Определение прочности бетона: Определение прочности бетона и методы контроля

Содержание

Определение прочности бетона и методы контроля

Определение прочности бетона – это обязательное условие контроля качества железобетонных изделий при их производстве. От прочности бетона зависит безопасность и срок эксплуатации любой железобетонной конструкции. На прочность бетона влияет много факторов, начиная от качества используемых для изготовления материалов, заканчивая соблюдением технологических требований к процессу производства. Прочность бетона определяет его маркировку, под которой состав поступает в продажу. Например, марка М400 свидетельствует о том, что максимальная нагрузка, выдерживаемая материалом, составляет 400 кг/см2.

Испытание бетона на прочность подразумевает приложение к нему контрольной нагрузки, направленной на разрушение целостности его структуры. Для данных испытаний используют контрольные образцы либо производят отбор проб бетона непосредственно из обследуемой конструкции.

Методы определения прочности бетона

Проводить определение прочности бетона в России можно только с учетом нормативов, установленных стандартом ГОСТ 18105-2010.

Классификация используемых методов подразумевает деление на три подгруппы.

  • Разрушающие. Испытание бетона в этом случае проводят с использованием контрольных образцов, подвергающихся твердению в одинаковых с конструкцией условиях, либо изымаемых непосредственно из бетонного монолита после достижения им необходимых показателей твердости. Эти методы определения прочности бетона считаются наиболее точными.
  • Неразрушающие косвенные. К этой категории относят ультразвуковые исследования (по ГОСТ 17624-2012), методы упругого отскока и ударного импульса (ГОСТ 22690-2015). Важно отметить, что эти методы названы так потому что прочность оценивают косвенно, через другой параметр, измеряя, например скорость ультразвука, а по ней вычисляя прочность на основании установленных экспериментально зависимостей. Эти методы определения прочности бетона без предварительно градуировки могут дать погрешность до 30…50%, их нельзя использовать для вычислений, требующих достоверности и точности получаемых значений без корректировок результатов на основе прямых методов.
  • Неразрушающие прямые. Испытание бетона в этом случае можно выполнять одним из двух методов. Первый из них предусматривает отрыв заделанного в бетон металлического анкера и измерение необходимой для этого нагрузки создаваемой при помощи специального оборудования. Второй (в данной подгруппе) метод определения прочности бетона основан на измерении усилия, прилагаемого для скалывания участка внешнего ребра бетонной конструкции.

Все замеры и испытания, в рамках которых производится определение прочности бетона, подразумевают использование специальных инструментов и приборов (измерители прочности бетона), позволяющих гарантировать точность выполняемых процедур. Именно аппаратные измерения дают наиболее достоверный результат и позволяют выполнять все необходимые манипуляции в кратчайшие сроки и без остановки процессов строительства и ведения других работ на объекте.

Приборы серии ОНИКС для определения прочности бетона

Современные приборы для определения прочности бетона серий ОНИКС и ПУЛЬСАР, выпускаемые компанией «Интерприбор», ориентированы на использование всех имеющихся методов определения прочности и прекрасно подходят для проведения испытаний и в лаборатории и на строительной площадке методами скола ребра, отрыва со скалыванием, по скорости прохождения ультразвука и методом ударного импульса.

Использование высокоточных технических средств гарантирует высокую скорость и точность при фиксации параметров прочности. Это позволяет быстро получать достоверные результаты при определении прочности бетона непосредственно на исследуемом объекте без разрушения бетонного монолита.

Определение прочности бетона при обследовании зданий и сооружений

А. В. Улыбин, к. т. н.; С. Д. Федотов, Д. С. Тарасова (ПНИПКУ «Венчур», Санкт-Петербург)

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций.

Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (ГОСТ 10180–90), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации ГОСТ 18105–2010 («Бетоны. Правила контроля и оценки прочности») разделены на три группы:

  • Разрушающие;
  • Прямые неразрушающие;
  • Косвенные неразрушающие.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

Наименование метода Диапазон применения*, МПа Погрешность измерения**
1 Пластической деформации 5 – 50 ± 30 – 40%
2 Упругого отскока 5 – 50 ± 50%
3 Ударного импульса 10 – 70 ± 50%
4 Отрыва 5 – 60 Нет данных
5 Отрыва со скалыванием 5 – 100 Нет данных
6 Скалывания ребра 5 – 70  Нет данных
7 Ультразвуковой 5 – 40 ± 30 – 50%

*По требованиям ГОСТ 17624–87 и ГОСТ 22690–88;

**По данным источника без построения частной градуировочной зависимости 

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему при бегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Измерители прочности бетона на нашем сайте.

В основном применяются методы определения прочности бетона неразрушающим контролем. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по ГОСТ 17624–87, методы ударного импульса и упругого отскока по ГОСТ 22690–88. Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований.

Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне.

Есть «специалисты», которые знают об указанных требованиях норм, но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ. В табл.1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона.

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям СП 13-102-2003 обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционно­ регрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности).

Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов [4] прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис. 1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что до­пустимо по требованиям СП 13-102-2003. При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

РИС. 1. Зависимость между прочностью бетона и скоростью ультразвуковых волн

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля. Учитывая это, а также обозначенные выше проблемы, далее более подробно рас­ смотрим прямые методы контроля.

К данной группе по ГОСТ 22690–88 относится три метода:

  1. Метод отрыва.
  2. Метод отрыва со скалыванием.
  3. Метод скалывания ребра.

Метод отрыва

Метод отрыва основан на измерении максимального усилия, необходимого для отрыва фрагмента бетонной конструкции. Отрывающая нагрузка прилагается к ровной поверхности испытываемой конструкции за счет приклеивания стального диска (рис. 2), имеющего тягу для соединения с прибором. Для приклеивания могут использоваться различные клеи на эпоксидной основе. В ГОСТ 22690–88 рекомендуются клеи ЭД20 и ЭД16 с цементным наполнителем.
На сегодняшний день могут применяться современные двухкомпонентные клеи, производство которых хорошо налажено (POXIPOL, «Контакт», «Момент» И др.). В отечественной литературе по испытанию бетона методика испытания предполагает приклеивание диска к участку испытания без дополнительных мероприятий по ограничению зоны отрыва. В таких условиях площадь отрыва является непостоянной и должна определяться после каждого испытания. В зарубежной практике перед испытанием участок отрыва ограничивается бороздой, создаваемой кольцевыми сверлами (коронками). В данном случае площадь отрыва постоянна и известна, что увеличивает точность измерений.

После отрыва фрагмента и определения усилия определяется прочность бетона на растяжение (R(bt)) , по которой с помощью пересчета по эмпирической зависимости может быть определена прочность на сжатие (R). Для перевода можно воспользоваться выражением, указанным в пособии: 

Для метода отрыва могут применяться различные приборы, используемые и для метода отрыва со скалыванием, такие как ПОС-50МГ4, ОНИКС­ОС, ПИБ, DYNA (рис. 2), а также старые аналоги: ГПНВ-5, ГПНС-5. Для проведения испытания необходимо наличие захватного устройства, соответствующего тяге, расположенной на диске.

Рис. 2. Прибор для метода отрыва с диском для приклеивания к бетону

В России метод отрыва не нашел широкого распространения. Об этом свидетельствует и отсутствие серийно выпускаемых приборов, приспособленных для крепления к дискам, а также самих дисков. В нормативных документах отсутствует зависимость для перехода от усилия вырыва к прочности на сжатие. В новом ГОСТ 18105–2010, а также предшествующем ГОСТ Р 53231–2008 метод отрыва не включен в перечень прямых методов неразрушающего контроля и вообще не упоминается. Причиной этому, по всей видимости, является ограниченный температурный диапазон применения метода, что связано с продолжительностью твердения и (или) невозможностью использования эпоксидных клеев при низкой температуре воздуха. Большая часть России расположена в более холодных климатических зонах, чем страны Европы, поэтому данный метод, широко при меняемый в европейских странах, в нашей стране не используется. Другим отрицательным фактором является необходимость сверления борозды, что дополнительно снижает производительность контроля.

Метод отрыва со скалыванием

Рис. 3. Испытание бетона методом отрыва со скалыванием

Данный метод имеет много общего с описанным выше методом отрыва. Основным отличием является способ крепления к бетону. Для приложения отрывающего усилия используются лепестковые анкеры различных размеров. При обследовании конструкций анкеры закладываются в шпур, пробуренный на участке измерения. Так же, как и при методе отрыва, измеряется разрушающее усилие (Р). Переход к прочности бетона на сжатие осуществляется по указанной в ГОСТ 22690 зависимости: R=m1m2P, где m1 — коэффициент, учитывающий максимальный размер крупного заполнителя, m2 — коэффициент перехода к прочности на сжатие, зависящий от вида бетона и условий твердения.

В нашей стране данный метод нашел, пожалуй, самое широкое распространение благодаря своей универсальности (табл.1), относительной простоте крепления к бетону, возможности испытания практически налюбом участке конструкции. Основными ограничениями для его применения являются густое армирование бетона и толщина испытываемой конструкции, которая должна быть больше, чем удвоенная длина анкера. Для выполнения испытаний могут использоваться приборы, указанные выше.

Таблица 2. Сравнительные характеристики прямых методов неразрушающего контроля

Преимущества Метод
Отрыв Отрыв со скалыванием Скалывание ребра
Определение прочности бетонов классом более В60 +
Возможность установки на неровную поверхность бетона (неровности более 5 мм) +
Возможность установки на плоский участок конструкции (без наличия ребра) + +
Отсутствие потребности в источнике электроснабжения для установки +* +
Быстрое время установки + +
Работа при низких температурах воздуха + +
 Наличие в современных стандартах + +

*Без сверления борозды, ограничивающей участок отрыва.

Помимо более простого и быстрого крепления к бетону конструкции по сравнению с методом отрыва, не требуется обязательное наличие ровной поверхности. Главным условием является необходимость того, чтобы кривизна поверхности была достаточной для установки прибора на тягу анкера. В качестве примера на рис. 3 представлен прибор ПОС-МГ4, установленный на деструктированную поверхность устоя гидротехнического сооружения.

Метод скалывания ребра

Последним прямым методом неразрушающего контроля является модификация метода отрыва — метод скалывания ребра. Основное отличие заключается в том, что прочность бетона определяют по усилию (Р), необходимому для скалывания участка конструкции, расположенному на внешнем ребре. В нашей стране долгое время выпускались приборы типа ГПНС-4 и ПОС-МГ4 Скол, конструкция которых предполагала обязательное наличие двух рядом расположенных внешних углов конструкции.

Захваты прибора подобно струбцине крепились на испытываемый элемент, после чего через захватывающее устройство прилагалось усилие к одному из ребер конструкции. Таким образом, испытание можно было проводить только на линейных элементах (колонны, ригели) или в проемах на краях плоских элементов (стены, перекрытия). Несколько лет назад была разработана конструкция прибора, которая позволяет устанавливать его на испытываемый элемент с наличием только одного внешнего ребра. Закрепление осуществляется к одной из поверхностей испытываемого элемента при помощи анкера с дюбелем. Данное изобретение несколько расширило диапазон применения прибора, но одновременно с этим уничтожило основное преимущество метода скалывания, которое заключалось в отсутствии необходимости сверления и потребности в источнике электроэнергии.

