экспериментах на животных и культивировании клеток. Морфологические реакции клеток и тканей в зависимости от различных физико-химических воздействий. В: Walton, W.H., ed., Inhaled Particles III , Vol. II, Old Woking, Surrey, Unwin Bros, стр. 477–487. [PubMed: 4365268]
  • Beck E.G., Холт П.Ф., Манойлович Н. Сравнение воздействия на культуры макрофагов стекловолокна, стеклянного порошка и хризотилового асбеста. Br. J. ind. Med. 1972; 29: 280–286. [Бесплатная статья PMC: PMC1009425] [PubMed: 4339803]
  • Bellmann B., Muhle H., Pott F., Konig H., Kloppel H., Spurny K. Стойкость искусственных минеральных волокон (MMMF) и асбеста в легкие крысы. Анна. ок. Hyg. 1987. 31: 693–709. [PubMed: 2835923]
  • Бернштейн Д.М., Дрю Р.Т., Шидловский Г. и Кушнер М.(1984) Патогенность MMMF и контрасты с натуральными волокнами. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 169–195.

  • Бертацци П. А., Зоккетти К., Пезатори А., Радиче Л., Рибольди Л. Смертность от рака в когорте рабочих, производящих стекловолокно (итал.). Med. Лав. 1984. 75: 339–358. [PubMed: 6527669]
  • Бертацци П.А., Зоккетти С., Рибольди Л., Пезатори А., Радис Л., Латокка Р. Смертность от рака итальянской когорты рабочих, занятых в производстве искусственного стекловолокна. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 65–71. [PubMed: 3798057]
  • Ботам С.К., Холт П.Ф. Развитие стекловолоконных тел в легких морских свинок. J. Pathol. 1971; 103: 149–156. [PubMed: 4935921]
  • Boyd, D.C. & Thompson, D.A. (1980) Стекло. В: Grayson, M., Mark, H.F., Othmer, D.F., Overberger, C.G. И Сиборг, Г.T., eds, Kirk-Othmer Encyclopedia of Chemical Technology , 3-е изд., Vol. 11, Нью-Йорк, John Wiley & Sons, стр. 807–880.

  • Браун Р.С., Чемберлен М., Дэвис Р., Гаффен Дж., Скидмор Дж. У. 1979a Биологические эффекты стекловолокна in vitro. J. Environment. Патол. Toxicol. 21369–1383. [PubMed: 528847]
  • Браун Р.С., Чемберлен М., Скидмор Дж. У. Эффекты искусственных минеральных волокон in vitro. Анна. ок. Hyg. 1979b; 22: 175–179. [PubMed: 533084]
  • Пока Э., Эдуард В., Гьённес Дж., Сёрбреден Э. Возникновение переносимых по воздуху волокон карбида кремния во время промышленного производства карбида кремния. Сканд. J. Work Environ. Здоровье. 1985. 11: 111–115. [PubMed: 4001899]
  • Кэмпбелл, У. (1970) Рост нитевидных кристаллов в парофазных реакциях. В: Levitt, A.P., ed., Whisker Technology , New York, Wiley-Interscience, стр. 15–46.

  • Кейси Г. Обмен сестринских хроматид и клеточная кинетика в клетках CHO-K1, человеческих фибробластах и ​​лимфобластоидных клетках подвергали in vitro воздействию асбеста и стекловолокна.Мутат. Res. 1983; 116: 369–377. [PubMed: 6300672]
  • Чемберлен М., Тарми Е.М. Асбест и стеклянные волокна в тестах на бактериальные мутации. Мутат. Res. 1977; 43: 159–164. [PubMed: 194149]
  • Champeix J. 1945 Стекловолокно. Патология и гигиена в мастерских (фр.). Arch. Mal. проф. 691–94.

  • Черри Дж., Доджсон Дж. 1986 Прошлое воздействие переносимых по воздуху волокон и других потенциальных факторов риска в европейской промышленности по производству искусственного минерального волокна.Сканд. J. Work Environ. Здоровье 12 (1): 26–33. [PubMed: 3026036]
  • Черри Дж., Доджсон Дж., Гроат С., Макларен В. Экологические исследования в европейской промышленности по производству искусственного минерального волокна. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 18–25. [PubMed: 3026035]
  • Черри Дж., Кранц С., Шнайдер Т., Эберг И., Камструп О., Линандер В. Экспериментальное моделирование раннего процесса производства минеральной / шлаковой ваты. Анна. ок. Hyg. 1987. 31: 583–593. [PubMed: 3450229]
  • Чиаппино Г., Скотти П.Г., Ансельмино А. Профессиональное бронхолегочное заболевание, вызванное стекловолокном. Клинические наблюдения (Итал.). Med. Лав. 1981; 2: 96–101. [PubMed: 7242454]
  • Чолак Дж., Шафер Л. Дж. Эрозия волокон из установленных стекловолоконных каналов. Arch. Окружающая среда. Здоровье. 1971; 22: 220–229. [PubMed: 5540108]
  • Цирла П. Профессиональная патология стекловолокна (итал.). Med. Лав. 1948; 39: 152–157.

  • Claude J., Frentzel-Beyme R. Исследование смертности рабочих, занятых на немецком заводе по производству минеральной ваты.Сканд. J. Work Environ. Здоровье. 1984; 10: 151–157. [PubMed: 6474109]
  • Клод Дж., Френцель-Бейме Р. Смертность рабочих на немецкой фабрике по производству минеральной ваты — второй взгляд с расширенными наблюдениями. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 53–60. [PubMed: 3798055]
  • Corn, M. (1979) Обзор неорганических искусственных волокон в окружающей среде человека. В: Lemen, R. & Dement, J.M., eds, Dusts and Disease , Park Forest South, IL, Pathotox, стр. 23–36.

  • Кукуруза М., Хаммад Ю.Ю., Уиттиер Д., Коцко Н. Воздействие переносимых по воздуху волокон и твердых частиц на двух предприятиях по производству минеральной ваты. Environ. Res. 1976; 12: 59–74. [PubMed: 954709]
  • Cuypers J.M.C., Bleumink E., Nater J.P. Дерматологический аспект производства стекловолокна (Германия). Berufsdermatosen. 1975. 23: 143–154. [PubMed: 1227498]
  • Дэвис Р. (1980) Влияние минеральных волокон на макрофаги. В: Wagner, J.C., ed., Биологические эффекты минеральных волокон ( Научные публикации МАИР No.30) , Лион, Международное агентство по изучению рака, стр. 419–425.

  • Davis, J.M.G. (1976) Патологические аспекты введения стекловолокна в плевральную и брюшную полости крыс и мышей. In: LeVee, WN & Schulte, PA, eds, Профессиональное воздействие стекловолокна (DHEW Publ. No. (NIOSH) 76–151; NTIS Publ. No. PB-258869 ), Цинциннати, Огайо, Национальный институт Безопасность и гигиена труда, стр. 141–149.

  • Дэвис Дж.М.Г. Обзор экспериментальных доказательств канцерогенности искусственных волокон стекловидного тела. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 12–17. [PubMed: 3541171]
  • Дэвис Дж.М.Г., Гросс П., де Тревиль Р.Т.П. «Железистые тела» морских свинок. Тонкая структура, полученная экспериментально из минералов, кроме асбеста. Arch. Патол. 1970; 89: 364–373. [PubMed: 5435676]
  • Дэвис, Дж. М. Г., Аддисон, Дж., Болтон, Р. Э., Дональдсон, К., Джонс, А. Д. и Райт, А.(1984) Патогенные эффекты волокнистого керамического алюмосиликатного стекла, вводимого крысам путем ингаляции или перитонеальной инъекции. In: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ / МАИР ), Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 303–322.

  • Дэвис, Дж. М.Г., Болтон, Р. Э., Коуи, Х., Дональдсон, К., Гормли, Л. П., Джонс, А. Д. и Райт, А. (1985) Сравнения биологических эффектов образцов минерального волокна с использованием in vitro и in vivo аналитические системы . В: Beck, E.G. И Биньон, Дж., Ред., In vitro Эффекты минеральной пыли (серия NATO ASI, Vol. G3 ), Берлин (Запад), Springer, стр. 405–411.

  • Dement, JM (1973) Предварительные результаты отраслевого исследования отрасли стекловолокна NIOSH ( DHEW ( NIOSH ) Publ. No. IWS.35.3b; NTIS Publ. No. PB- 81-224693 ), Цинциннати, Огайо, Национальный институт профессиональной безопасности и здоровья, стр. 1–5.

  • Демент Дж. М. Экологические аспекты производства и использования стекловолокна. Environ. Res. 1975. 9: 295–312. [PubMed: 1157805]
  • Deutsche Forschungsgemeinschaft (Немецкое исследовательское общество) (1986) Максимальные концентрации на рабочем месте и значения биологической толерантности для рабочих материалов 1986 (Германия) (отчет № XXII ), Weinheim, Verlag Chemie , pp. 65, 76.

  • Direktoratet for Arbeidstilsynet (Управление по инспекции труда) (1981) Административные нормы загрязнения рабочей атмосферы (Norw.) ( No. 361 ), Осло, стр. 23.

  • Энгхольм Г., фон Шмалензее Г. Бронхит и воздействие искусственных минеральных волокон у некурящих строительных рабочих. Евро. J. respir. Дис. 1982. 63 (118): 73–78. [PubMed: 6284537]
  • Энгхольм, Г., Энглунд, А., Халлин, Н. и фон Шмалензее, Г. (1984) Заболеваемость раком органов дыхания у шведских строительных рабочих, подвергшихся воздействию MMMF. In: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ 11 ARC ), Vol.1, Копенгаген, Всемирная организация здравоохранения, стр. 350–366.

  • Энгхольм Г., Энглунд А., Флетчер Т., Халлин Н. Заболеваемость раком органов дыхания у шведских строительных рабочих, подвергшихся воздействию искусственных минеральных волокон и асбеста. Анна. ок. Hyg. 1987. 31: 663–675. [PubMed: 3450233]
  • Энтерлайн П.Е., Хендерсон В. Здоровье вышедших на пенсию рабочих из стекловолокна. Арка, окруж. Здоровье. 1975. 30: 113–116. [PubMed: 1115535]
  • Enterline, P.E. И Марш, Г. (1979) Окружающая среда и смертность рабочих завода по производству стекловолокна. В: Lemen, R. & Dement, J.M., eds, Dusts and Disease , Park Forest South, IL, Pathotox, стр. 221–231.