Прочность бетона на сжатие при использовании метода скалывания ребра определяется по нормированной зависимости: R=0,058m(30P+P2),

где m — коэффициент, учитывающий крупность заполнителя.

Для наглядности сравнения характе­ристики прямых методов контроля представлены в табл. 2.

По данным, приведенным в таблице, видно, что наибольшим числом преимуществ характеризуется метод отрыва со скалыванием.

Однако, несмотря на возможность применения данного метода по указаниям норм без построения частной градуировочной зависимости, у многих специалистов возникает вопрос о точности получаемых результатов и соответствии их прочности бетона, определяемой методом испытания образцов. Для исследования этого вопроса, а также сопоставления результатов измерений, полученных прямым методом, с результатами измерений косвенными методами проведен эксперимент, опиcанный далее.

Результаты сравнения методов 

В лаборатории «Обследование и испытание зданий и сооружений» ФГБОУ ВПО «СПБГПУ» были проведены исследования при использовании различных методов контроля. В качестве объекта исследования использован фрагмент бетонной стены, выпиленный алмазным инструментом. Габариты бетонного образца — 2,0×1,О х 0,3 м.

Армирование выполнено двумя сетками арматуры диаметром 16 мм, расположенной с шагом 100 мм с величиной защитного слоя 15–60 мм. В исследуемом образце применен тяжелый бетон на заполнителе из гранитного щебня фракции 20–40.

Для определения прочности бетона использован базовый разрушающий метод контроля. Из образца с помощью установки алмазного сверления выбурены 11 кернов различной длины диаметром 80 мм. Из кернов изготов­ лены 29 образцов — цилиндров, удовлетворяющих по своим размерам требованиям ГОСТ 28570–90 («Бетоны. Методы определения прочности по образцам, отобранным из конструкций»). По результатам испытания образцов на сжатие выявлено, что среднее значение прочности бетона составило 49,0 МПа. Распределение значений прочности подчиняется нормальному закону (рис. 4). При этом прочность исследуемого бетона имеет высокую неоднородность с коэффициентом вариации 15,6% и СКО равным 7,6 МПа.

Для неразрушающего контроля применены методы отрыва, отрыва со скалыванием, упругого отскока и ударного импульса. Метод скалывания ребра не применялся по причине близкого расположения арматуры к ребрам образца иневозможности выполнения испытаний. Ультразву­ ковой метод не использован, так как прочность бетона выше допустимого диапазона для применения данного метода (табл.1). Выполнение измере­ ний всеми методами производилось на грани образца, срезанной алмазным инструментом, что обеспечива­ ло идеальные условия с точки зрения ровности поверхности. Для определе­ ния прочности косвенными методами контроля использовались градуиро­ вочные зависимости, имеющиеся в паспортах приборов, или заложен­ ные в них.

На рис. 5. представлен процесс измерения методом отрыва. Результаты измерений всеми методами представлены в табл. 3.

Таблица 3. Результаты измерения прочности различными методами


п/п
Метод контроля (прибор) Количество измерений, n Среднее значение прочности бетона, Rm, МПа Коэффициент вариации, V, %
1 Испытание на сжатие в прессе (ПГМ-1000МГ4) 29 49,0 15,6
2 Метод отрыва со скалыванием (ПОС-50МГ4) 6 51,1 4,8
3 Метод отрыва (DYNA) 3 49,5
4 Метод ударного импульса
(Silver Schmidt)
30 68,4 7,8
5 Метод ударного импульса
(ИПС-МГ4)
7 (105)* 78,2 5,2
6 Метод упругого отскока
(Beton Condtrol)
30 67,8 7,27

 *Семь участков по 15 измерений на каждом.

По данным, представленным в табли­це, можно сделать следующие выводы:
среднее значение прочности, по­лученной испытанием на сжатие и прямыми методами неразрушающего контроля, различается не более чем 5%;
по результатам шести испытаний методом отрыва со скалыванием разброс прочности характеризуется низким значением коэффициента вариации 4,8%;
результаты, полученные всеми кос­венными методами контроля, за­вышают прочность на 40–60%. Одним из факторов, приведших к дан­ному завышению, является карбонизация бетона, глубина которой на исследуемой поверхности образца составила 7 мм.

Выводы

1. Мнимая простота и высокая про­изводительность косвенных методов неразрушающего контроля теряются при выполнении требований построения градуировочной зависимости и учете (устранении) влияния факторов, искажающих результат. Без выполнения этих условий данные методы при обсле­довании конструкций можно при менять только для качественной оценки проч­ности по принципу «больше — меньше».
2. Результаты измерений прочности базовым методом разрушающего конт­роля путем сжатия отбираемых образ­цов также могут сопровождаться боль шим разбросом, вызванным как не­однородностью бетона, так и другими факторами.
3. Учитывая повышенную трудоем­ кость разрушающего метода и под­ твержденную достоверность результа­ тов, получаемых прямыми методами неразрушающего контроля, при обсле­ довании рекомендуется при менять по­ следние.
4. Среди прямых методов неразру­ шающего контроля оптимальным по большинству параметров является ме­ тод отрыва со скалыванием.

Рис. 4. Распределение значений прочности по результатам испытаний на сжатие.

Рис. 5. Измерение прочности методом отрыва.

А. В. Улыбин, к. т. н.; С. Д. Федотов, Д. С. Тарасова (ПНИПКУ «Венчур», Санкт-Петербург), журнал «Мир строительства и недвижимости, №47, 2013 г.

Все публикации
Архив по годам: 2006; 2008; 2013; 2015; 2016; 2018; 2019; 2020;

Прочность бетона — основные методы определения прочности бетона

Прочность бетона на сжатие, является важнейшей технической характеристикой, регламентируемой действующими нормативными документами: ГОСТ и СНиП. В соответствии с практическими исследованиями 80-85% марочной прочности бетон приобретает на 28 сутки после затворения водой.

СодержаниеСвернуть

Конечно, при этом температура окружающего воздуха должна находиться в пределах 20-25 градусов Цельсия. Максимально же возможная прочность бетонной конструкции достигается через 3-4 года после заливки.

Оценка прочности бетона различными методами

Так как прочность бетона является самой важной характеристикой, от которой зависит прочность сооружения, конструкторами и технологами разработаны и активно применяются следующие варианты испытаний бетона на прочность:

  • Неразрушающие механические методы контроля. Основаны на опосредственной оценке технической характеристики, полученной методами: упругого отскока, удара, и отрыва со скалыванием.
  • Определение прочности бетона ультразвуковым методом. В этом случае используется специальная ультразвуковая установка, которая «просвечивает» проверяемую конструкцию и определяет прочность бетона в зависимости от скорости распространения ультразвуковых волн.
  • Метод разрушающего контроля прочности. Согласно существующим СНиПам разрушающий контроль является обязательным при приемке здания или сооружения в эксплуатацию.
  • Самостоятельный метод определения прочности бетона с помощью подручных материалов и инструментов: молотка, зубила и штангенциркуля.

Перечисленные способы имеют различную степень точности, находящуюся в пределах допускаемой погрешности.

Определение прочности бетона неразрушающими методами

  • Определение прочности с помощью молотка Физделя. При ударе рабочей частью молотка Физделя на поверхности бетона очищенной от посторонних материалов образуется отпечаток в виде лунки определенного диаметра. Величина диаметра, измеренная штангенциркулем, характеризует прочность бетона. Для достоверности результатов производится 12-15 ударов. Для расчета прочности принимается средний диаметр лунки.
  • Определение прочности с помощью молотка Кашкарова. Удар молотком Кашкарова оставляет на поверхности бетона два отпечатка. Один отпечаток остается на исследуемом объекте, второй отпечаток остается на эталоне (бетонном стержне известной прочности). В зависимости от соотношений диаметров отпечатков определяется прочность проверяемого объекта.
  • Прочность бетона неразрушающими методами определяемая с помощью: пистолета ЦНИИСКа, молотка Шмидта и склерометра. Указанные методы основаны на принципе упругого отскока рабочего органа от испытываемого объекта. Величина прочности бетона оценивается по шкале прибора, на которой фиксируются полученные данные.
  • Отрыв со скалыванием. Для проведения испытаний выбирается участок поверхности в теле, которого нет арматурного пояса. Для проверки прочности используются специальные анкерные устройства, внедряемые в толщу бетона. Оценка прочности производится по шкале анкерного устройства.

Определение прочности бетона с помощью ультразвука

Технология использует связь, которая существует между скоростью распространения ультразвуковых импульсов и прочностью бетонной конструкции. Для реализации метода необходимо специальное оборудование, состоящее из генератора ультразвуковых волн, блока управления и датчиков.

Кроме прочности бетона, приборы ультразвукового исследования позволяют определять дефекты, однородность, модуль упругости и плотности толщи исследуемого объекта.

Разрушающие методы определения прочности бетона

В соответствии с требованиями действующего СП 63.13330.2012 г., проверка конструкций разрушающими методами являются обязательными, застройщикам остается выбрать приемлемый способ определения прочности бетона по контрольным образцам из следующего списка:

  • Контроль прочности, осуществляемый специальными прессами, разрушающими контрольные образцы, залитые в специальные формы. Аналогичным способом осуществляется проверка отпускной прочности бетона ГОСТ 18105-2010. «Бетоны. Правила контроля и оценки прочности».
  • Контроль прочности бетона разрушением образцов выпиленных или высверленных из толщи проверяемой конструкции.
  • Контроль прочности методом разрушения образцов изготовленных непосредственно на строительной площадке. В связи с тем, что время и условия набора прочности образцами и время и условия набора прочности залитой конструкцией существенно различаются, данный метод считается относительно достоверным.

Определения прочности бетона своими руками

Более-менее достоверные сведения о прочности залитого бетона можно получить без использования специального оборудования. Для самостоятельных испытаний потребуется следующий инструмент:

  • Слесарный молоток массой ударной части 400-600 граммов.
  • Штангенциркуль с глубиномером.
  • Слесарное зубило средней величины.

При этом показатель прочности бетона – размер следа и глубина проникновения зубила после нанесения удара молотком средней силы.

  • Если след от зубила едва виден, прочность бетона соответствует классу В25.
  • Более глубокая и хорошо видная отметина идентифицирует бетон класса В15-В25.
  • Проникновение зубила в тело материала более чем на 0,5 мм говорит о том, что перед нами бетон класса В10,
  • Проникновение зубила в толщу бетона более чем на 10 мм идентифицирует бетон класса прочности В5.

Несмотря на то, что самостоятельный метод определения прочности бетона весьма простой и очень экономичный, прочность материала особо ответственных конструкций лучше всего определять «научными» способами привлекая соответствующих специалистов оснащенных соответствующим оборудованием.

Класс прочности всех марок бетонов

Заключение

Показатели марки и класса бетонных материалов – это самые важные показатели их сопротивления сжатию и осевой растяжке. В отличии от качеств относительно стойкости к низким температурам, влаге, именно они учитываются в первую очередь при покупке материалов.

Обзор методов и инструментов определения прочности бетона.

В современном строительстве прочность, класс и марка бетона определяются повсеместно. Своевременное определение прочности бетона помогает предотвратить повреждения конструкций, локализовать дефекты или избежать их полностью.

Для чего, как и когда определяется прочность бетона? Чтобы ответить на этот вопрос мы выделили следующие виды работ, в которых задействована наша лаборатория неразрушающего контроля:

  • Контроль прочности образцов и конструкций из бетона при производстве работ строительными организациями;
  • Контроль прочности бетона в процессе ведения исполнительной документации;
  • Плановые и внеплановые проверки службой технадзора качества производства работ и прочности бетона;
  • Определение прочности бетона в процессе обследования зданий и сооружений.

В процессе строительства, реконструкции и капитального ремонта бетон применяется повсеместно, также повсеместно фиксируются нарушения в технологии производства работ. Несоблюдение пропорций противоморозных добавок, чрезмерное увлажнение, преждевременное снятие опалубки, чрезмерное нагружение конструкций – все это приводит к изменению прочностных характеристик бетонных конструкций.

Как определить прочность бетона разрушающим методом? 

1. При помощи приборов разрушающего контроля: ОНИКС-ОС, Скол и другие.

2. При помощи лабораторных испытаний на гидравлическом прессе.

Для определения прочности конструкций из бетона применяются механические неразрушающие и разрушающие методы. Наиболее достоверным способом определения прочности бетона является разрушающий метод, который позволяет определить максимальную прочность бетона при разрушении образцов в лабораторных условиях (используется гидравлический пресс). Однако у данного способа есть значительные недостатки, связанные с трудоемкостью изъятия опытных образцов из существующих конструкций.  Очень часто в некоторых конструкциях невозможно произвести отбор проб из-за расположения большого числа конструктивной арматуры или по другим причинам. Недостатки данного метода привели к тому, что он применяется в исключительных случаях, когда конструкция позволяет изъять комплект цилиндрических образцов, а также в случаях испытания заранее заготовленных на строительной площадке образцов бетона каждой партии бетонной смеси, поставляемой на объект  строительства.

Наиболее удачным и технологичным на сегодняшний день является использование комбинированного метода. Сотрудниками компании «АЕГРО» применяется способ комбинации механического разрушающего и неразрушающего методов определения прочности бетона, так как с помощью данной комбинации можно определить прочность бетона с погрешностью не более 1%.  Кратко объясним суть данного метода:

Как определить прочность бетона неразрушающим методом?

1. При помощи приборов неразрушающего контроля склерометрического типа.

2. При помощи приборов неразрушающего типа, работающих по принципу ультразвуковой волны (ультразвуковые тестеры).

Для определения прочности бетона разрушающим методом используется прибор отрыва со скалыванием (ОНИКС-ОС). Выборочно проверяется до 5% конструкций методом отрыва со скалыванием. Принцип работы прибора основан на измерении усилия разрушения бетона при извлечении из него анкерного устройства (вырыве), соответственно определяется прочность бетона в теле железобетонной конструкции. Далее  используется прибор неразрушающего контроля – склерометр (ИПС-МГ4.03, Condtrol Pro Beton и др.), данным прибором измеряется прочность бетона в тех же 5% конструкциях и производится расчет коэффициента градуировочной зависимости.

Коэффициент градуировочной зависимости позволяет определить прочность бетона с наименьшей погрешностью, поскольку технология неразрушающего контроля позволяет испытать большое количество конструкций из бетона.

Камеральная обработка данных показывает, что определение прочности бетона с применением комбинации методов разрушающего и неразрушающего контроля по ГОСТ 22690-88 позволяет избежать погрешностей из-за поверхностного определения прочности склерометрами или другими приборами.  Другими словами, учитывается расхождение прочностных характеристик бетона в его поверхностной и внутренней части.

В процессе определения прочности бетона необходимо изначально правильно отобрать конструкции для испытания разрушающим методом с таким расчетом, чтобы тип конструкций совпадал с типом испытуемых конструкций неразрушающими методами. То есть  при испытании неразрушающим методом таких конструкций как колонны, фундамент и плиты перекрытий следует ориентироваться на коэффициент градуировочной зависимости, определенный при испытании разрушающим методом тех же конструкций.

Методы, описанные выше, позволяют точно определить прочность бетона, определить слабые участки конструкций и заранее предусмотреть мероприятия по обеспечению несущей способности.

В случае, если Вы заметили дефекты в бетонных конструкциях (поры, трещины, участки с отсутствием защитного слоя бетона и коррозирующей арматурой), обратитесь к профессионалам. Наши контактные данные вы найдете на данной странице.

Помните, самостоятельно Вы можете определить лишь поверхностное состояние и качество бетона. Если Вы заметили, что бетон легко деформируется (поверхность его можно поцарапать монетой), цвет железобетонной конструкции светло-серый (почти белый) и имеет много пор и пустот — вызовите специалистов или проконсультируйтесь с инженерами компании АЕГРО.

определение и испытание бетона, марки по прочности

Прочность бетона – одна из важнейших характеристик этого строительного материала. Бетон лучше всего сопротивляется усилиям на сжатие. Поэтому проектирование осуществляется таким образом, чтобы на конструкцию действовали в основном силы сжатия. Если конструкция будет испытывать усилия на растяжение и изгиб, то при расчете проекта учитывают прочность на растягивающие усилия и растяжение при изгибе.

Характеристики прочности бетона

Порочность бетона на сжатие характеризуют марка или класс прочности, которые определяются в стандартном варианте в возрасте 28 суток. В зависимости от эксплуатационных особенностей строительной конструкции, момент определения прочности материала на сжатие может устанавливаться индивидуально. Это могут быть 3,7, 60, 90, 180 суток.

 

Определение! Класс прочности характеризует гарантированную прочность строительного материала, выраженную в МПа, с обеспеченностью 95%. Маркой называют нормируемое значение средней прочности бетона. Единица измерения – кгс/см2.

В проекте на строительную конструкцию пользуются понятием класса прочности и только в особых случаях – марки.

Таблица зависимости между классами и марками бетонов

Класс

Марка

Класс

Марка

В3,5

М50

В25-В27,5

М350

В5

М75

В30

М400

В7,5

М100

В35

М450

В10-В12,5

М150

В40

М500

В15

М200

В45

М600

В20

М250

В50-В55

М700

В22,5

М300

В60

М800

Технологические факторы, влияющие на прочность бетона

Прочность бетона зависит от ряда факторов, среди которых:

  • Активность цемента. Между прочностными характеристиками бетонного продукта и активностью вяжущего существует линейная зависимость. Чем выше активность, тем лучше прочностные показатели.
  • Количество вяжущего. Повышение содержания вяжущего положительно влияет на прочностные характеристики только до определенного процентного содержания. Выше – прочностные показатели растут незначительно, а другие технические параметры ухудшаются – растут усадка и ползучесть.
  • Водоцементное соотношение. Оптимальная величина определяется необходимой маркой удобоукладываемости. Обычно в смеси содержится 40-70% воды. Превышение оптимального количества жидкости инициирует образование пор, снижающих прочность конечного продукта.
  • Гранулометрический и минералогический состав заполнителей. На прочность бетонного продукта отрицательно влияют: неоптимальный состав мелкого и крупного заполнителей, наличие в них пылевидных и глинистых частиц.
  • Качество воды. Вода, используемая для затворения смеси, берется из водопровода питьевого назначения или проверяется в лаборатории на присутствие в ней примесей, отрицательно влияющих на качество конечного продукта.
  • Вибрирование бетонной смеси при укладке. При вибрировании из смеси выходит лишний воздух, снижающий прочностные характеристики. Однако излишнее вибрирование приводит к расслаиванию смеси.
  • Соблюдение оптимальных условий твердения.

Способы определения прочности

ГОСТ 10180-2012 регламентирует правила подготовки образцов и проведения испытаний прочности на сжатие в лабораторных условиях

В соответствии со стандартом образцами могут быть:

  • куб с длиной ребра 100, 150, 200, 250, 300 мм;
  • цилиндр с диаметром основания 100, 150, 200, 250, 300 мм, высотой не менее диаметра основания.

Образцы изготавливают с соблюдением условий, соответствующих реальным условиям твердения смеси. Твердение продукта может происходить в нормальных условиях или с использованием тепловой обработки. Испытания проводят на испытательной машине-прессе. Образец нагружают со стабильной скоростью нарастания усилия до его разрушения.

Существуют неразрушающие способы контроля прочности бетона, позволяющие контролировать этот параметр в уже готовой конструкции:

  • Механические. Эти испытательные технологии основаны на показаниях приборов. Основные методы – упругий отскок, ударный импульс, отрыв, скалывание, отрыв со скалыванием.
  • Ультразвуковой. Основой этого способа является зависимость скорости прохождения ультразвуковых волн через материал от его прочностных характеристик. Технология востребована для определения прочностных характеристик длинномерных строительных конструкций – ригелей, колонн, балок.

Области применения бетона различных классов прочности

  • В7,5. Такие бетоны содержат малое количество вяжущего и относятся к категории «тощих». Применяются в основном при проведении подготовительных строительных работ. С их помощью изготавливают подбетонки, на которых устраивается железобетонный фундамент. Такой подготовительный бетонный слой не допускает протекания цементного молочка из фундаментной бетонной смеси в грунт.
  • В10-В12,5. Такие материалы также обладают невысокой прочностью. Применяются для устройства подбетонного слоя, тонкослойных стяжек, фундаментов легких строительных конструкций.
  • В15-В20. Бетонные смеси этих классов прочности востребованы в малоэтажном индивидуальном строительстве при возведении небольших строений, для устройства внутренних перегородок, лестничных маршей.
  • В22,5. Широко востребованы в малоэтажном жилом и промышленном строительстве, при производстве ЖБИ.
  • В25-В22,7. Применяются при сооружении высоконагружаемых строительных конструкций – несущих балок, плит, колонн в многоэтажных зданиях.
  • В30 и выше. Такие бетоны, обладающие высокой прочностью, применяют в промышленном строительстве и для сооружения объектов высокой опасности и ответственности. Из-за высокой схватываемости применяются с добавками, регулирующими скорость твердения смеси.

Методы определения прочности бетона по ГОСТ 18105

Под прочностью бетона понимают сопротивление материала разрушительным действиям внутреннего напряжения, вызванным различными факторами внешней среды. На стройматериал, находящийся в составе сооружения, оказывает влияние растяжение, сжатие, изгиб, кручения и срезы. Самые высокие показатели у прочности бетона на сжатие, а самые низкие у прочности на растяжение. Именно по этой причине сооружения в основном проектируют так, чтобы на бетонные элементы приходились по большей части сжимающие нагрузки. Если все же необходимо чтобы бетон выдерживал напряжения растяжения и среза, то конструкции усиливаются арматурой.