  • Enterline, P.E. И Марш, Г. (1980) Смертность рабочих в промышленности искусственного минерального волокна. В: Wagner, J.C., ed., Biological Effects of Mineral Fibers ( Научные публикации МАИР № 30) , Лион, Международное агентство по изучению рака, стр. 965–972. [PubMed: 7228348]
  • Enterline, P.Э. и Марш Г. (1984) Здоровье работников индустрии MMMF. In: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ / МАИР ), Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 311–339.

  • Энтерлайн П.Е., Марш Г.М., Эсмен Н.А. Респираторные заболевания у рабочих, подвергшихся воздействию искусственных минеральных волокон. Являюсь. Преподобный респир. Дис. 1983; 128: 1–7. [PubMed: 6870053]
  • Энтерлайн П.Е., Марш Г.М., Хендерсон В., Каллахан К.Обновленная информация о смертности когорты рабочих, занятых в производстве минерального волокна в США. Анна. ок. Hyg. 1987. 31: 625–656. [PubMed: 3450231]
  • Эсмен Н. А., Хаммад Ю. Ю., Корн М., Уиттиер Д., Коцко Н., Халлер М., Кан Р.А. Воздействие искусственных минеральных волокон на сотрудников: производство минеральной ваты. Environ. Res. 1978; 15: 262–277. [PubMed: 352685]
  • Эсмен Н.А., Корн М., Хаммад Ю.Ю., Уиттиер Д., Коцко Н. Резюме измерений воздействия переносимой по воздуху пыли и волокна на сотрудников на шестнадцати предприятиях, производящих искусственные минеральные волокна.Являюсь. инд. Hyg. Доц. J. 1979a; 40: 108–117. [PubMed: 495442]
  • Эсмен Н. А., Корн М., Хаммад Ю. Ю., Уиттиер Д., Коцко Н., Халлер М., Кан Р. А. Воздействие искусственных минеральных волокон на сотрудников: производство керамического волокна. Environ. Res. 1979b; 19: 265–278. [PubMed: 499150]
  • Эсмен Н.А., Уиттиер Д., Кан Р.А., Ли Т.К., Шихан М., Коцко Н. Улавливание волокон из воздушных фильтров. Environ. Res. 1980; 22: 450–465. [PubMed: 7408828]
  • Эсмен Н.А., Шихан М.Дж., Корн М., Энгель М., Коцко Н. Воздействие искусственных стекловолокон на сотрудников: монтаж изоляционных материалов. Environ. Res. 1982; 28: 386–398. [PubMed: 7117223]
  • Fairhall L.T., Webster S.H., Bennett G.A. Минеральная вата в отношении здоровья. J. ind. Hyg. 1935; 17: 263–275.

  • Фаркас Й. Стекловолоконный дерматит у сотрудников проектного офиса в новостройке. Контактный дерматит. 1983; 9: 79. [PubMed: 6220862]
  • Ферон В.Дж., Шерренберг П.М., Иммель Х.Р., Спит Б.Дж. Легочная реакция хомяков на фиброзное стекло: хронические эффекты повторных интратрахеальных инстилляций с бензо [ a ] пиреном или без него.Канцерогенез. 1985; 6: 1495–1499. [PubMed: 4042277]
  • Fireline (без даты) Технический паспорт продукта: Whiteline Shapes из керамического волокна вакуумной формовки , Янгстаун, Огайо.

  • Фишер А.А. 1982 Стекловолокно и минеральная вата (минеральная вата) дерматит Curr. Контакты Новости 29412, 415–416, 422, 427, 513. [PubMed: 6212199]
  • Фишер Б.К., Варкентин Д.Д. Дерматит из стекловолокна. Arch. Дерматол. 1969; 99: 717–719. [PubMed: 5783083]
  • Забудьте Г., Лакруа М.Дж., Браун Р.К., Эванс П.Х., Сироис П. Ответ перфузируемых альвеолярных макрофагов на стеклянные волокна: влияние продолжительности воздействия и длины волокна. Environ. Res. 1986; 39: 124–135. [PubMed: 3943503]
  • Forster, H. (1984) Поведение минеральных волокон в физиологических растворах. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 27–59.

  • Фаулер, Д.П. (1980) Исследования промышленной гигиены воздействия минеральной ваты на рабочем месте ( DHHS (NIOSH) Publ.№ 80–135; NTIS Publ. No. PB-81-222481) , Цинциннати, Огайо, Национальный институт профессиональной безопасности и здоровья.

  • Фаулер Д.П., Бальцер Дж. Л., Купер В.С. Воздействие на изоляционных рабочих стекловолокна в воздухе. Являюсь. инд. Hyg. Доц. J. 1971; 32: 86–91. [PubMed: 5572573]
  • Гантнер Б.А. Опасность для органов дыхания при снятии изоляции из керамического волокна с высокотемпературных промышленных печей. Являюсь. инд. Hyg. Доц. J. 1986; 47: 530–534. [PubMed: 3020958]
  • Гарднер М.Дж., Винтер П.Д., Паннетт Б., Симпсон М.Дж.К., Гамильтон К., Ачесон Э.Д. Исследование смертности рабочих в промышленности по производству искусственного минерального волокна в Соединенном Королевстве. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 85–93. [PubMed: 3798059]
  • Goldstein B., Rendall R.E.G., Webster I. Сравнение эффектов воздействия на павианов пыли крокидолита и стекловолокна. Environ. Res. 1983; 32: 344–359. [PubMed: 6315390]
  • Голдштейн, Б., Вебстер, И. и Рендалл, Р.Е.Г.(1984) Изменения, вызванные вдыханием стекловолокна у нечеловеческих приматов. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 273–285.

  • Гриффитс Дж. (1986) Синтетические минеральные волокна — от камней к богатству. Ind. Miner., Сентябрь , 20–43.

  • Гримм Х.-Г. Воздействие искусственных минеральных волокон на рабочем месте и их влияние на здоровье (нем.). Zbl. Arbeitsmed. 1983; 33: 156–162. [PubMed: 6349178]
  • Гросс П., Вестрик М.Л., Шренк Х.Х., Макнерни Дж. М. Воздействие пыли синтетического керамического волокна на легкие крыс. Arch. инд. Здоровье. 1956; 13: 161–166. [PubMed: 13282516]
  • Гросс П., Кашак М., Толкер Э.Б., Бабяк М.А., де Тревиль Р.Т.П. Легочная реакция на высокие концентрации стекловолоконной пыли. Предварительный отчет. Arch. Окружающая среда. Здоровье. 1970а; 20: 696–704. [PubMed: 5443343]
  • Гросс П., де Тревиль Р.Т.П., Кралли Л.Дж., Гранквист В.Т., Пундсак Ф.Л. Легочная реакция на волокнистую пыль различного состава. Являюсь. инд. Hyg. Доц. J. 1970b; 31: 125–132. [PubMed: 4316348]
  • Гросс П., Тума Дж., Де Тревиль Р.Т.П. Легкие рабочих подвергаются воздействию стекловолокна. Изучение их патологических изменений и запыленности. Arch. Окружающая среда. Здоровье. 1971; 23: 67–76. [PubMed: 4103314]
  • Hallin, N. (1981) Пыль минеральной ваты на строительных площадках (отчет , 1981-09-01, ), Стокгольм, Bygghalsan [Организация строительной индустрии по вопросам рабочей среды, безопасности и здоровья]

  • Хаммад Ю., Дим Дж., Крейгхед Дж., Вейл Х. 1982 Отложение вдыхаемых искусственных минеральных волокон в легких крыс. Анна. ок. Hyg. 26179–187. [PubMed: 7181264]
  • Харбен П. В. и Бейтс Р. Л. (1984) Геология неметаллических соединений , Нью-Йорк, Бюллетень металлов, стр. 50–51, 90–91, 260–261.

  • Харди К.Дж. Легочные эффекты стекловолокна у человека и животных. Arh. Hig. Рада. Токсикол. 1979; 30: 861–870.

  • Глава I.W.H., Wagg R.M. Обследование профессионального воздействия искусственной пыли минерального волокна.Анна. ок. Hyg. 1980; 23: 235–258. [PubMed: 7447247]
  • Управление здравоохранения и безопасности (1987) Пределы воздействия на рабочем месте, 1987 (Руководство EH 40/87 ), Лондон, Канцелярия Ее Величества, с. 25.

  • Heisel E.B., Hunt F.E. Дальнейшие исследования кожных реакций на стекловолокно. Arch. Окружающая среда. Здоровье. 1968; 17: 705–711. [PubMed: 5687266]
  • Herring C., Galt J.K. Упругие и пластические свойства очень мелких металлических образцов. Phys. Ред.1952; 85: 1060–1061.

  • Хестерберг Т. В., Барретт Дж. К. Зависимость индуцированной асбестом и минеральной пылью трансформации клеток млекопитающих в культуре от размера волокон. Cancer Res. 1984; 44: 2170–2180. [PubMed: 6324999]
  • Hill J.W. Искусственные минеральные волокна. J. Soc. ок. Med. 1978; 28: 134–141. [PubMed: 713506]
  • Hill, J.W., Rossiter, C.E. & Foden, D.W. (1984) Пилотное исследование респираторной заболеваемости рабочих на заводе MMMF в Соединенном Королевстве. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 413–426.

  • Хёр Д. Исследования с помощью просвечивающей электронной микроскопии волокнистых частиц в окружающем воздухе (нем.). Штауб. Рейнхальт. Люфт. 1985. 45: 171–174.

  • Холмс А., Морган А., Дэвисон В. Формирование псевдоасбестовых тел на стеклянных волокнах в легком хомяка. Анна. ок. Hyg. 1983; 27: 301–313.[PubMed: 6638764]
  • Хауи Р.М., Аддисон Дж., Черри Дж., Робертсон А., Доджсон Дж. Высвобождение волокон из фильтрующих респираторов с маской. Анна. ок. Hyg. 1986. 30: 131–133. [PubMed: 3013067]
  • Institut National de Recherche et de Sécurité (1986) Предельные значения концентраций опасных веществ в воздухе рабочих мест (Fr.) (ND 1609-125-86) , Paris, p. . 582.

  • Международное бюро труда (1980) Пределы воздействия на рабочем месте токсичных веществ, переносимых по воздуху , 2-я (ред.) изд. (Серия изданий по безопасности и гигиене труда № 37) , Женева, стр. 243–270.

  • Джонсон Д. Л., Хили Дж. Дж., Эйер Х. Э., Линч Дж. Р. Воздействие волокон при производстве стекловолокна. Являюсь. инд. Hyg. Доц. J. 1969; 30: 545–550. [PubMed: 5369267]
  • Джонсон, Н.Ф., Гриффитс, Д.М. И Хилл, Р.Дж. (1984) Распределение по размерам после длительного вдыхания MMMF. In: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ / МАИР ), Vol.2, Копенгаген, Всемирная организация здравоохранения, стр. 102–125.