Классы бетона по прочности

Основная классификация бетона базируется именно на этой характеристике. Марка М15 отличается самой низкой прочностью, М800 наоборот самой высокой. Такая система дает возможность заранее спрогнозировать поведение той или иной марки, и выбрать материал, который будет полностью соответствовать расчетным нагрузкам.

Например, легкие ограждения и теплоизоляционные перегородки могут выполняться из марок М15-М50, М100-150 оптимальны для укладки монолитных оснований, а для ответственных ЖБ сооружений используют бетон не ниже М300.

Сегодня широко применяется также классификация бетона по прочности на сжатие В1 – В22. Различаются эти системы тем, что марки бетона рассчитываются по среднему, а классы по гарантированному фактическому значению прочности. Разрабатывая инженерно-проектную документацию, специалисты, как правило, оперируют понятием классов В. Среди строителей и в быту более понятной и привычной считается система марок.

Легко разобраться в соотношениях марок и классов можно, воспользовавшись следующей таблицой «Соотношение прочности бетона, соответствующих марок и классов по прочности на сжатие»:

Соотношение прочности бетона, соответствующих марок и классов бетона по прочности на сжатие
Марка бетона по прочности на сжатие Класс бетона по прочности на сжатие Условия марка бетона*, соответствующая классу бетона по прочности на сжатие
Бетон всех видов, кроме ячеистого Отличия от марки бетона (в %) Ячеситый бетон Отличие от марки бетона (в %)
М 15 В 1 14,47 -3,5
М 25 В 1,5 21,7 -13,2
М 25 В 2 28,94 15,7
М 35 В 2,5 32,74 -6,5 36,17 3,3
М 50 В 3,5 45,84 -8,1 50,64 1,3
М 75 В 5 65,48 -12,7 72,34 -3,5
М 100 В 7,5 98,23 -1,8 108,51 8,5
М 150 В 10 130,97 -12,7 72,34 -3,55
М 150 В 12,5 163,71 9,1 180,85
М 200 В 15 196,45 -1,8 217,02
М 250 В 20 261,93 4,8
М 300 В 22,5 294,68 -1,8
М 300 В 25 327,42 9,1
М 350 В 25 327,42 -6,45
М 350 В 27,5 360,18 2,9
М 400 В 30 392,9 -1,8
М 450 В 35 459,39 1,9
М 500 В 40 523,87 4,8
М 600 В 45 589,35 1,8
М 700 В 50 654,84 -6,45
М 700 В 55 720,32 2,9
М 800 В 60 785,81 -1,8
*Условная марка бетона — среднее значение прочности бетона серии образцов (кгс/см2), приведенной к прочности образца базового размера куба с ребром 15 см, при номинальном значении коэффицента вариации прочности бетона.

От чего зависит прочность бетона

При выполнении любых строительно-монтажных работ очень важно соблюдать все условия, влияющие на прочность бетона в будущем сооружении. Основные факторы, задающие прочностные характеристики бетону:

  • Качество цемента. Из более прочного, быстро твердеющего и качественного цемента получается бетон с аналогичными показателями;
  • Объем цемента. Его количество на один кубометр должно быть таким, чтобы не оставалось пустот в песке, щебне или другом заполнителе. Образованию пустот способствует также и избыточное количество жидкости, которая при засыхании испаряется и понижает прочность бетона;
  • Заполнитель. От того, насколько качественный наполнитель напрямую зависит прочность готового материала. Однородность, чистота и правильная геометрическая форма гранул значительно упрочняют бетон;
  • Замешивание. Чем дольше и интенсивней замешивание, тем прочнее будет конечный результат;
  • Соблюдение правил и норм укладки смеси. Работая с цементным раствором, важно четко придерживаться технологии его нанесения. Использование специальных профессиональных вибраторов способно на 20-30% увеличить прочность бетона.

Методика определения прочности бетона

При промышленном производстве бетона или ЖБИ проводятся лабораторные исследования, выясняющие точную прочность бетона. Методы определения прочности регламентируются ГОСТами и СНиПами. Различают методы разрушающего и неразрушающего контроля. Первые считаются более точными, но их далеко не всегда можно применить на практике.

Связано это с тем, что разрушающие испытания требуют наличия анализируемого образца, извлечь который без нарушения целостности конструкции не представляется возможным. Поэтому чаще используют неразрушающие способы, основывающиеся на анализе показаний измерительных приборов.

Основные методы неразрушающего контроля

  • Анализ пластической деформации. Стальной шарик ударяется с поверхностью, оставляя на ней отпечаток. На измерении его размеров основывается вычисление прочности. Способ считается самым старым, дешевым и одновременно популярным. Зачастую испытания ведутся с помощью специального инструмента – молотка Кашкарова;
  • Определение упругого отскока. Определяется при помощи склерометра. При ударе рабочего тела по поверхности измеряется величина возвратного отскока;
  • Энергия удара. Это самый распространенный импульсный метод, использующийся в приборах, выпускаемых отечественными производителями;
  • Отрыв со сколом. Определяется уровень усилия, которое нужно приложить для отрыва анкера из куска бетона. Полученные показатели вписываются в паспорт на бетон.

Для готовых конструкций, которые эксплуатировались в определенный промежуток времени, используют ультразвуковой контроль прочности. Принцип измерения основан на определении скорости распространения ультразвуковой волны сквозь материал. Для этого с двух противоположных сторон устанавливают специальные преобразователи, передающие акустический контакт.

По существующим отечественным нормативам организации, изготавливающие бетон, должны использовать разрушающий контроль для проверки каждой партии на прочность. Застывший образец устанавливается под пресс и постепенно разрушается. Полученный показатель измеряется в кгс/см2 и определяет основную марку материала.

Испытание бетона: определение прочности бетона неразрушающим методом

Главная » Услуги » Определение прочности бетона монолитных конструкций и изделий сборных бетонных и железобетонных

Испытание бетона является одним из важнейших этапов контроля качества строительства. От качества и характеристик бетона зависит безопасность и надежность всей строительной конструкции.

Испытание бетона может проводиться как в лаборатории, так и на объекте. Главное, чтобы контроль качества осуществляли профессионалы – ведь любая ошибка может привести к неверному заключению по всему сооружению. Обычно проводятся испытания бетона на прочность при сжатии, а также испытания на морозостойкость, водонепроницаемость. Испытательная лаборатория «Качество в строительстве» предлагает вам весь спектр услуг по испытанию бетона в Казани.

Наша лаборатория оснащена всем необходимым оборудованием для определения прочности бетона неразрушающими методами на объекте, а также для испытания кубов-образцов бетона в лаборатории. Определение прочности бетона осуществляются неразрушающими и разрушающими методами.

Разрушающие методы:

  • испытание на прочность при сжатии контрольных образцов-кубов на прессе;
  • испытание образцов (кернов), отобранных из конструкции.

Неразрушающие методы:

  • метод ударного импульса;
  • метод отрыва со скалывания;
  • ультразвуковой метод.

Лабораторные испытания бетона на прочность при сжатии для монолитных и сборных ж/б-конструкций служат в первую очередь для определения класса бетона, который задан проектными требованиями. В большинстве конструкций установлен класс бетона по прочности на сжатие (В), однако бывают исключения.

Для монолитных конструкций ГОСТ 18105-2010 «Бетоны. Правила контроля и оценки прочности» устанавливает проведение испытаний неразрушающими методами на строительной площадке. Согласно этому ГОСТу, определение прочности бетона монолитных конструкций по образцам-кубам БСТ, которые были отобраны на объекте, не рекомендуется, за исключением редких случаев. Кубы-образцы используются для контроля прочности бетонной смеси и бетона сборных ж/б-конструкций.

Если вы хотите уточнить, какие именно испытания бетона необходимы на вашем объекте или заказать услуги нашей лаборатории, звоните по телефонам: +7 (843) 514-88-23 и +7 (843) 514-83-96.

Определение прочности на сжатие образцов бетона с помощью рентгеновской компьютерной томографии и метода конечных элементов

Основные моменты

Прочность на сжатие получена на основе метода XCT.

Несколько типов агрегатов можно различить с помощью гистограммы изображения.

Использование модели CDP подходит для моделирования конкретных компонентов.

Параметры ОГТ определены на основании лабораторных испытаний (испытание строительным раствором, испытание камнем).

Трещины сжатия и структуры трещин можно наблюдать с помощью численных моделей.

Реферат

Растет интерес к использованию моделей конечных элементов бетона на основе изображений для оценки их механических свойств. Цель данного исследования — представить новый подход к определению прочности на сжатие реального бетона на основе численного анализа. В этом исследовании трехмерные мезомасштабные модели конечных элементов (КЭ) конкретных образцов были созданы на основе изображений компьютерной томографии (КТ).Большинство моделей рассматривают бетон как однородный материал, тогда как это неоднородный композит, состоящий из заполнителей, цементного теста и воздушных пустот. Кроме того, существующие гетерогенные модели ограничены только одним типом агрегатов. В этом исследовании для проектирования бетонной смеси были выбраны два разных типа заполнителей, которые, соответственно, определены как отдельные фазы в моделях FE. Были отлиты две группы бетонных образцов с различным водоцементным соотношением. Изображения были получены с помощью медицинского устройства компьютерной томографии и преобразованы в управляемые мезомасштабные элементы шестигранника посредством обработки изображений, сопровождаемой техникой построения сеток.Затем были построены модели FE с учетом механических свойств отдельных компонентов бетона, определенных в лаборатории. С помощью решателя явной динамики программы Abaqus была получена прочность образцов на сжатие. Прочность на сжатие трех образцов разной формы, выбранных из двух групп бетона (кубическая группа I, кубическая группа II и цилиндрическая группа II), была оценена с 8,8%, 9,7% и 8% отклонениями от экспериментальных кривых. Точность и производительность этого метода делают его потенциальным кандидатом в качестве инструмента контроля качества бетонных конструкций.Результаты показали, что изображения рентгеновской компьютерной томографии (XCT) могут быть использованы в качестве подходящего метода для оценки предельной прочности бетона на основе образцов раннего возраста. Это может быть большим преимуществом для надзорной администрации.

Ключевые слова

Метод конечных элементов

Прочность на сжатие

Образец бетона

Мезомасштаб

Рентгеновская компьютерная томография

Обработка изображений

Рекомендуемые статьи Цитирующие статьи (0)

Просмотреть полный текст 9v0008 © 2020 Else Ltd.Все права защищены.

Рекомендуемые статьи

Ссылки на статьи

Все, что нужно знать о прочности бетона

Бетон многие считают прочным и долговечным материалом, и это справедливо. Но есть разные способы оценки прочности бетона.

Возможно, что еще более важно, каждое из этих прочностных свойств придает бетону различные качества, что делает его идеальным выбором в различных случаях использования.

Здесь мы рассмотрим различные типы прочности бетона, почему они важны и как они влияют на качество, долговечность и стоимость бетонных проектов.Мы также демонстрируем разницу в прочности между традиционным бетоном и новой инновационной технологией бетона — бетоном с высокими эксплуатационными характеристиками (UHPC).