  • Кауффер Э., Виньерон Дж. К. Эпидемиологическое обследование на двух заводах по производству искусственного минерального волокна. I. Измерение запыленности (фр.). Arch. Mal. проф. 1987. 48: 1–6.

  • Klingholz, R. & Steinkopf, B. (1984) Реакции MMMF в физиологической модельной жидкости и в воде. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2 , Копенгаген, Всемирная организация здравоохранения, стр. 60–86.

  • Konzen, J.L. (1980) Искусственные стекловидные волокна и здоровье. В: Труды национального семинара по заменителям асбеста, Арлингтон, Вирджиния, 1980 (EPA 560 / 3-80-001) , Вашингтон, округ Колумбия, Агентство по охране окружающей среды США, стр. 329–342.

  • Krantz, S. & Tillman, C. (1983) Измерение и идентификация пыли минеральной ваты (частичный отчет 10 и 11), анализ пыли и сканирующая электронная микроскопия (S wed.) (Undersökningsrapport 1983: 4 и 1983: 9) , Solna, Arbetarskyddsstyrelsen.

  • Ламан Д., Теодор Дж., Робин Э. Д. Регулирование внутрицитоплазматического pH и «кажущегося» внутриклеточного pH в альвеолярных макрофагах. Exp. Lung Res. 1981; 2: 141–153. [PubMed: 6791912]
  • Ле Буффан, Л., Энен, Дж. П., Мартин, Дж. К., Норман, К., Тишу, Г., Тролар, Ф. (1984) Распределение вдыхаемого МММФ в легких крысы долгосрочные эффекты. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol.2, Копенгаген, Всемирная организация здравоохранения, стр. 143–168.

  • Ле Буффан Л., Даниэль Х., Энен Дж. П., Мартин Дж. К., Норманд К., Тишу Г., Тролар Ф. Экспериментальное исследование долгосрочного воздействия вдыхаемого МММФ на легкие крыс. Анна. ок. Hyg. 1987. 31: 765–790. [PubMed: 3450235]
  • Лехнер В., Хартманн А. А. Гранулема инородного тела, вызванная стекловолокном (нем.). Hautarzt. 1979; 30: 100–101. [PubMed: 370066]
  • Ли, Дж. А. (1983) GRC — материал. В: Fordyce, M.W. 8c Wodehouse, R.G., eds, GRC and Buildings: Руководство по проектированию для архитекторов и инженеров по использованию цемента, армированного стекловолокном, в строительстве , Лондон, Баттервортс, стр. 6–27.

  • Ли, К.П. И Рейнхардт, К.Ф. (1984) Биологические исследования неорганических волокон титаната калия. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР ), Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр.323–333.

  • Ли К.П., Баррас С.Э., Гриффит Ф.Д., Вариц Р.С. Легочная реакция на стекловолокно при вдыхании. Лаборатория. Инвестировать. 1979; 40: 123–133. [PubMed: 372672]
  • Ли К.П., Баррас С.Е., Гриффит Ф.Д., Вариц Р.С., Лапин С.А. Сравнительные реакции легких на вдыхание неорганических волокон с асбестом и стекловолокном. Environ. Res. 1981; 24: 167–191. [PubMed: 6260477]
  • Leineweber, J.P. (1984) Растворимость волокон in vitro, и in vivo.В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 87–101.

  • Левитт А.П. (1970) Вводный обзор. В: Levitt, A.P., ed., Whisker Technology , New York, Wiley-Interscience, стр. 1–13.

  • Linnainmaa, K., Gerwin, B., Gabrielson, E., LaVeck, M., Lechner, J.F., Jantunen, K. & Harris, C.C. (1986) Хромосомные изменения в нормальных культурах мезотелиальных клеток человека после обработки асбестовыми волокнами in vitro (аннотация).В: Труды 5-го заседания Северного общества экологических мутагенов: новые подходы в генетической токсикологии, Хейнявеси, Финляндия, 2–5 марта 1986 г., , Хельсинки, Институт гигиены труда, с. 9.

  • Липпманн М., Шлезингер Р. Б. Межвидовые сравнения отложения частиц и мукоцилиарного клиренса в трахеобронхиальных дыхательных путях. J. Toxicol, Environment. Здоровье. 1984; 13: 441–470. [PubMed: 6376822]
  • Loewenstein, K.L. (1983) Технология производства непрерывных стекловолокон , 2-е изд.изд., Амстердам, Elsevier.

  • Longley E.O., Jones R.C. Стекловолоконный конъюнктивит и кератит. Arch. Окружающая среда. Здоровье. 1966; 13: 790–793. [PubMed: 5924066]
  • Lucas, J. (1976) Кожные и глазные эффекты, возникающие в результате воздействия на рабочего стекловолокна. In: LeVee, WN & Schulte, PA, eds, Профессиональное воздействие волокнистого стекла (DHEW Publ. No. ( NIOSH ) 76–151; NTIS Publ. No. PB-258869) , Cincinnati, OH , Национальный институт безопасности и гигиены труда, стр.211–219.

  • Маггиони А., Мерегалли Г., Сала К., Рива М. Респираторные и кожные патологии при производстве стекловолокна (итал.). Med. Лав. 1980; 3: 216–227. [PubMed: 6450322]
  • Мальмберг, П., Хеденстрем, Х., Колмодин-Хедман, Б. и Кранц, С. (1984) Функция легких у рабочих завода по производству минерального волокна. In: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ / МАИР) , Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр.427–435.

  • Mansmann, M., Klingholz, R., Hackenberg, P., Wiedemann, K., Schmidt, KAF, Golden, D. & Overhoff, D. (1976) Волокна синтетические и неорганические (нем. ). В: Энциклопедия прикладной химии Ульмана (нем.), Vol. 11, Weinheim, Verlag Chemie, стр. 359–374.

  • Manville, CertainTeed и Owens-Corning Fiberglas Companies (1962–1987) Измерение воздействия на рабочем месте , Денвер, Колорадо, Вэлли Фордж, Пенсильвания и Толедо, Огайо.

  • Marsh, J.P., Jean, L. & Mossman, B.T. (1985) Асбест и стекловолокно индуцировали биосинтез полиаминов в трахеобронхиальных эпителиальных клетках in vitro. В: Beck, E.G. И Bignon, J., ред., Эффекты минеральной пыли in vitro (серия NATO ASI, том G3) , Берлин (Запад), Springer, стр. 305–311.

  • Макконнелл, Э.Е., Вагнер, Дж. К., Скидмор, Дж. У. И Мур, Дж. (1984) Сравнительное исследование фиброгенных и канцерогенных эффектов канадского асбеста хризотил B UICC и стеклянного микроволокна ( JM 100 ).В: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ / МАИР ), Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 234–252.

  • McCreight, L.R., Rauch, H.W., Sr & Sutton, W.H. (1965) Керамические и графитовые волокна и усы. Обзор технологии , Нью-Йорк, Academic Press, стр. 48–55.

  • McCrone, W.C. (1980) Атлас частиц асбеста , Анн-Арбор, Мичиган, Ann Arbor Science, стр.55, 78–80, 91.

  • 3M Center (без даты) Лист технических данных: изделия из керамического волокна Nextel (R) для высокотемпературных применений , Сент-Пол, Миннесота, Отдел керамических материалов.

  • Миддлтон А.П. Видимость тонких волокон асбеста при рутинном электронно-микроскопическом анализе. Анна. ок. Hyg. 1982; 25: 53–62. [PubMed: 7092017]
  • Mikalsen, S.-O., Rivedal, E. & Sanner, T. (1987) Сравнение способности стекловолокна и асбеста вызывать морфологическую трансформацию клеток эмбриона сирийского золотого хомячка ( Реферат No.M77). В: Протоколы IX заседания Европейской ассоциации исследований рака, 31 мая 3 июня 1987 г., Хельсинки, Финляндия , Монтебелло (Норвегия), Институт исследования рака, стр. 27.

  • Milby T.H., Wolf C.R. Раздражение дыхательных путей от вдыхания волокнистого стекла. Ж. ок. Med. 1969; 11: 409–410. [PubMed: 5795599]
  • Miller E.T. Практический метод сравнения изоляционных материалов из минеральной ваты в судебно-медицинской лаборатории. J. Assoc.выключенный. анальный. Chem. 1975. 58: 865–870.

  • Миллер К. (1980) Эффекты in vivo стеклянных волокон на характеристики мембран альвеолярных макрофагов. В: Wagner, J.C., ed., Biological Effects of Mineral Fibers ( Научные публикации МАИР № 30 ), Лион, Международное агентство по изучению рака, стр. 459–465. [PubMed: 7239667]
  • Miller, W.C. (1982) Огнеупорные волокна. В: Грейсон, М., Марк, Х.Ф., Отмер, Д.Ф., Овербергер, К. И Сиборг Г.Т., ред., Кирк-Отмер Энциклопедия химической технологии , 3-е изд., Т. 20, Нью-Йорк, John Wiley & Sons, стр. 65–77.

  • Mohr, J.G. И Роу, У. (1978) Стекловолокно , Нью-Йорк, Ван Ностранд Рейнхольд.

  • Monchaux G., Bignon J., Jaurand M.C., Lafuma J., Sebastien P., Masse R., Hirsch A., Goni J. Мезотелиомы у крыс после инокуляции выщелоченным кислотой хризотиловым асбестом и другими минеральными волокнами.Канцерогенез. 1981; 2: 229–236. [PubMed: 6268324]
  • Моншо Г., Биньон Дж., Хирш А., Себастьян П. Транслокация минеральных волокон через дыхательную систему после инъекции в плевральную полость крыс. Анна. ок. Hyg. 1982; 26: 309–318. [PubMed: 6295242]
  • Morgan, A. (1979) Размеры волокон: их значение в осаждении и удалении вдыхаемой волокнистой пыли. В: Lemen, R. & Dement, J.M., eds, Dusts and Disease , Park Forest South, IL, Pathotox, стр.87–96.

  • Морган А., Холмс А. Концентрация и характеристики волокон амфибола в легких рабочих, подвергшихся воздействию крокидолита на британских фабриках по производству противогазов и в других местах во время Второй мировой войны. Br. J. ind. Med. 1982; 39: 62–69. [Бесплатная статья PMC: PMC1008929] [PubMed: 7066222]
  • Morgan, A. & Holmes, A. (1984a) Отложение MMMF в дыхательных путях крысы, их последующий клиренс, растворимость in vivo и белковое покрытие. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 1–17.

  • Морган А., Холмс А. Растворимость волокон минеральной ваты in vivo и образование псевдоасбестовых тел. Анна. ок. Hyg. 1984b; 28: 307–314. [PubMed: 6508081]
  • Морган А., Холмс А. Загадочное тело из асбеста: его образование и значение при заболеваниях, связанных с асбестом. Environ. Res. 1985. 38: 283–292.[PubMed: 4065077]
  • Морган А., Холмс А. Растворимость асбеста и искусственных минеральных волокон in vitro, и in vivo: ее значение при заболеваниях легких. Environ. Res. 1986; 39: 475–484. [PubMed: 3007107]
  • Morgan A., Evans J.C., Evans R.J., Hounam R.F., Holmes A., Doyle S.G. Исследования отложения вдыхаемого волокнистого материала в дыхательных путях крысы и его последующего удаления с использованием методов радиоактивного следа. II. Нанесение стандартных эталонных образцов асбеста UICC.Environ. Res. 1975. 10: 196–207. [PubMed: 1193032]
  • Морган, А., Эванс, Дж. К. и Холмс, А. (1977) Отложение и клиренс вдыхаемых волокнистых минералов у крыс. Исследования с использованием радиоактивных индикаторов. В: Walton, W.H., ed., Inhaled Particles IV , Part 1, Oxford, Pergamon Press, стр. 259–274. [PubMed: 1236162]
  • Морган А., Блэк А., Эванс Н., Холмс А., Притчард Дж. Н. Отложение стеклянных волокон в дыхательных путях крысы. Анна.ок. Hyg. 1980; 23: 353–366. [PubMed: 7258930]
  • Морган А., Холмс А., Дэвисон В. Удаление заданных стеклянных волокон из легких крысы и их растворимость in vivo . Анна. ок. Hyg. 1982; 25: 317–331. [PubMed: 7181257]
  • Морган Р.В., Каплан С.Д., Братсберг Дж. А. Исследование смертности рабочих производства стекловолокна. Arch. Окружающая среда. Здоровье. 1981; 36: 179–183. [PubMed: 7271323]
  • Морган Р.В., Каплан С.Д., Братсберг Дж. А. Ответить на письмо в редакцию. Arch.Окружающая среда. Здоровье. 1982; 37: 123–124.

  • Morgan, R.W., Kaplan, S.D. И Братсберг, Дж. (1984) Смертность рабочих на производстве стекловолокна. In: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ / МАИР ), Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 340–346.

  • Мориссе Ю., Пан А., Жегье З. Влияние стирола и стекловолокна на небольшие дыхательные пути мышей. J. Toxicol. Окружающая среда. Здоровье. 1979; 5: 943–956.[PubMed: 513157]
  • Morton W.E. Письмо редактору. Arch. Окружающая среда. Здоровье. 1982; 37: 122–123.

  • Moulin J.J., Mur J.M., Wild P., Perreaux J.P., Pham Q.T. Рак полости рта и гортани у рабочих на производстве искусственного минерального волокна. Сканд. J. Work Environ. Здоровье. 1986; 12: 27–31. [PubMed: 3961439]
  • Мюле Х., Потт Ф., Беллманн Б., Такенака С., Зием У. Эксперименты по вдыханию и инъекциям на крысах для проверки канцерогенности MMMF. Анна. ок. Hyg.1987. 31: 755–764. [PubMed: 2835926]
  • Müller C, Werner U., Wagner C.-P. 1980 Влияние стекловолокна на верхние дыхательные пути (нем.) Dtsch. Gesundh. Wes., 351777–1780.

  • Мунго А. Патология работы при переработке слоистых смесей, армированных стекловолокном (итал.). Folia med. 1960; 43: 962–970.

  • Накатани Ю. Биологические эффекты минеральных волокон на лимфоциты in vitro (Jpn.). Jpn. J. ind. Здоровье. 1983; 25: 375–386.[PubMed: 6366291]
  • Наср А.Н.М., Дитчек Т., Шолтенс П.А. Распространенность рентгенологических аномалий в груди у рабочих из стекловолокна. Ж. ок. Med. 1971; 13: 371–376. [PubMed: 5564764]
  • Национальный институт безопасности и гигиены труда (1977a) Критерии для рекомендованного стандарта … Воздействие стекловолокна на рабочем месте ( DHEW ( NIOSH ) Publ. No. 77-152 ; NTIS Publ No. PB-274195 ), Цинциннати, Огайо.

  • Национальный институт безопасности и гигиены труда (1977b) Руководство по аналитическим методам , 2-е изд., Цинциннати, Огайо.

  • Национальный институт профессиональной безопасности и здоровья (1980) Отчет о технической помощи TA 80-80 , Цинциннати, Огайо.

  • Национальный институт безопасности и гигиены труда (1984) Руководство по аналитическим методам NIOSH , 3-е изд., Цинциннати, Огайо.

  • Ньюболл Х.Х., Брахим С.А. Респираторная реакция на воздействие домашнего стекловолокна. Environ. Res. 1976; 12: 201–207. [PubMed: 986939]
  • Олсен Дж.Х., Йенсен О. М. Заболеваемость раком среди сотрудников одного завода по производству минеральной ваты в Дании. Сканд. J. Work Environ. Здоровье. 1984; 10: 17–24. [PubMed: 6547541]
  • Olsen J.H., Jensen O.M., Kampstrup O. Влияние курения и места жительства на риск рака легких у рабочих одного завода по производству минеральной ваты в Дании. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 48–52. [PubMed: 3798053]
  • Oshimura M., Hesterberg T.W., Tsutsui T., Barrett C.J. Корреляция цитогенетических эффектов, индуцированных асбестом, с клеточной трансформацией клеток эмбриона сирийского хомячка в культуре.Cancer Res. 1984; 44: 5017–5022. [PubMed: 6091868]
  • Оттери, Дж., Черри, Дж. У., Доджсон, Дж. И Харрисон, Дж. Э. (1984) Сводный отчет об условиях окружающей среды на 13 европейских заводах MMMF. In: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ / МАИР ), Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 83–117.

  • Owens-Corning Fiberglas Corp. (1987) Отчет о стекле, минералах и керамических волокнах , Толедо, Огайо.

  • Парратт, Нью-Джерси (1972) Технология материалов, армированных волокном , Лондон, Ван Ностранд Рейнхольд, стр. 68–99.

  • Пеллерат Дж. Дерматоз из стекловаты (фр.). Анна. Дерматол. Сифил. 1947; 8: 25–31. [PubMed: 20247727]
  • Пеллерат Дж., Кондерт Дж. Дерматоз из стекловаты (фр.). Arch. Mal. проф. 1946; 7: 23–27. [PubMed: 20988529]
  • Pickrell J. A., Hill J.O., Carpenter R.L., Hahn F.F., Rebar A.H. Реакция in vitro и in vivo после воздействия искусственных минеральных и асбестовых изоляционных волокон.Являюсь. инд. Hyg. Доц. J. 1983; 44: 557–561. [PubMed: 6312789]
  • Pigott G.H., Ishmael J. Стратегия разработки и оценки «безопасного» неорганического волокна. Анна. ок. Hyg. 1982; 26: 371–380. [PubMed: 7181277]
  • Poeschel E., Konig R., Heide-Weise H. Сравнение исследованного распределения диаметров искусственных минеральных волокон в старых и современных изоляционных материалах из идентичной области применения (Германия). Штауб Рейнхальт. Люфт. 1982; 42: 282–287.

  • Поссик П.А., Геллин Г.А., Кей М.М. Стекловолоконный дерматит. Являюсь. инд. Hyg. Доц. J. 1970; 31: 12–15. [PubMed: 4245197]
  • Потт Ф., Фридрихс К.-Х., Хут Ф. Результаты экспериментов на животных по канцерогенному действию волокнистой пыли и их интерпретация в отношении канцерогенеза у людей (нем.). Zbl. Бакт. Hyg., I. Abt. Ориг. Б. 1976; 162: 467–505. [PubMed: 185852]
  • Pott, F., Ziem, U. & Mohr, U. (1984a) Карциномы легких и мезотелиомы после интратрахеальной инстилляции стекловолокна и асбеста. В: Труды VI Международной конференции по пневмокониозу, Бохум, Федеративная Республика Германия, 20–23 сентября 1983 г. , Vol. 2, Женева, Международное бюро труда, стр. 746–756.

  • Pott, F., Schlipköter, H.W., Ziem, U., Spurny, K. & Huth, F. (1984b) Новые результаты экспериментов по имплантации минеральных волокон. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр.286–302.

  • Потт Ф., Зием У., Райффер Ф.-Дж., Хут Ф., Эрнст Х., Мор У. Исследования канцерогенности волокон, соединений металлов и некоторых других видов пыли у крыс. Exp. Патол. 1987. 32: 129–152. [PubMed: 3436395]
  • PPG Industries (1984) PPG Fiber Glass Yarn Products / Handbook , Pittsburgh, PA.

  • Pundsack, F.L. (1976) Стекловолокно производство, использование и физические свойства. В: LeVee, W.N. & Schulte, P.A., eds, Воздействие стекловолокна на рабочем месте ( DHEW ( NIOSH ) Publ. No. 76–151; NTIS Publ. No. PB-258869 ), Цинциннати, Огайо, Национальный институт охраны труда и здоровье, стр. 11–18.

  • Raabe, O.G., Yeh, H.C, Newton, G.J., Phalen, R.F. И Веласкес, Д. (1977) Осаждение вдыхаемых монодисперсных аэрозолей у мелких грызунов. В: Walton, W.H., ed., Inhaled Particles IV , Part 1, Oxford, Pergamon Press, стр.3–21.

  • Ребенфельд, Л. (1983) Текстиль. В: Грейсон, М., Марк, Х.Ф., Отмер, Д.Ф., Овербергер, К.Г. И Сиборг Г.Т., ред., Кирк-Отмер Энциклопедия химической технологии , 3-е изд., Т. 22, Нью-Йорк, John Wiley & Sons, стр. 762–768.

  • van Rhijn, A. A. (1984) Влияние высокотемпературной керамики на промышленный рост в сообществе. В: Krockel, H., Merz, M. & van der Biest, O., eds, Ceramics in Advanced Energy Technologies , Dordrecht, D.Рейдель, стр. 4–9.

  • Ричардс Р.Дж., Моррис Т.Г. Производство коллагена и мукополисахаридов в растущих фибробластах легких, подвергшихся воздействию хризотилового асбеста. Life Sci. 1973; 12: 441–451.