Терминология: Прочностные свойства бетона и почему они важны

Прочность бетона на сжатие

Это наиболее распространенное и общепринятое измерение прочности бетона для оценки характеристик конкретной бетонной смеси. Он измеряет способность бетона выдерживать нагрузки, которые уменьшают размер бетона.

Прочность на сжатие испытывают путем разрушения цилиндрических образцов бетона на специальной машине, предназначенной для измерения этого типа прочности. Он измеряется в фунтах на квадратный дюйм (psi). Тестирование проводится в соответствии со стандартом C39 ASTM (Американское общество испытаний и материалов).

Прочность на сжатие важна, поскольку это главный критерий, используемый для определения того, будет ли данная бетонная смесь соответствовать требованиям конкретной работы.

Бетон, фунт / кв. Дюйм

фунтов на квадратный дюйм (psi) измеряет прочность бетона на сжатие.Более высокое значение psi означает, что данная бетонная смесь прочнее, поэтому обычно она дороже. Но эти более прочные бетоны также более долговечны, то есть служат дольше.

Идеальный бетонный фунт на квадратный дюйм для данного проекта зависит от различных факторов, но самый минимум для любого проекта обычно начинается от 2500 до 3000 фунтов на квадратный дюйм. Каждая бетонная конструкция имеет обычно приемлемый диапазон фунтов на квадратный дюйм.

Бетонные опоры и плиты на уровне грунта обычно требуют плотности бетона от 3500 до 4000 фунтов на квадратный дюйм. Подвесные плиты, балки и фермы (часто встречающиеся в мостах) требуют от 3500 до 5000 фунтов на квадратный дюйм.Традиционные бетонные стены и колонны, как правило, имеют диапазон от 3000 до 5000 фунтов на квадратный дюйм, в то время как для дорожного покрытия требуется от 4000 до 5000 фунтов на квадратный дюйм. Бетонным конструкциям в более холодном климате требуется более высокое давление на квадратный дюйм, чтобы выдерживать большее количество циклов замораживания / оттаивания.

Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 дней для определения psi. Семидневный тест проводится для определения раннего прироста силы, а в некоторых случаях его можно проводить уже через три дня.

Но конкретный фунт на квадратный дюйм основан на результатах 28-дневного испытания, как указано в стандартах Американского института бетона (ACI).

Предел прочности бетона на разрыв

Прочность на растяжение — это способность бетона противостоять разрушению или растрескиванию при растяжении. Это влияет на размер трещин в бетонных конструкциях и степень их возникновения. Трещины возникают, когда растягивающие усилия превышают предел прочности бетона.

Традиционный бетон имеет значительно более низкую прочность на разрыв по сравнению с прочностью на сжатие. Это означает, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, такими как сталь.

Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение.

Прочность бетона на раздельное растяжение определяют с помощью испытания на раздельное растяжение бетонных цилиндров. Испытание следует проводить в соответствии со стандартом ASTM C496.

Прочность бетона на изгиб

Прочность на изгиб используется как еще один косвенный показатель прочности на разрыв.Он определяется как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона противостоять изгибу.

Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.

Существует два стандартных теста ASTM, которые используются для определения прочности бетона на изгиб — C78 и C293. Результаты выражаются в модуле разрыва (MR) в фунтах на квадратный дюйм.

Испытания на изгиб очень чувствительны к подготовке, обращению с бетоном и его отверждению. Испытание следует проводить, когда образец влажный. По этим причинам результаты испытаний прочности на сжатие чаще используются при описании прочности бетона, поскольку эти числа более надежны.

Дополнительные факторы

Прочие факторы, влияющие на прочность бетона, включают:

Соотношение вода / цемент (Вт / см)

Относится к соотношению воды и цемента в бетонной смеси.Более низкое соотношение воды и цемента делает бетон более прочным, но также затрудняет работу с ним.

Необходимо соблюдать правильный баланс для достижения желаемой прочности при сохранении удобоукладываемости.

Дозировочный

Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия и камня. Правильная пропорция этих ингредиентов является ключом к достижению более высокой прочности бетона.

Бетонную смесь со слишком большим количеством цементного теста легко залить, но она легко потрескается и не выдержит испытания временем.И наоборот, при слишком малом количестве цементного теста получается шероховатый и пористый бетон.

Смешивание

Оптимальное время перемешивания важно для прочности. Хотя прочность имеет тенденцию увеличиваться со временем перемешивания до определенного момента, слишком долгое перемешивание может фактически вызвать испарение избыточной воды и образование мелких частиц в смеси. В результате бетон становится труднее работать и становится менее прочным.

Не существует золотого правила для оптимального времени перемешивания, так как оно зависит от многих факторов, таких как: тип используемого миксера, скорость вращения миксера, а также конкретные компоненты и материалы в данной партии бетона.

Методы отверждения

Чем дольше бетон остается влажным, тем он прочнее. Для защиты бетона необходимо соблюдать меры предосторожности при выдерживании бетона при очень низких или высоких температурах.

Неопровержимые факты: традиционный бетон против UHPC

Доступна новая технология производства бетона, которая имеет более высокие прочностные характеристики, чем традиционный бетон, во всех диапазонах прочности. Этот инновационный материал называется бетоном со сверхвысокими характеристиками (UHPC), и он уже внедряется во многих инфраструктурных проектах штата и федерального правительства, учитывая его исключительную прочность и долговечность.

UHPC очень похож на традиционный бетон по составу. Фактически, примерно от 75 до 80 процентов ингредиентов одинаковы.

Что делает UHPC уникальным, так это интегрированные волокна. Эти волокна добавляются в бетонную смесь и составляют от 20 до 25 процентов конечного продукта.

Волокна варьируются от полиэстера до стержней из стекловолокна, базальта, стали и нержавеющей стали. Каждое из этих интегрированных волокон создает все более прочный конечный продукт, причем сталь и нержавеющая сталь обеспечивают наибольший прирост прочности.

Вот более подробное сравнение UHPC с традиционным бетоном:

  • Прочность на растяжение —UHPC имеет предел прочности на разрыв 1700 фунтов на квадратный дюйм, в то время как у традиционного бетона обычно измеряется от 300 до 700 фунтов на квадратный дюйм.
  • Прочность на изгиб —UHPC может обеспечить прочность на изгиб более 2000 фунтов на кв. Дюйм; Традиционный бетон обычно имеет прочность на изгиб от 400 до 700 фунтов на квадратный дюйм.
  • Прочность на сжатие — Повышенная прочность на сжатие UHPC особенно важна по сравнению с традиционным бетоном.В то время как традиционный бетон обычно имеет прочность на сжатие в диапазоне от 2500 до 5000 фунтов на квадратный дюйм, UHPC может иметь прочность на сжатие до 10 раз больше, чем у традиционного бетона.

Всего через 14 дней отверждения UHPC имеет прочность на сжатие 20 000 фунтов на квадратный дюйм. Это число увеличивается до 30 000 фунтов на квадратный дюйм при полном отверждении в течение 28 дней. Некоторые смеси UHPC даже продемонстрировали прочность на сжатие 50 000 фунтов на квадратный дюйм.

Другие преимущества UHPC включают:

  • Устойчивость к замерзанию / оттаиванию — Исследования показали, что UHPC выдерживает более 1000 циклов замораживания / оттаивания, в то время как традиционный бетон начинает разрушаться всего за 28 циклов.
  • Ударопрочность —UHPC может поглощать в три раза больше энергии, чем обычный бетон. При ударной нагрузке UHPC был вдвое прочнее обычного бетона и рассеивал до четырех раз больше энергии. Это делает материал отличным кандидатом для сейсмостойких мостов и зданий.
  • Влагостойкость — Из-за более высокой плотности, чем у традиционного бетона, воде труднее проникать в UHPC.
  • Пластичность —UHPC может быть растянут на более тонкие секции под действием растягивающего напряжения, в отличие от обычного бетона.
  • Более длительный срок службы —UHPC служит более 75 лет по сравнению с 15–25 годами для традиционного бетона.
  • Меньший вес — Несмотря на то, что UHPC более прочный, требуется меньше материала, поэтому торцевая конструкция легче, что снижает требования к опорам и опорам.

Неудивительно, что UHPC используется во многих американских инфраструктурных проектах для ремонта стареющих мостов и дорог страны. Материал увеличивает срок службы мостов, снижая общую стоимость жизненного цикла этих конструкций.UHPC предъявляет более низкие требования к техническому обслуживанию, учитывая его увеличенный срок службы, что еще больше способствует снижению затрат на срок службы.

Идеальное применение для UHPC:

При оценке конкретной бетонной смеси для проекта важно знать различные прочностные свойства этой смеси. Знание этих цифр и того, какие свойства прочности бетона обеспечивают проекту, является ключом к выбору правильной бетонной смеси.

Бетонные новинки, такие как UHPC, превосходят традиционный бетон по всем показателям прочности, что делает его разумным выбором для любых бетонных проектов.Снижение затрат на техническое обслуживание и увеличенный срок службы UHPC обеспечивает беспроигрышную надежность и более низкие затраты на жизненный цикл.

Фотография предоставлена ​​Peter Buitelaar Consultancy, дизайн — FDN в Эйндховене, Нидерланды.

Измерение прочности бетона на месте | Журнал Concrete Construction


Con-Cure Использование измерителей зрелости для измерения прочности монолитного бетона является точным методом измерения. Результаты помогают компаниям решить, когда безопасно снимать опалубку или подвергать стрессу пост-натяжение.

Существует несколько способов оценки прочности бетона на месте, например, испытание на зрелость, испытание датчиком Виндзора, отбойный молоток и испытание на отрыв.Узнайте больше о каждом.

Тестирование зрелости

В предыдущих колонках обсуждение было сосредоточено на испытании образцов из затвердевшего бетона — образцов, отвержденных в полевых условиях, по сравнению с образцами, отвержденными стандартным способом. Но какова реальная прочность бетона в конструкции? На сегодняшний день лучший метод определения этого — метод зрелости (ASTM C1074).

О зависимости увеличения прочности от температуры писали с 1940-х годов. Бетон быстрее набирает прочность в теплую погоду, чем в холодную.Поместив датчик в свежий бетон и снимая показания температуры с заданными интервалами, измеритель зрелости объединяет влияние времени и температуры для получения «числа зрелости». Уже разработанная кривая зрелости, соотношение числа зрелости к прочности на сжатие для конкретной конструкции бетонной смеси позволяет оценить прочность бетона в это время и в этом месте конструкции.

Использование метода погашения дает ряд преимуществ.

  • Он обеспечивает лучшее представление о приросте прочности на месте, чем в лаборатории или с образцами, отвержденными в полевых условиях.В 1988 году Федеральное управление шоссейных дорог определило, что даже образцы, отвержденные в полевых условиях, не точно отражают истинную скорость гидратации, испытываемой бетоном в конструкции.
  • Он позволяет проводить измерения прочности на месте, которые можно проверить в любое время. При использовании баллонов их можно испытать только один раз — проблема, если прочность ниже той, которая требуется для снятия берега или формы, особенно если нет дополнительных образцов.
  • Это обеспечивает лучшее время для строительных работ, зависящих от прочности.Поскольку прочность можно проверить в любое время, улучшенное время дает максимальную экономию времени без ущерба для безопасности или качества. Кроме того, не нужно тратить время на доставку образцов в лабораторию или на то, чтобы лаборатория позвонила и сообщила результаты.
  • Он позволяет проводить измерения прочности на месте в местах с наименьшей прочностью. Учитывая тот факт, что бетон, подвергнутый более высоким температурам, набирает прочность быстрее, чем бетон при более низких температурах, бетон в конструкциях набирает прочность с разной скоростью в разных местах в зависимости от различных температурных условий внутри конструкции.Например, более тонкие секции имеют тенденцию генерировать и сохранять меньше внутреннего тепла, чем секции, имеющие большую массу или меньшую площадь поверхности. Точно так же части конструкции набирают прочность с разной скоростью из-за эффектов затенения или прямого солнечного света. Метод зрелости для измерения увеличения прочности монолитного бетона позволяет проводить измерения в местах, где увеличение прочности, вероятно, будет самым медленным, обеспечивая дополнительную гарантию того, что никакие последующие работы не начнутся до тех пор, пока не будет достигнута достаточная прочность во всей конструкции.
  • Позволяет измерять прочность на месте в местах с «критической прочностью». Кроме того, возможность измерения прочности на основе зрелости позволяет инженеру конкретно нацеливать измерения прочности в тех местах, где ожидаются критические напряжения для ожидаемых условий нагружения во время последующих строительных работ.

    Определение того, сколько стоит тестирование зрелости, также связано со временем. Примером может служить расширение структуры парковки, проведенное несколько лет назад в международном аэропорту имени генерала Митчелла в Милуоки.Бетон в пандусах и настилах был испытан, чтобы определить, когда можно выполнять работы по последующему натяжению (ПН). Подрядчик использовал отвержденные в полевых условиях цилиндры, чтобы определить, когда следует подвергать напряжению сухожилия, но руководители проекта были недовольны тремя днями, которые потребовались для получения минимальной прочности, требуемой инженером-строителем. Таким образом, инженер-строитель одобрил тестирование на зрелость, что позволило подрядчику натянуть пряди за два дня, сэкономив целый день для каждого из примерно 50 отдельных размещений ПК.Таким образом, помимо точности измерений прочности бетона на месте, испытания на зрелость также экономят время и деньги.

    Испытания датчика Windsor

    Этот метод испытания прочности бетона осуществляется путем проникновения в поверхность бетона зонда из закаленной стали с тупым коническим наконечником. Зонд вводится в бетон из пистолета с патроном, заполненным порохом. Глубина проникновения измеряется, а прочность бетона берется из таблицы, предоставленной производителем.Однако, как указано в стандарте ASTM C803, взаимосвязь должна быть «экспериментально установлена ​​между сопротивлением проникновению и прочностью бетона с использованием тех же бетонных материалов и пропорций смеси, что и в конструкции». Прочность пасты может не сильно измениться, но совокупная прочность, безусловно, может меняться от региона к региону. Поскольку зонды могут проникать сквозь частицы заполнителя, действительно важно определить кривую зависимости прочности от проникновения для вашего района. Производитель предоставляет диаграмму твердости по Моосу для заполнителя в зависимости от глубины проникновения, чтобы получить прочность бетона, но это может быть субъективным и, как правило, недостаточно для получения точных результатов.

    Отбойный молоток

Nitto Cnstruction Co. Используя тестер бетона Nitto Construction CTS-02, рабочий осторожно постукивает по бетонной поверхности для расчета прочности бетона.

Метод определения числа отскока затвердевшего бетона приведен в ASTM C805. Использование отбойного молотка описано в Разделе 5.1 документа C805, в котором говорится, что «этот метод испытаний применим для оценки однородности бетона на месте, для определения областей в структуре более низкого качества или из поврежденного бетона, а также для оценки сила.На практике мы никогда не видели, чтобы кто-либо правильно выполнял метод испытания, потому что в разделе 5.2 говорится: «Связь между числом отскока и прочностью, предоставляемая производителями приборов, должна использоваться только для определения относительной прочности бетона в различных местах конструкции. ” Чтобы использовать этот метод испытаний для оценки прочности, необходимо установить соотношение и число отскока для данной бетонной смеси и данного оборудования. Чтобы установить взаимосвязь, вы должны соотнести числа отскока, измеренные на конструкции, с прочностью стержней, взятых из соответствующих мест.По крайней мере, два реплицированных ядра должны быть взяты как минимум из шести мест с разными числами отскока. Но часто инспекторы снимают показания отскока в нескольких местах, не соблюдая требований ASTM. Показания из одного и того же места часто не могут быть воспроизведены. По этой причине мы считаем тест практически бесполезным из-за большого разброса результатов. Мы всегда стараемся убедить наших клиентов использовать практически любой другой метод испытаний. Вариантом испытания отбойным молотком является недавно разработанное устройство, созданное Nitto Construction Co., Хоккайдо, Япония (см. Www.concretetester.com). Этот инструмент проверяет прочность нового или зрелого бетона с большей точностью и скоростью, чем обычные отбойные молотки, без громоздких и требующих много времени проблем с калибровкой, которые обычно возникают у отбойных молотков. Калибровка прибора занимает всего несколько секунд на настройку. Когда оператор ударяет по испытательной секции бетона молотковой частью устройства, он записывает и анализирует данные как об ударе, так и после удара, обрабатывая информацию намного быстрее, чем другие молотки с отскоком.Когда рабочий прикладывает легкую силу удара молотком к испытательному участку, прибор измеряет прочность бетона с беспрецедентной точностью. Он также может обнаруживать ранее нечитаемые дефекты и использоваться для обнаружения участков отслоившихся бетонных поверхностей.

Испытание на отрыв

Испытание на вырывание (ASTM C900) является слегка разрушающим испытанием, но область выдергивания относительно мала и может быть исправлена. Круглая металлическая вставная головка и соединительный вал засыпаны свежим бетоном, причем верхняя часть вала находится на высоте плиты.Вал имеет меньший диаметр, чем головка вставки. Когда нагрузка на выдвижной вал увеличивается до отказа, бетонный кусок конической формы вынимается. Прочность на вырыв может быть связана с прочностью на сжатие, чтобы определить, может ли продолжаться последующее натяжение, могут ли быть удалены формы и берега, или могут быть прекращены зимняя защита и отверждение. Также можно использовать установленные анкеры. Однако в этом тесте диапазон индивидуальных результатов может отличаться на 30% и более.

Проверить правильно

Эта статья представляет собой обзор утвержденных методов испытаний для оценки прочности бетона в конструкции.Каждый из обсуждаемых методов тестирования имеет гораздо больше компонентов, чем можно здесь упомянуть. Мы рекомендуем, чтобы испытания проводились компетентными фирмами и частными лицами, и, если это требуется в методе испытаний, тестировщик должен иметь надлежащие и действующие сертификаты.

Прочность бетона на сжатие — испытание куба, процедура, результаты

🕑 Время чтения: 1 минута

Испытание бетонного куба на сжатие дает представление обо всех характеристиках бетона.По этому единственному тесту можно судить о том, правильно ли было выполнено бетонирование. Прочность бетона на сжатие для общего строительства варьируется от 15 МПа (2200 фунтов на квадратный дюйм) до 30 МПа (4400 фунтов на квадратный дюйм) и выше в коммерческих и промышленных сооружениях.

Прочность бетона на сжатие зависит от многих факторов, таких как водоцементное соотношение, прочность цемента, качество бетонного материала, контроль качества во время производства бетона и т. Д.

Испытание на прочность на сжатие проводят на кубе или цилиндре.Различные стандартные нормы рекомендуют бетонный цилиндр или бетонный куб в качестве стандартного образца для испытания. Американское общество по испытанию материалов ASTM C39 / C39M предоставляет стандартный метод испытаний на прочность на сжатие цилиндрических образцов бетона.

Определение прочности на сжатие

Прочность на сжатие — это способность материала или конструкции выдерживать нагрузки на своей поверхности без трещин или прогибов. Материал при сжатии имеет тенденцию к уменьшению размера, тогда как при растяжении размер увеличивается.

Формула прочности на сжатие

Формула прочности на сжатие для любого материала — это нагрузка, приложенная в точке разрушения к площади поперечного сечения поверхности, на которую была приложена нагрузка.

Прочность на сжатие = нагрузка / площадь поперечного сечения

Процедура: испытание бетонных кубиков на прочность при сжатии

Для испытания кубиков используются два типа образцов: кубики размером 15 см х 15 см х 15 см или 10 см х 10 см х 10 см в зависимости от размера агрегата.Для большинства работ обычно используются кубические формы размером 15см х 15см х 15см.

Этот бетон заливается в форму и должным образом закаляется, чтобы не было пустот. Через 24 часа формы удаляют, а образцы для испытаний помещают в воду для отверждения. Верхняя поверхность этих образцов должна быть ровной и гладкой. Это делается путем нанесения цементного теста и его равномерного распределения по всей площади образца.

Эти образцы испытываются на машине для испытаний на сжатие после семи дней или 28 дней.Нагрузку следует прикладывать постепенно со скоростью 140 кг / см2 в минуту до разрушения образцов. Нагрузка при разрушении, деленная на площадь образца, дает прочность бетона на сжатие.

Ниже приводится процедура проверки прочности бетонных кубов на сжатие

Аппарат для испытания бетонных кубов

Машина для испытания на сжатие

Подготовка образца бетонного куба

Пропорции и материал для изготовления этих образцов для испытаний взяты из того же бетона, что и в полевых условиях.

Образец

6 кубиков размером 15 см Микс. M15 или выше

Замешивание бетона для испытания куба

Смешайте бетон вручную или в лабораторном смесителе периодического действия

Ручное смешивание

  1. Смешайте цемент и мелкий заполнитель на водонепроницаемой неабсорбирующей платформе, пока смесь полностью не смешается и не станет однородного цвета.
  2. Добавить крупный заполнитель и смешать с цементом и мелким заполнителем до тех пор, пока крупный заполнитель не распределится равномерно по всей партии.
  3. Добавьте воды и перемешивайте, пока бетон не станет однородным и желаемой консистенции.

Отбор кубиков для испытаний
  1. Очистите насыпи и нанесите масло.
  2. Залить бетон в формы слоями толщиной примерно 5 см.
  3. Уплотните каждый слой не менее 35 движений на слой, используя утрамбовочный стержень (стальной стержень диаметром 16 мм и длиной 60 см, заостренный пулей на нижнем конце).
  4. Выровняйте верхнюю поверхность и разгладьте ее шпателем.

Отверждение кубиков

Образцы для испытаний хранят во влажном воздухе в течение 24 часов, после чего образцы маркируют, извлекают из форм и хранят погруженными в чистую пресную воду до извлечения перед испытанием.

Меры предосторожности при испытаниях

Вода для отверждения должна проверяться каждые 7 дней, и температура воды должна быть 27 + -2oC.

Процедура испытания бетонного куба
  1. Выньте образец из воды по истечении заданного времени отверждения и сотрите излишки воды с поверхности.
  2. С точностью до 0,2 м.
  3. Выровняйте образец по центру опорной плиты машины.
  4. Аккуратно поверните подвижную часть рукой, чтобы она коснулась верхней поверхности образца.
  5. Приложите нагрузку постепенно без толчков и непрерывно со скоростью 140 кг / см 2 / мин, пока образец не сломается.
  6. Запишите максимальную нагрузку и отметьте любые необычные особенности в типе разрушения.

Примечание:

Необходимо проверить не менее трех образцов в каждом выбранном возрасте. Если прочность любого образца отличается более чем на 15 процентов от средней прочности, результаты таких образцов должны быть отклонены. Среднее значение трех образцов дает прочность бетона на раздавливание. Требования к прочности бетона.

Расчет прочности на сжатие

Размер куба = 15смx15смx15см

Площадь образца (рассчитанная по среднему размеру образца) = 225 см 2

Нормативная прочность на сжатие (f ck) через 7 дней =

Ожидаемая максимальная нагрузка = fck x площадь x f.с

Выбираемый диапазон …………………..

Аналогичный расчет следует провести для 28-дневной прочности на сжатие

Максимальная приложенная нагрузка = ………. тонов = …………. N

Прочность на сжатие = (Нагрузка в Н / Площадь в мм 2) = …………… Н / мм 2

= ………………………. Н / мм 2

Отчеты об испытании куба
  1. Опознавательный знак
  2. Дата испытания
  3. Возраст образца
  4. Условия отверждения, включая дату изготовления образца
  5. Внешний вид изломов поверхностей бетона и тип излома, если они необычные

Результаты бетонного куба Тест

Средняя прочность бетонного куба на сжатие =…………. Н / мм 2 (через 7 дней)

Средняя прочность бетонного куба на сжатие = ………. Н / мм 2 (через 28 дней)

Прочность бетона на сжатие при разном возрасте

Прочность бетона увеличивается с возрастом. В таблице показана прочность бетона в разном возрасте по сравнению с прочностью через 28 дней после заливки.

дней
Возраст Прочность в процентах
1 день 16%
3 дня 40%
7 дней 14496
7 дней 90%
28 дней 99%

Прочность на сжатие различных марок бетона через 7 и 28 дней 9049
Марка бетона Минимальная прочность на сжатие Н / мм 2 через 7 дней Заданная характеристическая прочность на сжатие (Н / мм 2 ) через 28 дней
10 15
M20 13.5 20
M25 17 25
M30 20 30
M35 23,5
M45 30 45

Некоторые факты об испытании бетона на прочность Почему испытание бетона на сжатие важно?

Испытание бетонного куба на прочность на сжатие дает представление обо всех характеристиках бетона.По этому единственному тесту можно судить о том, правильно ли было выполнено бетонирование.

Что такое прочность на сжатие обычно используемого бетона?

Прочность бетона на сжатие для общего строительства варьируется от 15 МПа (2200 фунтов на квадратный дюйм) до 30 МПа (4400 фунтов на квадратный дюйм) и выше в коммерческих и промышленных сооружениях.

Что такое прочность на сжатие через 7 и 14 дней?

Прочность на сжатие, достигаемая бетоном за 7 дней, составляет около 65%, а через 14 дней — около 90% от целевой прочности.

Какой тест наиболее подходит для определения прочности бетона?

Испытание бетонного куба или испытание бетонного цилиндра обычно проводят для оценки прочности бетона через 7 дней, 14 дней или 28 дней заливки.

Какого размера бетонные кубики используются для испытаний?

Для испытания кубиков используются два типа образцов: кубики размером 15 см х 15 см х 15 см или 10 см х 10 см х 10 см в зависимости от размера агрегата. Для большинства работ обычно используются кубические формы размером 15см х 15см х 15см.

Какая машина используется для испытания прочности бетона?

Машина для испытания на сжатие используется для проверки прочности бетона на сжатие.

Какова скорость нагрузки на машине для испытаний на сжатие?

Нагрузку следует прикладывать постепенно со скоростью 140 кг / см2 в минуту до разрушения образцов.

Какой код ACI используется для испытаний на прочность бетона?

Американское общество по испытанию материалов ASTM C39 / C39M предоставляет стандартный метод испытаний цилиндрических образцов бетона на прочность на сжатие.

Подробнее:

  1. Бетон — определение, марки, компоненты, производство, конструкция
  2. Почему мы проверяем прочность бетона на сжатие через 28 дней?

Прикладные науки | Бесплатный полнотекстовый | Мониторинг прочности бетонных конструкций в реальном времени с использованием техники EMI в сочетании с Fuzzy Logic

В связи с быстрым развитием более требовательных бетонных инфраструктур во всем мире, эти конструкции необходимо модернизировать и увеличивать с точки зрения их размера, дизайна, формы, устойчивости и прочности. .Чтобы соответствовать этим новым требованиям к конструкции, важна прочность бетона; Эти конструкции полагаются на бетон как на строительный агент из-за его хорошей прочности на сжатие, долговечности и экономической эффективности [1,2]. Поскольку бетон представляет собой неоднородный материал, состоящий из смеси воды, цемента, мелких заполнителей, крупных заполнителей, фибры / стали и различных других добавок, он чувствителен к процессу отверждения, который используется для достижения расчетной прочности [3]. Таким образом, бетон необходимо контролировать с момента его заливки до 28-го дня, чтобы определить, достиг ли он соответствующей проектной прочности [4,5].Для строительства бетонных конструкций был применен широкий спектр новых технологий для снижения затрат и повышения безопасности на АЭС и других строительных отраслях. Некоторые добавки также были разработаны для добавления в бетонные смеси для получения более высокой прочности на сжатие и долговечности или для улучшения удобоукладываемости. При строительстве АЭС прочный бетон с высокой прочностью на сжатие необходим для безопасного протекания токсичных химических процессов и защиты жизни людей и окружающей среды [6]. Таким образом, при заливке HSC необходимо следить за развитием прочности в раннем возрасте и определять, набирает ли бетон расчетную прочность.Для оценки прочности бетона на сжатие в раннем возрасте можно использовать различные виды испытаний. Методы неразрушающего контроля (неразрушающего контроля) обычно считаются рентабельными и экономящими время подходами к оценке состояния конструкций [7,8,9]. Методы неразрушающего контроля для бетона включают испытание отскоком / молотком Шмидта, распространение ультразвуковых волн и методы, в которых используются материалы PZT (пьезоэлектрические) [5,10,11,12,13,14]. Благодаря точности результатов, оценка прочности бетона с использованием EMI широко изучалась [13,14,15,16,17,18,19].В нашей работе эксперименты проводятся на основе неразрушающего контроля путем анализа динамического отклика конструкций на вибрации с помощью датчика материала PZT и анализа результатов EMI [20] с помощью нечеткой логики. В этом исследовании для получения данных с конкретных образцов используется метод неразрушающего контроля на основе одного датчика. Здесь материал PZT одновременно выполняет роль исполнительного механизма и датчика. После заливки бетона образец PZT приводится в действие (режим исполнительного механизма) для создания вибраций, а затем принимает (режим датчика) динамический отклик конструкции на ультразвуковые волны и вибрацию [21].Кроме того, после сбора данных была рассчитана взаимная корреляция (CC), и EMI был проанализирован как функция времени отверждения бетона с использованием моделирования с нечеткой логикой. Инструмент моделирования нечеткой логики в MATLAB использовался для моделирования данных с целью получения четких результатов. Требуемые правила нечеткой логики были установлены в соответствии с оценкой силы, а затем был запущен ввод данных для получения результатов. После этого процесса, на основе модели роста частот ультразвуковых волн от электромагнитных помех и данных, обработанных нечеткой логикой, были построены кривые для прогнозирования прочности; это дало нам выкидную линию, которую можно использовать для прогнозирования прочности бетона на сжатие в течение 28 дней.Когда эти данные моделирования сравнивались с фактическими результатами прочности бетона, которые наблюдались в течение 28 дней отверждения при испытании цилиндрических стержней, взятых из образцов, результаты были почти одинаковыми.

Предлагаемый нами метод неразрушающего контроля для оценки прочности бетона путем анализа электромагнитных помех с использованием нечеткой логики экономит время и обеспечивает безопасную и удовлетворительную процедуру мониторинга структурного состояния бетона. В будущем этот метод можно будет изменить, используя другие связанные параметры.

(PDF) Оценка прочности на сжатие нормального и вторичного заполненного бетона

Оценка прочности на сжатие нормального и вторичного заполненного бетона 431

Эта методология позволяет быстро и точно прогнозировать значения прочности на сжатие

. Обычный метод оценки прочности требует широкого использования отверждения

кубиков раствора при постоянных температурах или использования баз данных, содержащих большое количество

значений сжатия, сделанных для разных возрастов и отвержденных при разных температурах.Более того,

более того, все эти методы требуют многих часов лабораторных и полевых испытаний, сбора

и анализа данных.

Кроме того, существующие переменные в модели дали хорошие разумные результаты. Кроме того,

не рекомендуется загружать модель прогнозирования с большим количеством переменных. Модель

с меньшим числом переменных и с максимально возможной точностью является наиболее предпочтительной для обеспечения быстрого и легкого использования модели.

СПИСОК ЛИТЕРАТУРЫ

1. Tango S.C.E .: Метод экстраполяции для прогнозирования прочности на сжатие гидравлического цемента

продуктов, Исследования цемента и бетона, Vol. 28, 1998, pp.969-983.

2. Мехта П.М., Монтейро П.Дж.М., Бетон, микроструктура, свойства и материалы, McGraw-Hill, 2006.

3. Ньюман Дж., Чу Б.С., Передовые технологии бетона Свойства бетона, Elsevier Ltd, 2003.

4. Евтич Д., Закич Д., Савич А., Моделирование свойств цементных композитов, армированных волокном, Facta

univerzitates — Архитектура и гражданское строительство, Том 6., № 2, 2008, стр. 165-172

5. Грдич З., Деспотович И., Журчич Г.Т., Свойства самоуплотняющегося бетона с различными типами адитива

, Facta univerzitates — Архитектура и гражданское строительство, Том 6 ., № 2, 2008, стр. 173-177

6. Колак А., Новая модель для оценки прочности на сжатие портландцементного бетона, Цемент

и исследования бетона, Вып. 36, 2006, pp.1409-1413.

7. Яхья А.А.Дж., Метод зрелости: Модификации для улучшения оценки прочности бетона в более поздних

возрастах, Строительные материалы, Vol.20, 2006, стр 893-900.

8. Раджаман Н.П., Питер Дж. А., Амбили П.С., Прогноз прочности бетона на сжатие с использованием золы-уноса в качестве заменителя песка

, Цемент и бетонные композиты, Том 29, 2007, стр. 218-223

9. EN 1992 -1-1

10. SRPS U.M1.048

11. ACI 209.

PROCENA ČVRSTOE PRI PRITISKU BETONA

SA PRIRODNIM I RECIKLIRANIM AGREGATOM

Ksenija Drajanovic , Zoran Romakov

Procena čvrstoće pri pritisku se postavlja kao važan zadatak proizvoačima betona, naročito

pri projektovanju betonskih mešavina i obezbeđenju zahtevanog proizvedenogeta.U

radu je prikazano poreenje eksperimentalnih rezultata čvrstoće pri pritisku betona sa prirodnim i

recikliranim agregatom sa rezultatima dobijenim na osnovu jednačina prikazanikojs 9000i. Приказом является определение экспериментальных данных и результатов добрых

на основную преемственную премию данных по EN 1992-1-1, ACI 209 и таблицы за прерачунную дату

.0 SRPS U.M. Приказ зависимости чврстоце при притиске бетона на основную дату у

раду себе односи на устойчивое состояние у одного на врсту употребленного цемента и старости

на бетона бетона.

Ključne reči: čvrstoća pri pritisku, processnjena čvrstoća, reciklirani agregat.

Прочность бетона и бетонных кубов на сжатие | Что | Как

Прочность на сжатие

Прочность на сжатие любого материала определяется как сопротивление разрушению под действием сжимающих сил. Прочность на сжатие, особенно для бетона, является важным параметром, определяющим характеристики материала в условиях эксплуатации. Бетонная смесь может быть спроектирована или составлена ​​по пропорциям для получения требуемых инженерных свойств и долговечности в соответствии с требованиями инженера-проектировщика.Некоторые из других инженерных свойств затвердевшего бетона включают модуль упругости, предел прочности при растяжении, коэффициенты ползучести, плотность, коэффициент теплового расширения и т. Д.

Прочность бетона на сжатие — кубики

Прочность бетона на сжатие

Прочность на сжатие бетона определяется дозированием. заводские лаборатории для каждой партии, чтобы поддерживать желаемое качество бетона во время заливки. Прочность бетона требуется для расчета прочности стержней.Образцы бетона отлиты и испытаны под действием сжимающих нагрузок для определения прочности бетона.

Проще говоря, прочность на сжатие рассчитывается путем деления разрушающей нагрузки на площадь приложения нагрузки, обычно после 28 дней отверждения. Прочность бетона контролируется дозированием цемента, крупных и мелких заполнителей, воды и различных добавок. Отношение воды к цементу — главный фактор для определения прочности бетона.Чем ниже водоцементное соотношение, тем выше прочность на сжатие.

Пропускная способность бетона указывается в фунтов на квадратный дюйм в единицах США и в МПа — мегапаскалях в единицах СИ. Это обычно называется характеристической прочностью бетона на сжатие fc / fck. Для обычных полевых применений прочность бетона может варьироваться от 10 МПа до 60 МПа. Для определенных применений и конструкций бетонные смеси могут быть разработаны для получения очень высокой прочности на сжатие в диапазоне 500 МПа, обычно называемых сверхвысокопрочным бетоном или порошковым реактивным бетоном.

Устойчивость бетонных колонн

Стандартными испытаниями для определения прочности являются испытание кубом и испытание цилиндром. Как следует из названия, разница в обоих тестах заключается в форме образцов для испытаний. В индийских, британских и европейских стандартах прочность бетона на сжатие определяется путем испытания бетонных кубов, называемых характеристической прочностью на сжатие, тогда как в американских стандартах прочность цилиндров используется при проектировании RC и PSC. Он получен при испытании образца бетонного цилиндра.Однако эмпирические формулы можно использовать для преобразования прочности куба в прочность цилиндра и наоборот. В соответствии с определением индийского кода

«Прочность на сжатие бетона дана в терминах характеристической прочности на сжатие кубов размером 150 мм, испытанных в течение 28 дней (fck). Характеристическая прочность определяется как прочность бетона , ниже которой ожидается не более 5% результатов испытаний.”

Средняя прочность на сжатие в течение 28 дней не менее трех 150 мм бетонных кубов, приготовленных с использованием воды, предлагаемых к использованию, должна быть не менее 90% средней прочности трех аналогичных бетонных кубов, приготовленных с использованием дистиллированной воды. Для контроля качества при массовом бетонировании частота испытаний на прочность на сжатие кубическим тестом следующая.

-30
Количество бетона (в м3) Количество образцов для испытаний Прочность на сжатие
1-5 1
6-15 16492
3
31-50 4
51 + 4 + 1 куб на каждые дополнительные 50 м3

Минимальная или указанная прочность на сжатие бетонных кубов различной марки бетона 28 дней лечения следующие.

9049 мм2 9049 9049 мм 9049 9050 / мм2
Марка бетона Указанная минимальная прочность на сжатие 150 мм куба после 28 дней отверждения
M10 10 Н / мм2
M20 20 Н / мм2
M25 25 Н / мм2
M30 30 Н / мм2
M35 35 N / мм2
M45 45 Н / мм2
M50 50 Н / мм2
M55 55 Н / мм2
M60690/9049 9049 9049 9049 M65 65 Н / мм2
M70 70 Н / мм2
M75 75 Н / мм2
M80 80 Н / мм2
95010 Co Прочность на сжатие согласно американским нормам

В случае американских норм прочность на сжатие определяется как прочность цилиндра fc ’.Здесь прочность на сжатие бетона при 28-дневном отверждении получена для стандартного цилиндрического образца диаметром 150 мм и высотой 300 мм, нагруженного в продольном направлении до разрушения при одноосной сжимающей нагрузке. В обоих случаях производительность рассчитывается по формуле Компрессионная способность = Нагрузка при отказе / Область нагрузки. Как правило, прочность цилиндра будет равна 0,8 умноженной на кубической прочности для конкретного сорта бетона.

Как определить прочность бетонных кубов на сжатие

Для определения прочности бетона в соответствии с индийскими стандартами принята следующая процедура.

Цель:

Определение прочности бетона на сжатие.

Аппаратура:

Испытательная машина: Испытательная машина может быть любого надежного типа с достаточной производительностью для испытаний и способной прикладывать нагрузку с заданной скоростью. Допустимая погрешность не должна превышать 2% максимальной нагрузки. Испытательная машина должна быть оборудована двумя стальными опорными плитами с закаленными поверхностями.

Одна из плит должна быть снабжена седлом для шара в форме части сферы.центр которого совпадает с временной центральной точкой лицевой стороны валика. Другая прижимная плита должна быть жесткой подшипниковой опорой скольжения. Опорные поверхности обеих плит должны быть не меньше, чем. и предпочтительно больше номинального размера образца, к которому прилагается нагрузка.

Гидравлическая испытательная машина на сжатие

Опорная поверхность валиков. новые, не должны отклоняться от плоскости более чем на 0,01 мм в любой точке, и они должны поддерживаться с допустимым пределом отклонения, равным 0.02мм. подвижная часть сферической опорной плиты сжатия должна удерживаться на сферическом опоре. но конструкция должна быть такой, чтобы опорная поверхность могла свободно вращаться и наклоняться на небольшие углы в любом направлении.

Возраст при испытании:

Испытания должны проводиться в установленном возрасте испытуемых образцов, обычно 7 и 28 дней. Возраст рассчитывается с момента добавления воды сухих ингредиентов.

Количество образцов:

Не менее трех экземпляров.желательно из разных партий. должны быть сделаны для тестирования в каждом выбранном возрасте.

Форма для испытаний на сжатие

Процедура:

Образцы, хранящиеся в воде, должны быть испытаны сразу после извлечения из воды, пока они еще находятся во влажном состоянии. Поверхностная вода и песок должны быть удалены с образцов, а любые выступающие обнаруженные удаленные образцы после получения сухими должны быть выдержаны в воде в течение 24 часов, прежде чем они будут взяты для испытания. Размеры экземпляров с точностью до 0.2 мм и их вес следует записать перед испытанием.

Литье бетонных кубиков

Помещая образец в испытательную машину, опорная поверхность испытательной машины должна быть вытерта, а любой рыхлый песок или другой материал удалить с поверхности образца. которые должны контактировать с прижимными плитами. В случае кубиков образец должен быть помещен в машину таким образом, чтобы нагрузка прикладывалась к противоположным сторонам кубиков в отлитом виде, то есть не к верху и низу.Оси образца должны быть тщательно выровнены с центром усилия сферически установленной плиты.

См. Таблицу ниже, чтобы проверить массу куба для обеспечения плотности уплотненного бетона

испытательного образца и стальной плиты испытательной машины. Когда сферически установленный блок соприкасается с образцом, подвижная часть должна осторожно вращаться рукой, чтобы можно было получить равномерную посадку.Нагрузку следует прикладывать без толчков и непрерывно увеличивать со скоростью примерно 140 кгс · см / мин до тех пор, пока сопротивление образца возрастающей нагрузке не сломается, и терка не сможет выдержать нагрузку. Затем следует записать максимальную нагрузку, приложенную к образцу, и отметить внешний вид бетона и любые необычные особенности типа разрушения.

Испытание на прочность при сжатии для бетона M25 Разрушение бетона M25 при сжимающей нагрузке

Расчет:

Измеренная прочность на сжатие образца должна быть рассчитана путем деления максимальной нагрузки, приложенной к образцу во время испытания, на площадь поперечного сечения, рассчитанную из среднего значения. размеры секции и должны быть выражены с точностью до кг на см2.Среднее из трех значений должно быть принято как репрезентативное для партии, при условии, что индивидуальное отклонение составляет не более +/- 15 процентов от среднего. В противном случае необходимо провести повторные испытания.

Поправочный коэффициент в соответствии с отношением высоты к диаметру образца после укупорки должен быть получен из кривой, показанной на рис. 1 IS: 5 16-1959. Произведение этого поправочного коэффициента и измеренной прочности на сжатие должно быть известно как скорректированная прочность на сжатие, что является эквивалентной прочностью цилиндра, имеющего отношение высоты к диаметру, равное двум.Эквивалентная кубическая прочность бетона определяется умножением скорректированной прочности цилиндра на 5/4.

IS 456 Интерпретация результатов испытаний образца

  1. Результаты испытания образца должны быть средним значением прочности трех образцов.
  2. Индивидуальная вариация не должна превышать 15% от среднего.
  3. Если больше, результаты испытаний образца недействительны Бетон считается соответствующим требованиям прочности, если выполняются оба следующих условия:
  • Средняя прочность, определенная по любой группе из четырех последовательных результатов испытаний, совпадает с соответствующие пределы в столбце 2 таблицы 11
  • Любой результат отдельного теста соответствует соответствующим пределам в столбце 3 таблицы 11.

Факты об испытании на сжатие

При изменении скорости нагрузки на бетонный образец прочность изменяется пропорционально. При более высокой скорости нагружения прочность на сжатие увеличивается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.

Плотность бетона в кг / куб. М Объем куба размером 150 мм Соответствующий вес куба
2400 0,003375 8,1
2425 0.003375 8.184
2450 0.003375 8.269
2475 0.003375 8.353
2500
2500
2500