  • Риндель А., Бах Э., Бреум Н.О., Хьюгод К., Шнайдер Т. Корреляция воздействия на здоровье с качеством воздуха в помещении в детских садах. Int. Arch. ок. Окружающая среда. Здоровье. 1987. 59: 363–373. [PubMed: 3610336]
  • Ririe, D.G., Hesterberg, T.W., Barrett, J.C. & Nettesheim, P. (1985) Токсичность асбеста и стекловолокна для эпителиальных клеток трахеи крысы в ​​культуре. В: Beck, E.G. И Биньон, Дж., Ред., Эффекты минеральной пыли in vitro (серия НАТО ASI, том G3) , Берлин (Запад), Springer, стр. 177–184.

  • Робинсон К.Ф., Демент Дж. М., Несс Г. О., Ваксвейлер Р.Дж. Смертность рабочих производства горной и шлаковой минеральной ваты: эпидемиологическое и экологическое исследование. Br. J. ind. Med. 1982; 39: 45–53. [Бесплатная статья PMC: PMC1008926] [PubMed: 6279138]
  • Roche L. Опасность для легких при производстве стекловолокна (фр.). Arch.Mal. проф. 1947; 7: 27–28. [PubMed: 20988530]
  • Руд А.П., Стритер Р.Р. Распределение переносимых по воздуху сверхтонких искусственных минеральных волокон по размерам, определенное с помощью просвечивающей электронной микроскопии. Являюсь. инд. Hyg. Доц. J. 1985; 46: 257–261. [PubMed: 4003277]
  • Rowhani F., Hammad Y.Y. Долевое отложение волокон у крысы. Являюсь. инд. Hyg. Доц. J. 1984; 45: 436–439. [PubMed: 6235733]
  • Сараччи Р. Искусственные минеральные волокна и здоровье. Ответы на вопросы и без ответов. Сканд. J. Work Environ.Здоровье. 1985; 11: 215–222. [PubMed: 4035324]
  • Сараччи Р. Десять лет эпидемиологических исследований искусственных минеральных волокон и здоровья. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 5–11. [PubMed: 3798054]
  • Сарачи, Р., Симонато, Л., Ачесон, Э. Д., Андерсен, А., Бертацци, П. А., Клод, Дж., Чарне, Н., Эстев, Дж., Френцель-Бейм, Р. Р., Гарднер, М. Дж., Йенсен, О. М., Маазинг, Р., Олсен, Дж. Х., Теппо, Л. Х., Вестерхолм, П. и Зоккетти, К. (1984a) Исследование IARC смертности и заболеваемости раком рабочих, занятых на производстве MMMF. In: Биологические эффекты искусственных минеральных волокон ( Труды конференции ВОЗ / МАИР ), Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 279–310.

  • Сараччи Р., Симонато Л., Ачесон Э.Д., Андерсен А., Бертацци П.А., Клод Дж., Чарне Н., Эстев Дж., Френцель-Бейм Р. Р., Гарднер М. Дж., Дженсен О. М., Маазинг Р., Олсен Дж. Х. , Teppo LHI, Westerholm P., Zocchetti C. Смертность и заболеваемость раком рабочих в промышленности, производящей искусственное стекловолокно: международное исследование на 13 европейских заводах.Br. J. ind. Med. 1984b; 41: 425–436. [Бесплатная статья PMC: PMC1009365] [PubMed: 6498106]
  • Schepers G.W.H. Биологическое действие стекловаты. Arch. инд. Здоровье. 1955; 12: 280–287. [PubMed: 13248254]
  • Schepers G.W.H. Патогенность стеклопластиков. Экспериментальные исследования инъекционными или внешними методами. Arch. Окружающая среда. Здоровье. 1961; 2: 20–34. [PubMed: 13747492]
  • Schepers G.W.H., Delahant A.B. Экспериментальное исследование воздействия стекловаты на легкие животных.Arch. инд. Здоровье. 1955; 12: 276–279. [PubMed: 13248253]
  • Schepers G.W.H., Durkan T.M., Delahant A.B., Redlin A.J., Schmidt J.G., Creedon F.T., Jacobson J.W., Bailey D.A. Биологическое действие стеклопластиковой пыли. Экспериментальное ингаляционное исследование пыли, образующейся при производстве деталей кузова автомобиля из коммерческого продукта с наполнителем из карбоната кальция. Arch. инд. Здоровье. 1958; 18: 34–57.

  • Schneider, C.J., Jr & Pifer, A.J. (1974) Практика работы и технический контроль для контроля профессионального воздействия на стекловолокно.Заключительный отчет , Буффало, Нью-Йорк, Calspan Corporation.

  • Шнайдер Т. Воздействие искусственных минеральных волокон в пользовательских отраслях в Скандинавии. Анна. ок. Hyg. 1979а; 22: 153–162. [PubMed: 533082]
  • Шнайдер Т. Влияние правил подсчета на количество и распределение волокон по размерам. Анна. ок. Hyg. 1979b; 21: 341–350. [PubMed: 757842]
  • Schneider, T. (1984) Обзор опросов в отраслях, использующих MMMF. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Всемирная организация здравоохранения Копенгагена, стр.178–190.

  • Шнайдер Т. Искусственные минеральные волокна и другие волокна в воздухе и осажденной пыли. Environ. внутр. 1986; 12: 61–65.

  • Schneider T., Hoist E. Распределение размеров искусственного минерального волокна с использованием методов подсчета без смещения и смещения длины волокна и двумерного логнормального распределения. J. Aerosol Sci. 1983; 14: 139–146.

  • Schneider, T. & Smith, E.D. (1984) Характеристики пылевых облаков, образовавшихся из старых продуктов MMMF.Часть II: Экспериментальный подход. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Копенгаген, Всемирная организация здравоохранения, стр. 31–43.

  • Шнайдер Т., Стокгольм Дж. Накопление волокон в глазах рабочих, работающих с изделиями из искусственного минерального волокна. Сканд. J. Work Environ. Здоровье. 1981; 7: 271–276. [PubMed: 7347912]
  • Шнайдер Т., Хист Э., Скотт Дж. Распределение размеров переносимых по воздуху волокон, полученных из искусственных минеральных волокон.Анна. ок. Hyg. 1983; 27: 157–171. [PubMed: 6614727]
  • Шнайдер Т., Скотт Дж., Ниссен П. Размер фракций искусственных минеральных волокон и их взаимосвязь. Сканд. J. Work Environ. Здоровье. 1985. 11: 117–122. [PubMed: 4001900]
  • Scholze J., Conradt R. Исследование химической стойкости кремнистых волокон in vitro. Анна. ок. Hyg. 1987. 31: 683–692.

  • Шварц Л., Ботвиник И. Опасности для кожи при производстве стекловаты и ниток. Ind. Med. 1943; 12: 142–144.

  • Сетхи С., Бек Э.Г., Манойлович Н. Индукция поликариоцитов различными волокнистыми порошками и их ингибирование лекарственными средствами у крыс. Анна. ок. Hyg. 1975. 18: 173–177. [PubMed: 11
  • ]
  • Шеннон Х.С., Джеймисон Э., Джулиан Дж. А., Мюр Д.К.Ф., Уолш К. Опыт смертности рабочих из стекловолокна Онтарио — расширенное наблюдение. Анна. ок. Hyg. 1987. 31: 657–662. [PubMed: 3450232]
  • Симонато Л., Флетчер А.С., Черри Дж., Андерсен А., Бертацци П.А., Чарней Н., Claude J., Dodgson J., Esteve J., Frentzel-Beyme R., Gardner MJ, Jensen OM, Olsen JH, Saracci R., Teppo L., Winkelmann R., Westerholm P., Winter PD, Zocchetti C. 1986a Европейское историческое когортное исследование искусственного минерального волокна: расширение последующего исследования Scand. J. Work Environ. Здоровье 12 (1): 34–47. (исправление в Scand. J. Work Environ. Health, 13 , 192) [PubMed: 3798052]
  • Simonato L., Fletcher AC, Cherrie J., Andersen A., Bertazzi PA, Charnay N., Claude J. , Доджсон Дж., Esteve J., Frentzel-Beyme R., Gardner MJ, Jensen O., Olsen J., Saracci R., Teppo L., Westerholm P., Winkelmann R., Winter PD, Zocchetti C. когорта рабочих по производству искусственного минерального волокна в семи европейских странах. Cancer Lett. 1986b; 30: 189–200. [PubMed: 3955541]
  • Simonato L., Fletcher AC, Cherrie J., Andersen A., Bertazzi P., Charnay N., Claude J., Dodgson J., Esteve J., Frentzel-Beyme R., Gardner MJ , Дженсен О., Олсен Дж., Теппо Л., Winkelmann R., Westerholm P., Winter P.D., Zocchetti C., Saracci R. Историческое когортное исследование рабочих MMMF в семи европейских странах, проведенное Международным агентством по изучению рака. Анна. ок. Hyg. 1987. 31: 603–623. [PubMed: 3450230]
  • Sincock, A. M. (1977) Предварительные исследования клеточного воздействия асбеста и мелкой стеклянной пыли in vitro. В: Hiatt, H.H., Watson, J.D. & Winsten, J.A., eds, Origins of Human Cancer (Cold Spring Harbor Conferences on Cell Proliferation Vol.4) , Книга B, Колд-Спринг-Харбор, Нью-Йорк, CSH Press, стр. 941–954.

  • Синкок А., Сибрайт М. Индукция хромосомных изменений в клетках китайского хомячка путем воздействия волокон асбеста. Природа. 1975. 257: 56–58. [PubMed: 1161005]
  • Sincock A.M., Delhanty J.D.A., Casey G. Сравнение цитогенетического ответа на асбест и стекловолокно в линиях клеток китайского хомячка и человека. Демонстрация ингибирования роста первичных фибробластов человека. Мутат. Res. 1982; 101: 257–268.[PubMed: 7087986]
  • Сикст Р., Бейк Б., Абрахамссон Г., Тирингер Г. Функция легких у рабочих, работающих с листовым металлом, подвергшихся воздействию стекловолокна. Сканд. J. Work Environ. Здоровье. 1983; 9: 9–14. [PubMed: 6857190]
  • Skuric, Z. & Stahuljak-Beritic, D. (1984) Воздействие на рабочем месте и изменения дыхательной функции у рабочих, занятых на минеральной вате. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр.436–437.

  • Смит, Д.М., Ортис, Л.В. и Арчулета, Р.Ф. (1984) Длительное воздействие на сирийских хомяков и крыс Осборна-Менделя аэрозольным волокном стекловолокна диаметром 0,45 мкм со средним диаметром мкм. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 253–272.

  • Смит Д.М., Ортиз Л.В., Арчулета Р.Ф., Джонсон Н.Ф. Долгосрочные последствия для здоровья хомяков и крыс, хронически подвергавшихся воздействию искусственных стекловидных волокон.Анна. ок. Hyg. 1987. 31: 731–754. [PubMed: 2835925]
  • Sohio Carborundum Co. (1986) Fiberfrax Bulk Fiber Technical Information: Product Specifications (Form Nos C733-A, C733-D, C733-F, C733-I) , Niagara Falls, NY, Sohio Engineered Materials Co., подразделение волокон.

  • Стэнтон М.Ф., Лейард М., Тегерис А., Миллер Э., Мэй М., Кент Э. Канцерогенность стекловолокна: реакция плевры у крысы в ​​зависимости от размера волокна. J. Natl Cancer Inst. 1977; 58: 587–603.[PubMed: 839555]
  • Стэнтон М.Ф., Лейард М., Тегерис А., Миллер Э., Мэй М., Морган Э., Смит А. Связь размера частиц с канцерогенностью в амфиболовых асбестозах и других волокнистых минералах. J. Natl Cancer Inst. 1981; 67: 965–975. [PubMed: 6946253]
  • Stettler L.E., Donaldson H.M., Grant G.C. Химический состав угля и других минеральных шлаков. Являюсь. инд. Hyg. Доц. J. 1982; 43: 235–238.

  • Strübel G., Fraji B., Rodelsperger K., Woitowitz H.J. Письмо в редакцию.Являюсь. J. ind. Med. 1986; 10: 101–102. [PubMed: 3740064]
  • Сульцбергер М.Б., Баер Р.Л. Влияние «стекловолокна» на кожу животных и человека. Экспериментальное исследование. Ind. Med. 1942; 11: 482–484.

  • Сайкс С.Е., Морган А., Мурс С.Р., Холмс А., Дэвисон В. Дозозависимые эффекты в подострой реакции легких крыс на кварц. I. Клеточный ответ и активность лактатдегидрогеназы в дыхательных путях. Exp. Lung Res. 1983а; 5: 229–243. [PubMed: 6319111]
  • Сайкс С.Э., Морган А., Мурс С.Р., Дэвисон В., Бек Дж., Холмс А. Преимущества и ограничения тест-системы in vivo для исследования цитотоксичности и фиброгенности волокнистой пыли. Environ. Перспектива здоровья. 1983b; 51: 267–273. [Бесплатная статья PMC: PMC1569310] [PubMed: 6315369]
  • Теппо Л., Кожонен Э. Смертность и риск рака среди рабочих, подвергающихся воздействию искусственных минеральных волокон в Финляндии. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 61–64. [PubMed: 3798056]
  • Тислер Х. Выбросы от производства искусственных минеральных волокон (нем.). VDI (Verein Deutscher Ingenieure) -Berichte. 1983; 475: 383–394.

  • Tilkes, F. & Beck, E.G. (1980) Сравнение цитотоксичности, зависящей от длины, вдыхаемого асбеста и искусственных минеральных волокон. В: Wagner, J.C., ed., Biological Effects of Mineral Fibers (IARC Scientific Publications No. 30) , Lyon, International Agency for Research on Cancer, pp. 475–483. [PubMed: 7239669]
  • Тимбрелл В. Вдыхание волокнистой пыли.Анна. Акад. ScL. 1965; 132: 255–273. [PubMed: 5219552]
  • Тимбрелл В. Отложение и удержание волокон в легких человека. Анна. ок. Hyg. 1982; 26: 347–369. [PubMed: 7181276]
  • Tomasini M., Rivolta G., Chiappino G. Склерогенный эффект, связанный с профессиональным воздействием стекловолокна на выбранную группу рабочих (итал.). Med. Лав. 1986; 77: 256–262. [PubMed: 3747926]
  • Työsuojeluhallitus (Национальный совет Финляндии по безопасности и гигиене труда) (1981) Загрязняющие вещества в воздухе на рабочих местах (Фин.) ( Safety Bull. 3) , Тампере, стр. 20.

  • Инспекция заводов Великобритании (1987) Исследование воздействия сверхтонких искусственных минеральных волокон в Великобритании , Лондон, Исполнительный консультативный комитет по вопросам здоровья и безопасности по токсическим веществам, лабораториям медицины труда и гигиены.

  • Министерство торговли США (1985) Перепись производств 1982 года: абразивные материалы, асбест и прочие неметаллические минеральные продукты (публикация № MC82-1-32E) , Вашингтон, округ Колумбия, Бюро переписи населения.

  • Агентство по охране окружающей среды США (1986) Профиль отрасли производства прочного волокна и перспективы рынка , Вашингтон, округ Колумбия, Управление пестицидов и токсичных веществ.

  • Управление по охране труда и здоровья США (1986) Трудовые отношения. Код США. Regul., Раздел 29 , часть 1910.1000, p. 659.

  • Валентин, Х., Бост, Х.-П. И Эссинг, Х.-Г. (1977) Пыль из стекловолокна опасна для здоровья (нем.). Berufsgenossenschaft, февраль , 60–64.

  • Винсент Дж. Х. О практическом значении электростатического осаждения изометрических и волокнистых аэрозолей в легких. J. Aerosol Sci. 1985; 16: 511–519.

  • Форвальд А.Дж., Дуркан Т.М., Пратт П.С. Экспериментальные исследования асбестоза. Arch. инд. Hyg. ок. Med. 1951; 3: 1–43. [PubMed: 14789264]
  • Wagner, J.C., Berry, G. & Skidmore, J.W. (1976) Исследования канцерогенных эффектов стекловолокна различного диаметра после внутриплевральной инокуляции на экспериментальных животных. In: LeVee, WN & Schulte, PA, eds, Профессиональное воздействие стекловолокна (DHEW Publ. No. (NIOSH) 76–151; NTIS Publ. No. PB-258869) , Цинциннати, Огайо, Национальный институт Безопасность и гигиена труда, стр. 193–204.

  • Вагнер, Дж. К., Берри, Дж. Б., Хилл, Р. Дж., Мандей, Д. Э. И Скидмор, Дж. (1984) Эксперименты на животных с MMM (V) F воздействия ингаляции и внутриплевральной инокуляции на крысах. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2 , Копенгаген, Всемирная организация здравоохранения, стр. 209–233.

  • Walzer, P. (1984) Керамика для будущих автомобильных электростанций. В: Крокель, Х., Мерц, М. и ван дер Бист, О., редакторы, Керамика в передовых энергетических технологиях , Дордрехт, Д. Рейдель, стр. 10–22.

  • Ватт, А.А., изд. (1980) Коммерческие возможности для усовершенствованных композитов (Специальная техническая публикация ASTM 704) , Филадельфия, Пенсильвания, Американское общество испытаний и материалов, стр.111.

  • Weill H., Hughes J.M., Hammad Y.Y., Glindmeyer H.W. III, Шэрон Г., Джонс Р. Здоровье органов дыхания у рабочих, подвергшихся воздействию искусственных волокон стекловидного тела. Являюсь. Преподобный респир. Дис. 1983; 128: 104–112. [PubMed: 6307098]
  • Weill, H., Hughes, J.M., Hammad, Y.Y., Glindmeyer, H.W., Sharon, G. & Jones, R.N. (1984) Респираторное здоровье рабочих, подвергшихся воздействию MMMF. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol.1, Копенгаген, Всемирная организация здравоохранения, стр. 387–412.

  • Венцель М., Венцель Дж., Ирмшер Г. Биологическое действие стекловолокна на животных (нем.). Int. Arch. Gewerbepathol. Gewerbehyg. 1969; 25: 140–164.

  • Вестерхольм П., Боландер А.-М. Смертность и заболеваемость раком в производстве искусственных минеральных волокон в Швеции. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 78–84. [PubMed: 3798058]
  • Уильямс Х.Л. Четверть века исследований промышленной гигиены в промышленности стекловолокна.Являюсь. инд. Hyg. Доц. J. 1970; 31: 362–367. [PubMed: 4
  • 5]
  • Всемирная организация здравоохранения (1983) Биологические эффекты искусственных минеральных волокон. Отчет о встрече ВОЗ / МАИР (EURO Reports and Studies 81) , Копенгаген.

  • Всемирная организация здравоохранения (1985) Справочные методы измерения содержания искусственных минеральных волокон в воздухе (MMMF) (Серия 4 по гигиене окружающей среды) , Копенгаген.

  • Райт А., Коуи Х., Гормли Л.П., Дэвис Дж. М.G. Цитотоксичность асбестовых волокон in vitro. I. P388D 1 ячеек. Являюсь. J. ind. Med. 1986; 9: 371–384. [PubMed: 3706311]
  • Райт Г.У. Волокнистые частицы стекла в воздухе. Рентгенограммы грудной клетки лиц при длительном облучении. Arch. Окружающая среда. Здоровье. 1968; 16: 175–181. [PubMed: 5646441]
  • Райт, Г.В. & Kuschner, M. (1977) Влияние различной длины стеклянных и асбестовых волокон на реакцию тканей у морских свинок. В: Walton, W.H., ed., Inhaled Particles IV , Part 1, Oxford, Pergamon Press, стр.455–472. [PubMed: 1236235]
  • Zircar Products (1978a) Технические характеристики: Циркониевые волокна в массе типа Z YBF2 (бюллетень № ZPI-210) , Флорида, Нью-Йорк.

  • Zircar Products (1978b) Технический паспорт: объемное волокно из оксида алюминия типа ALBF1 (бюллетень № ZPI-305) , Флорида, Нью-Йорк.

  • Zircar Products (без даты) Технический паспорт продукта: Zircar Fibrous Ceramics , Флорида, Нью-Йорк.

  • Zirps, N., Chang, J., Czertak, D., Edelstein, M., Lanza, R., Nguyen, V. & Wiener, R. (1986) Оценка воздействия долговечного волокна , Вашингтон, округ Колумбия, Агентство по охране окружающей среды США, стр. 327–328.

  • Произошла ошибка при настройке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    материалов | Бесплатный полнотекстовый | Использование минеральной ваты в качестве прекурсора щелочно-активированного материала

    1. Введение

    Щелочно-активированные материалы (ААМ), также называемые геополимерами или неорганическими полимерами, в последнее время привлекают много внимания, поскольку они могут частично заменить обычный портландцемент ( OPC) как строительный материал.Исследования показали, что по своим механическим свойствам ААС такие же или даже лучше, чем у OPC-бетона [1]. Кроме того, другие полезные свойства, такие как огнестойкость и их обычно небольшой вес, позволяют использовать их для таких целей, как строительство панелей или изготовление керамики [2,3]. Повышенный интерес к ААС связан с тем, что их можно производить из отходов, таких как летучая зола, хвосты шахт и шлаки. По оценкам, в 2012 году на производство OPC приходилось 8% глобальных выбросов CO 2 [4], и правительственная политика во всем мире настоятельно поощряет сокращение использования OPC.Это объясняет недавний интерес к поиску альтернативных строительных материалов и связующих. Правильная теплоизоляция необходима во всем мире, потому что это наиболее эффективный способ экономии энергии, используемой для отопления и охлаждения зданий. Минеральная вата — общий термин для обозначения минеральной ваты и стекловаты — является наиболее распространенным изоляционным материалом в мире. Их получают при высоких температурах путем плавления кварцевого песка, базальта, доломита и стекла [5]. Расплавленная смесь превращается в волокна в процессе высокоскоростного прядения.Небольшое количество органической смолы, обычно фенолформальдегидной, используется в качестве добавки для связывания волокон вместе. Когда старые здания сносятся или ремонтируются, образуется большое количество строительных и сносных отходов, включая отходы от минеральной ваты. В 2010 году в мире образовалось 2,3 миллиона тонн отходов минеральной ваты, и ожидается, что к 2020 году это количество вырастет до 2,5 миллиона тонн [6]. К сожалению, минеральная вата часто не подлежит вторичной переработке [6]. Проблемы при переработке возникают из-за волокнистой природы и низкой плотности материала.Несмотря на многочисленные попытки [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], использование отходов минеральной ваты в пост-потребительском производстве остается очень низким. И стекловата, и минеральная вата имеют высокие показатели. содержания Si и рентгеноаморфной минералогии и, таким образом, имеют потенциал в качестве прекурсоров ААМ. Однако на сегодняшний день было проведено только одно предварительное исследование использования минеральной ваты в качестве сырья для щелочной активации [18]. Щелочная активация стекловаты ранее не изучалась. Минеральные ваты также имеют очень стабильный химический и физический состав, что делает их еще более привлекательными в качестве сырья для активации щелочью.

    В этом исследовании проводился эксперимент с использованием минеральной ваты и стекловаты в качестве прекурсоров щелочной активации. Обе минеральные ваты были измельчены и активированы алюминатом натрия. Было проанализировано влияние термического отверждения и удаления органических смол на физические и минералогические свойства минеральной ваты.

    2. Материалы и методы

    Два типа первичной минеральной ваты были приобретены в хозяйственном магазине для этого исследования: минеральная вата (RW, Paroc, Paroc eXtra) и стекловата (GW, Saint Gobain, Isover KL37-100).Химический состав обеих минеральных ват определяли с помощью рентгеновской флуоресценции 4 кВ (XRF, PANalytical Omnian Axiosmax). Для рентгенофлуоресцентного анализа необходимо было приготовить сплавленные в расплаве таблетки из обоих образцов минеральной ваты. Сплавленные в расплаве таблетки получали из 1,5 г образца, расплавленного при 1150 ° C с 7,5 г рентгеновского флюса типа 66:34 (66% Li 2 B 4 O 7 и 34% LiBO 2 ). Концентрацию микроэлементов определяли влажным сбраживанием с помощью микроволн с использованием смеси 3: 1 HNO 3 и HCl для 0.5 г минеральной ваты и измерено с помощью индуктивно связанного плазменно-оптического эмиссионного спектрометра (ICP-OES, Thermo Electron IRIS Intrepid II XDL Duo, Thermo Scientific). Содержание влаги и потери при возгорании при 350 и 525 ° C определяли с использованием оборудования для термогравиметрического анализа (PrepAsh, Precisa).

    РАО состояли в основном из кремния, алюминия, кальция, магния и железа. ГВ содержала 62,4 мас.% SiO 2 , но только 1,8 мас.% Al 2 O 3 (таблица 1).Однако содержание Na 2 O в ГВ было высоким (16,8 мас.%) В отличие от РАО (1,4 мас.%). В таблице 2 показаны химические составы RW и GW, определенные методом ICP-OES. Состав соответствует результатам XRF (таблица 1). Однако содержание бора в GW было значительным, и возможно, что это было результатом использования стеклянных отходов в качестве сырья в процессе производства GW.

    Образцы GW и RW измельчали ​​с помощью дисковой вибрационной мельницы RS200 (Retsch).Измельчение осуществляли путем измельчения минеральной ваты кусками 10 г в течение 30 с при скорости измельчения 1500 мин -1 . Эту процедуру повторяли несколько раз, чтобы получить достаточное количество измельченной минеральной ваты для дальнейших экспериментов и анализов.

    Гранулометрический состав измельченной минеральной ваты измеряли с помощью LS 13320 (Beckman Coulter), используя универсальный жидкий модуль и применяя модель Фраунгофера в расчетах. Перед измерением размера частиц измельченную минеральную вату разбавляли дистиллированной водой с использованием пирофосфата натрия в качестве диспергирующего агента.Разбавленный образец выдерживали в ультразвуковой ванне в течение трех минут для обеспечения полного диспергирования перед проведением измерений.

    Внешний вид RW и GW до и после измельчения показан на рисунке 1. На рисунке 2 представлено дифференциальное распределение частиц по размерам RW и GW после измельчения. Измельчение было очень эффективным средством измельчения, так как средний размер обоих измельченных волокон составлял примерно 7 микрон, а 90% частиц по объему (d 90 ) были меньше 34 микрон в обоих случаях (Рисунок 2).Несмотря на то, что измельченная шерсть имела аналогичный средний размер частиц, наблюдались незначительные различия между дифференциальным распределением частиц по размерам (рис. 2).

    Раствор алюмината натрия был приготовлен путем смешивания алюмината натрия (Sigma-Aldrich, 13404), гидроксида натрия (VWR Merck, 1.06498.1000) и деионизированной воды с использованием весовых соотношений 14,3 мас.%, 22,2 мас.% И 63,5 мас.%. соответственно.

    Образцы, активированные щелочью, были приготовлены путем добавления измельченных RW или GW к раствору алюмината натрия и перемешивания его в смесителе (ARE-250, Thinky Corporation) при 2000 об / мин в течение 60 с.Минеральную вату добавляли порциями по 15-40 г к 63 г раствора алюмината натрия и перемешивали после каждого добавления до достижения желаемой консистенции. Всего в каждой пробе было 140 г RW и 150 г GW. Смесь вибрировали для удаления пузырьков воздуха и затем разливали в формы, которые затем запечатывали в пластиковый мешок до испытания (28 дней). Было приготовлено по три партии из каждого типа минеральной ваты.

    В таблице 3 показаны молярные отношения образцов, активированных щелочью.Молярные отношения были установлены как можно ближе к 1: 1: 4: 11 (Na 2 O: Al 2 O 3 : SiO 2 : H 2 O) [19]. Для получения этих соотношений обе минеральные ваты должны быть активированы щелочью раствором алюмината натрия из-за отсутствия в них алюминия. Однако алюминат натрия нестабилен в жидкой форме при определенных соотношениях натрия и алюминия [20], поэтому оптимальные соотношения не были достигнуты. В частности, в образцах GW небольшое количество алюминия давало, по-видимому, высокие отношения Na 2 O, SiO 2 и H 2 O.Также следует иметь в виду, что раствор алюмината натрия может содержать как 4-координированные, так и 6-скоординированные частицы алюминия в зависимости от соотношения [OH] / [Al] [21], что может влиять на образование алюмосиликатных фаз. . При расчетах молярных соотношений предполагалось, что все элементы растворяются из минеральной ваты в одинаковых пропорциях. В таблице 3 показаны мольные соотношения CaO и MgO, поскольку известно, что кальций и магний могут участвовать в активации щелочью [22,23,24].

    Через 28 дней отверждения испытательная машина Z100 (Zwick Roell) и программное обеспечение TestXpert II (Zwick Roell) были использованы для определения прочности на неограниченное сжатие. Сжимающая сила была увеличена до 2,4 кН / с до разрушения, и максимальное усилие использовалось для расчета прочности на сжатие. Прочность на изгиб измеряли с помощью Instron 5544 (Instron) (максимальное усилие 2 кН).

    Рентгеновский дифрактометр Siemens 5000 (Siemens) с излучением CuKaα (40 мА и 40 кВ) и графитовый монохроматор были использованы для идентификации основных кристаллических фаз измельченных минеральных ват и подготовленных образцов.Интервал шага, время интегрирования и угловой интервал составляли 0,04 ° / шаг, 2,5 с / шаг и 10–60 ° 2θ соответственно. Для идентификации кристаллических фаз использовалась база данных Международного центра дифракционных данных (ICDD) [25].

    Автоэмиссионный сканирующий электронный микроскоп Zeiss Ultra Plus (FESEM, Zeiss) использовался для анализа исходной и измельченной минеральной ваты и поверхности излома приготовленных образцов. Образцы прикрепляли к держателю образцов на углеродной ленте и покрывали углеродом.Ускоряющее напряжение составляло 5 кВ.

    4. Обсуждение

    Часто обсуждается взаимосвязь между молярными отношениями и физическими свойствами AAM. Согласно исследованию Duxson et al. [19], молярное отношение Si / Al должно быть около двух, а Na / Al должно быть равно единице, чтобы завершить балансировку заряда отрицательно заряженных тетраэдрических центров алюминия. Количество воды должно быть как можно меньшим, поскольку вода обычно не считается частью структуры, а действует просто как среда, в которой происходят реакции, и служит для поддержания работоспособности.Однако недавние исследования [29,30,31] показали, что гели C- (N) -ASH могут иметь связанную воду в своей структуре. Несмотря на далеко не оптимальные молярные отношения для GW, GW2 обладает самой высокой прочностью на сжатие из все образцы. Теоретически Si-O-Si являются более прочными связями, чем связи Si-O-Al или Al-O-Al [32], и очень высокое отношение Si / Al в GW2 может объяснить его высокую прочность на сжатие. Однако было замечено, что бор, присутствующий в GW, увеличивает прочность AAM [33,34]. Одна возможность состоит в том, что кремний и алюминий не растворяются в тех же пропорциях, что и в минеральной вате, и, таким образом, рассчитанные молярные отношения не будут отражать реальные молярные отношения связующей системы.Это примечание подтверждается вышеупомянутым фактом, что Si-O-Si являются более прочными связями, чем связи Si-O-Al или Al-O-Al, что приведет к растворению алюминия в более высоких пропорциях, чем кремний.

    Еще одна трудность в объяснении различий в прочности на сжатие с использованием молярных соотношений возникает из анализа XRD, поскольку этот анализ показывает только кристаллические фазы, которые могут не быть основной алюмосиликатной структурой, повышающей прочность. Вместо этого новейшие фазы являются рентгеноаморфными, и, таким образом, химический состав новых нанокристаллических фаз остается неопределенным.

    Основным различием между RW и GW, помимо содержания алюминия, было высокое содержание Ca и Mg в RW. Было показано, что оба они реакционноспособны при активации щелочью [22,23,24], но в образцах RW было идентифицировано только образование новой фазы Mg. Образование магниевой фазы гидроталькитного типа показывает, что Mg из РАО реагирует с CO 2 , таким образом действуя как сорбент CO 2 при образовании этих связующих. Подобная фаза типа гидротальцита наблюдалась при щелочной активации доменного шлака (BFS) [23].В системах с высоким содержанием CaO сильно щелочной активирующий раствор может способствовать пуццолановой реакции между CaO и SiO 2 с образованием гидрата силиката кальция (CSH). Если эта фаза присутствует, она может давать широкие пики примерно при 30 ° и 50 ° 2θ. Первый отчетливо виден на рентгенограммах (рис. 6) образцов RW1, RW2 и RW3 и едва виден в образцах GW2 и GW3 (содержание CaO в GW ниже, чем в RW, но не является незначительным). . Было показано, что в системах связующих с низким содержанием Ca термическая обработка ускоряет отверждение и увеличивает начальную механическую прочность [35,36,37].Однако для систем с высоким содержанием кальция было замечено, что отверждение при нагревании отрицательно сказывается на механической прочности [38,39]. Сильная усадка при высыхании образцов с гелями с высоким содержанием кальция может быть одной из причин более низкой прочности. Это явление также объясняется быстрыми кальциевыми реакциями, которые затем ускоряются повышенной температурой, что препятствует дальнейшим реакциям (образованию вторичных фаз). Однако для систем связующих с низким содержанием Ca связывание воды с гелем НАСГ происходит медленно и / или слабо; таким образом, термическое отверждение ускоряет реакцию (но только если образцы запечатаны, поскольку это предотвращает испарение воды).Это может частично объяснить высокое увеличение прочности на сжатие образцов GW, отвержденных при нагревании, и незначительное увеличение прочности для образцов RW, подвергнутых термоотверждению. В исследованиях, в которых рассматривалась структура связующего с высоким или низким содержанием кальция, в основном использовались ) гидроксид или силикат (натрия) активатор [22,40], и существует лишь несколько исследований, в которых алюминат натрия является предпочтительным активатором [21,28,41,42]. Кроме того, исследования с высоким содержанием Ca в основном проводились с использованием BFS в качестве прекурсора, поэтому наблюдения, содержащиеся в литературе, могут не иметь прямого отношения к нашей системе связующего.Однако как BFS, так и минеральная вата производятся при высоких температурах и из аналогичных прекурсоров, поэтому было бы целесообразно рассматривать их как аналогичные типы прекурсоров AAM.

    Наличие органической смолы в минеральной вате положительно сказалось на прочности; таким образом, нет необходимости удалять его перед активацией щелочью. Причина этого заключается либо в том, что органическая смола физически укрепляет алюмосиликатную матрицу, либо в том, что она химически реагирует с другими компонентами связующего.Во время подготовки образцов было замечено, что образцы, в которых присутствовала органическая смола, имели очень сильный запах, но образцы RW3 и GW3 не имели запаха. Это свидетельствует об успешном удалении органической смолы в образцах RW3 и GW3, но также указывает на возможные реакции с Na-Alu и органической смолой в образцах RW1, RW2, GW1 и GW2. Влияние органической смолы на эти связующие системы будет изучено дополнительно.

    Высокая прочность образцов на изгиб может быть объяснена их матрицей композитного типа, как показано на Рисунке 5.Однако, поскольку волокна растворяются и химически связываются с матрицей, необходимо тщательно определять долговременные механические характеристики, потому что, если волокна минеральной ваты в конечном итоге полностью растворятся, матрица будет состоять только из алюмосиликатного геля. Растворение волокон минеральной ваты может дать лучшую или худшую механическую прочность в зависимости от того, является ли форматирующая алюмосиликатная структура прочнее или слабее, чем волокна.

    Как сделать изоляцию из овечьей шерсти?

    Как сделать утеплитель из овечьей шерсти?

    Могу ли я установить изоляцию ROCKWOOL самостоятельно? При использовании некоторых типов изоляционных материалов установка собственной изоляции определенно выполнима — и вы можете сэкономить деньги, не нанимая профессионала.Установка утеплителя из стекловолокна или минеральной ваты — простой проект, сделанный своими руками. Другие типы изоляции, такие как изоляция из распыляемой пены, требуют привлечения профессионала.

    Что лучше ROCKWOOL или стеклопластик? Утеплитель из минеральной ваты

    Минеральная вата во многих отношениях является лучшим изоляционным материалом. Он имеет более высокое значение R на дюйм по сравнению со стекловолокном, примерно на 22–37% выше. Он содержит 70% переработанного материала, что делает его более экологически чистым продуктом, чем стекловолокно, на 20-30% переработанного материала..

    Можно ли использовать овечью шерсть для изоляции? Один из самых естественных и экологически безопасных способов утеплить вашу собственность — использовать утеплитель из овечьей шерсти. Большинство из нас знакомы с шерстяным джемпером, но теперь вы можете использовать утеплитель из овечьей шерсти, чтобы сохранить тепло в доме зимой и прохладу летом!

    TrendingКак Мэнни Тайм Секс Лев в его жизни?

    Как сделать утеплитель из овечьей шерсти — вопросы по теме

    Дорогой ли утеплитель из овечьей шерсти?

    Утеплитель из овечьей шерсти имеет более высокую стоимость по сравнению с синтетическими аналогами.Овечья шерсть может показаться дорогой альтернативой, но если вы не против немного доплатить и вам нравится идея использования натурального экологического материала, который широко доступен в овечьей шерсти Ирландии, то это может быть для вас вариантом.

    Могу ли я использовать в качестве утеплителя необработанную шерсть?

    Необработанная шерсть не подходит для изоляции чердаков из-за содержащихся в ней масел и грязи, и причина того, что изоляция из овечьей шерсти является дорогостоящей, заключается в правилах, защищающих окружающую среду от жира, овечьих пятен и т. Д.Затраты на обработку высоки.

    Безопасна ли изоляция из минеральной ваты?

    Таким образом, минеральная вата — это тип теплоизоляции, изготовленной из нагретых природных минералов. Обычно это считается безопасным и эффективным.

    Каков показатель R у утеплителя из овечьей шерсти?

    Овечья шерсть — толстый, плотный материал, что делает ее отличным изолятором. Утеплитель из овечьей шерсти имеет значение от R-13 до R-19, которое равно или больше, чем у большинства его аналогов из стекловолокна, целлюлозы и минеральной ваты.

    Утеплитель из овечьей шерсти пахнет?

    Утеплитель из овечьей шерсти имеет очень низкую внутреннюю энергию и действует как буфер влаги, поглощая и высвобождая избыточную влагу (может поглощать до 30% веса в условиях 100% относительной влажности). Этот продукт может пахнуть овцой, что становится более заметным при нахождении в непосредственной близости от него.

    Что будет, если не использовать пароизоляцию?

    Если водяной пар диффундирует или просачивается в полость стены и находит прохладную поверхность, могут возникнуть проблемы с влажностью.Конечно, здесь могут возникнуть проблемы с влагой даже без внешней пароизоляции из-за того, что Билл Роуз называет правилом смачивания материала.

    Rockwool безопаснее стекловолокна?

    Хотя как стекловолокно без облицовки, так и минеральная вата без облицовки негорючие и помогают замедлить распространение огня, минеральная вата имеет гораздо более высокую температуру плавления, чем стекловолокно, и поэтому ее часто считают более огнестойким материалом.

    Нужна ли пароизоляция?

    Во многих странах с более холодным климатом Северной Америки пароизоляция является обязательной частью строительства.Вы можете обнаружить, что пароизоляция часто не требуется в более теплом климате. А при установке в неподходящем климате или на неправильной стороне строительных материалов пароизоляция может принести больше вреда, чем пользы.

    Какой утеплитель проще всего установить?

    Стекловолокно — самый дешевый и простой способ утеплить новые стены. Однако они часто устанавливаются неправильно, и даже небольшие зазоры могут снизить эффективность на 25 процентов.

    Может ли Rockwool касаться бетона?

    Еще один эффективный вариант защиты бетонных поверхностей от плесени — утеплитель из минеральной ваты.Обычно он дешевле жесткого пенопласта, но дороже стекловолокна. Такие продукты, как минеральная вата, удерживают влагу, что идеально подходит для предотвращения роста плесени или грибка.

    Можно ли разделить изоляцию Rockwool?

    Да, разницы нет. ROCKWOOL режет одинаково хорошо как по ширине, так и по длине. Независимо от того, в каком направлении вам нужно его установить, процесс резки одинаков. Обычно вам придется разрезать ROCKWOOL по длине, чтобы она могла поместиться между стойками или потолочными стропилами.

    Является ли Rockwool злокачественной опухолью?

    EPA классифицировало огнеупорные керамические волокна как вероятные канцерогены для человека.Международное агентство по изучению рака (IARC) определило, что стекловата, стекловата, минеральная вата и шлаковата не подлежат классификации по их канцерогенности для человека (группа 3).

    Вреден ли Rockwool для легких?

    Минеральная вата не только вредна для окружающей среды, но и потенциально вредна для вашего здоровья. Новые блоки могут содержать много пыли и рыхлых волокон, которые могут попасть вам в глаза, рот, кожу и легкие. Если вы используете минеральную вату, вам следует использовать маску, очки и перчатки, когда вы работаете с ней, чтобы защитить себя.

    Стоит ли Rockwool своих денег?

    Минеральная вата может стоить дороже на войлок, но имеет более высокое значение R, чем стекловолокно на дюйм; меньше рисков для здоровья при установке; более легкий монтаж; он лучше защищает от огня и звука и менее вреден для окружающей среды.

    Какие недостатки у утеплителя из овечьей шерсти?

    Самый очевидный недостаток овечьей шерсти — это ее стоимость. Этот выбор изоляционного материала намного дороже, чем большинство других альтернативных методов и продуктов.Рост затрат ожидается и очевиден, учитывая его органическое происхождение и его обычное использование в других отраслях и сферах применения.

    Привлекает ли шерстяная изоляция паразитов?

    Привлекает ли Термафлис грызунов? Термафлис не привлекает грызунов, поскольку грызуны в первую очередь мотивированы своей близостью к источнику пищи, а не близостью к материалам для гнездования. Шерсть не является признанным источником пищи для грызунов, включая крыс, мышей и белок.

    Стоит ли утеплитель из овечьей шерсти?

    К счастью, утеплитель из овечьей шерсти при правильной установке может прослужить всю жизнь.Его способность естественным образом поглощать и выделять влагу и водяной пар может быть полезной, особенно во влажном климате.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *