Виды пластика — Блог Просто-Ремонта
Пластик — одно из величайших изобретений 20-го века. Без него мы бы не смогли увидеть многие другие изобретения. Мы попытались кратко и доступно описать различные виды пластика, для чего они предназначены и где используются.Эта статья будет полезна не только тем, кто собирается делать ремонт, но и для тех, кому важно своё здоровье.
Виды пластика
1. PET (PETE), полиэтилентерефталат.
Самый часто используемый вид пластмассы, дешевый в производстве. ПЭТ используется при производстве большинства пластиковых бутылок для напитков, кетчупа, растительного масла, упаковки косметической продукции. Нехрупкий и эластичный материал. Отличная жесткость и ударостойкость. Именно поэтому его любят производители товаров народного потребления, так как упаковка не трескается при транспортировке или при падении с полок в супермаркетах. ПЭТ растворим в ацетоне, бензоле, толуоле, этилацетате, четыреххлористом углероде, хлороформе, метиленхлориде, метилэтилкетоне.
Токсичность: Что касается токсичности ПЭТ, следует помнить, что чистый ПЭТ не токсичен. Однако ПЭТ может содержать фталаты и другие токсичные химические соединения, которые вводят в полимер для повышения термо-, свето-, и огнеупорных свойств. Следует запомнить, что такой пластик действительно одноразовый. Категорически не рекомендуется использовать бутылки из такого пластика повторно — при повторном использовании изделия из ПЭТ могут выделять фталат и тяжелые металлы, что может вызвать заболевания сердечно-сосудистой, нервной систем и повлиять на гормональный баланс. В странах Европы и в США запрещено производить детские игрушки из ПЭТ.2. HDPE или PE HD, полиэтилен высокой плотности низкого давления.
3. ПВХ (Поливинилхлорид)
В обычном состоянии, ПВХ твёрдый и ломкий, поэтому для придания ему гибкости и мягкости добавляют пластификаторы, а именно вещества из группы фталатов. ПВХ долговечен, не боится ни влаги, ни солнца, температурных перепадов, устойчив к химическим соединениям.
Краткая заметка. ПВХ-кожа или экокожа — в чем разница? Экокожу производят из полиуретана. В отличие от ПВХ кожи, она пропускает воздух и воду, может иметь более натуральную текстуру
Токсичность:ПВХ считают совершенно безвредным. Хлор, входящий в его состав, находится в связанном состоянии. Вредное воздействие он оказывает, только когда разрушается. Процесс разрушения может начаться при окислении, при сильном нагревании или горении с выделением бензола.
Важное замечание:В обычном состоянии ПВХ не должен пахнуть. Если натяжной потолок, ПВХ панели или другие изделия резко пахнут, значит, была нарушена технология изготовления материала и использованы более дешевые присадки. В этом случае лучшим решением будет избавиться от этих изделий, если это возможно. То же самое касается и «запаха нового автомобиля». После изготовления элементов салона химические соединения нестабильны и в них происходит процесс отвода газов, в результате которого высвобождаются химические пары и появляется запах. Поэтому в первые полгода лучше почаще проветривать новую машину и не оставлять её надолго под прямыми лучами солнца. В интернете часто советуют промыть пластик мыльным раствором или лимоном, но, к сожалению, это не поможет. Выделение газов из самой структуры материала будет происходить ещё некоторое время.
4. LDPE полиэтилен низкой плотности высокого давления (ПВД, ПНП)
Гибкий и эластичный материал. Не боится низкой температуры и не становится хрупким на холоде. При контакте с пищевыми продуктами ПВД не выделяет вредных веществ. Из этого материала делают гладкие нешуршащие пакеты, пищевую упаковку, парниковые пленки, детские игрушки, мусорные мешки. Также его используют в ремонтах для разводки труб водоснабжения. Например, трубы Rehau Rautitan Stabil, которые мы используем в своих ремонтах, сделаны из полиэтилена низкой плотности. ПВД влаго- и воздухонепроницаем, устойчив к ультрафиолетовому излучению, сжатию и растяжению, не проводит электричество.
Токсичность: Не токсичен, биологически инертен и легко перерабатывается5. Полипропилен
Из полипропилена делают упаковочные материалы, пленки, ламповые патроны, ковры, термобелье и флисовую одежду, корпуса телевизоров, блоки предохранителей, некоторые автозапчасти и автомобильные бамперы, ингаляторы, одноразовые шприцы и другое пластиковое медицинское оборудование, которое требует стерилизации. Полипропилен легко воспламеняется, образуя при этом капли. Горит полипропилен светлым пламенем с голубой сердцевиной, выделяя резкий запах парафина.
Полипропиленовые сетки используют в качестве имплантационного материала при операциях по лечению грыж. Такие сетки могут оставаться в теле человека по нескольку лет. Однако стоит помнить, что полипропилен не рассчитан на длительные нагревания до высоких температур.
6. PS (ПС), Полистирол
Полистирол – термопластичный материал, обладающий высокой твёрдостью и хорошими диэлектрическими свойствами, химически стойкий по отношению к щелочам и кислотам, кроме азотной и уксусной. Растворяется в ацетоне и бензине. Не устойчив к ультрафиолетовому излучению. Обладает низким влагопоглощением и высокой влагостойкостью и морозостойкостью.
Разделяют 3 вида полистирола — общего назначения, ударопрочный и экструдированный. Из полистирола изготавливают всем известный пенопласт, упаковочные материалы В строительстве из полистирола производят теплоизоляционные материалы, потолочные галтели и декоративные плитки. Также из него делают одноразовую термопосуду и используют при упаковке бытовой техники в виде пенопласта.
Токсичность:В обычном состоянии безвреден. Токсичен при нагревании.
7. (PC, O, OTHER) –Поликарбонат, полиамид, смесь различных видов пластиков или полимеры, не указанные выше
В данную группу входят виды пластмасс, не получившие отдельный номер. Пластик под данной маркировкой не подлежит переработке. Маркировка PC означает, что изделие состоит из поликарбоната, одного из самых опасных видов пластика. Из него могут изготавливаться бутылочки для детей, пищевая упаковка, игрушки, бутылки для воды. При частом мытье или нагревании изделия из поликарбоната выделяют бисфенол А — вещество, которое может привести к гормональным нарушениям в организме человека.
Что следует запомнить
- Сам по себе пластик безвреден, опасны вспомогательные вещества, которые используются при его изготовлении. Чаще всего это присадки для придания пластику определенных свойств: термоустойчивость, эластичность или устойчивость к кислороду.
- — Не используйте PET упаковку вторично
- — Избегайте пластмассовые изделия с маркировкой 7
Что посмотреть по теме
Небольшое познавательное видео от компании Сибур о том, как получают полимеры и производят пластик:
Как сделать пластиковый потолок. Выбор материалов и руководство по монтажу
Современные технологии и новые строительные материалы кардинально изменили представление о процессе ремонта. Если до недавнего времени другой отделки поверхностей помещения, как окраска и побелка, не применяли, то сейчас сделать выбор, каким способом сделать ремонт – уже проблема. Интересным решением является выполнение потолка из пластика. В этом случае монтаж можно завершить за один день, и при этом получить превосходный результат с минимальными затратами. В данной статье расскажем, как сделать пластиковый потолок с небольшими трудозатратами своими руками.
Как сделать правильный выбор материала для пластикового потолка?
Чтобы правильно подобрать материал для потолка, необходимо тщательно изучить все аспекты вопроса.
Особенности потолка из пластика
Пластиковый потолокМатериалом потолочных панелей служит поливинилхлорид (ПВХ), который безопасен при эксплуатации и безвреден для человека. Во всем мире ПВХ применяется во многих областях жизнедеятельности человека, начиная с пищевой промышленности и заканчивая строительством. Это говорит об экологической чистоте этого вещества.
Следует понимать, что панели из ПВХ, предназначенные для стен и потолка, разнятся, поэтому нужно их различать. Потолочное покрытие имеет меньший вес и не высокие прочностные свойства. Использование панелей, предназначенных для стен, в отделочных работах на потолке приведет к существенному росту нагрузки на каркас. Вследствие этого возникает риск их обрушения. Применение потолочных плит на стенах со временем скажется в виде их деформации.
Один из видов подвесных потолковВыполнение потолочной облицовки пластиковыми плитами относят к одному из видов подвесных потолков. Монтаж пластика в этом случае происходит путем закрепления его на специальных подвесах. В качестве каркаса могут быть использованы рейки из дерева или металлические профили. Для реализации отделки не обязательно использовать дорогостоящие материалы, но желательно, чтобы они были достаточно высокого качества.
Установка таких потолков имеет некоторую специфику. Смонтированный потолок будет полностью соответствовать виду панелей. При использовании глянцевого материала швы будут практически не видны.
Обратите внимание! Поверхность, обладающая глянцем, имеет отражающую способность, что добавит оригинальности отделке. Матовые, цветные или с нанесенным рисунком панели не позволяют скрыть места стыков.
Свойства потолка из ПВХ-панелей
Выбор такого материала – это решение с дальним прицелом, так как пластик обладает рядом преимуществ.
Нередко происходят неприятные ситуации, связанные с затоплением квартиры соседями, проживающими на верхних этажах. В этом случае последствия будут минимальными, так как не придется производить замену панелей. Если бы были использованы обои или побелка, то неизбежно потребовался ремонт поврежденной поверхности.
В итоге, после монтажа пластиковых панелей потолок приобретает идеально ровный вид. Уход за такой поверхностью прост, достаточно протереть его водой или средствами для мытья. Перепады температур в помещении не нанесут вреда пластику, его внешний вид останется неизменным длительное время.
Это важно! Применение такого материала дает возможность скрыть дефекты потолка и различные коммуникации.
Потолок, облицованный пластиком, качественно меняет свой вид. При устройстве на нем декоративных светильников, помещение буквально преображается. Улучшить интерьер помещения можно при использовании не гладкого материала, а панелей с рельефом или контуром.
Пластиковые потолки подходят для ванных комнатПо сравнению с обустройством натяжных потолков, пластик существенно выигрывает в цене. Хотя при этом дешевым материалом он не является.
Это интересно! При проведении работ между поверхностями пластика и потолка образуется пустота. Наличие такой воздушной прослойки способствует улучшению тепло- и звукоизоляции.
Повышенная стойкость поливинилхлорида к воздействию влаги обуславливает применение его в ванной комнате. В случае затопления вследствие аварии пластик способен выдерживать возникшую дополнительную нагрузку, а также не станет средой обитания плесени. Это качество и простота ухода говорят в пользу использования ПВХ-панелей и в помещении кухни.
Виды пластиковых панелей
Ассортимент изделий из поливинилхлорида, предназначенных для облицовки потолка, отличается большим разнообразием. Стеновые панели обладают большей жесткостью и массой, потолочные отличаются хрупкостью и малым весом.
Внимание! Работу с материалом, применяющимся для отделки потолка, необходимо проводить крайне аккуратно.
ПВХ-панели изготавливаются с различной шириной, текстурой и разнообразной цветовой гаммы. Их поверхность может имитировать более дорогие материалы. При этом может создаваться иллюзия, что потолок облагорожен деревом. Также можно придать вид монолита, если не присматриваться к деталям.
Потолок с рельефомПластиковые панели выполняют:
- Глянцевыми с покрытием лаком, имеющим определенные свойства.
- Матовыми. В этом случае покрытие отсутствует.
- Цветными или имеющими рисунок. В зависимости от применяемой технологии:
- нанесение изображения происходит с термопленки. Способ не отличается дороговизной;
- печать осуществляется прямым способом. Этот метод позволяет достичь высокого разрешения печати и позволяет создать имитацию разнообразных текстур, орнаментов и широчайшей цветовой палитры.
Вне зависимости от внешнего вида, следует осуществить правильный выбор и оценить качество материала.
Выбор пластиковых панелей великКак определить качество пластиковых панелей: советы
Сначала необходимо произвести визуальную оценку состояния поверхности материала. При этом основными параметрами являются правильность геометрических размеров панели и качество ее поверхности. На этом этапе следует обратить внимание, насколько равномерно нанесено изображение и обладает ли поверхность достаточной ровностью. Панели высокого качества должны обладать безукоризненно гладкой и ровной поверхностью, также должны отсутствовать искажения в продольном направлении, неровности и линии.
Расположенные с тыльной стороны панели ребра жесткости должны быть не видны на лицевой поверхности.
Кроме этого, необходимо произвести сравнение их количества у некоторого числа подобных изделий. Важно понимать, что большее количество ребер придает жесткость и прочность потолочной конструкции. Также существенное влияние на прочностные характеристики панели оказывает толщина ребер и стенок.
Рекомендуется произвести следующий эксперимент: взяв две или более панелей, попробуйте создать монолитное соединение соответствующих сторон. В ходе этой процедуры нужно оценить, как хорошо и насколько легко происходит стыковка, а также в это время выясняют качество шва. Если материал высокого качества, то стыки практически не видны после окончания монтажа.
С целью определения прочности материала требуется сжать панель с некоторым усилием. Если в результате не произошло нарушений целостности и существенной деформации, то ПВХ-панель имеет удовлетворительное качество. При этом незначительная деформация является допустимым явлением.
Кроме того, необходимо осуществить проверку материала на изгиб. Для этого требуется сделать несколько движений приводящих к сгибанию и разгибанию уголка панели. В случае сохранения целостности изделия после 3-5 таких манипуляций, материал считается хорошего качества. В противном случае панель не пригодна к эксплуатации, так как в процессе монтажа или использования она при механических воздействиях разрушится.
Как сделать расчет необходимых деталей и не ошибиться
Для правильного монтажа потока из пластика важно сделать верный расчет для определения числа крепежных элементов и ПВХ-панелей.
С этой целью производится вычисление площади потолка путем умножения размеров его сторон. После этого определяют требуемое количество панелей. Для этого полученное значение площади делят на площадь одной панели и увеличивают его на 15-20% с округлением в большую сторону. Запас необходим для учета неизбежных отходов в виде отрезов.
После этого вычисляется количество профилей для монтажа. Чтобы не ошибиться, необходимо выполнить схематичное изображение потолка в масштабе. Вдоль одной из сторон проводят параллельные линии, с расстоянием между собой 500-600 мм, которые будут являться разметкой профилей. В завершении этих действий не составит труда посчитать количество последних.
Пластиковые панели бывают цветными и отличаются по текстуреДля крепления по периметру применяется UD-профиль, который обладает большей жесткостью. Для определения его количества достаточно знать величину периметра. В качестве поперечин используют легкий CD-профиль.
После этого осуществляют вычисление расхода элементов для крепления деталей каркаса и панелей к нему. Для крепления профилей расчет ведется по формуле: один дюбель расходуется на 500 мм. При монтаже панелей к профилям используются саморезы с широкими шляпками, число которых определяется из расчета один саморез на 500 мм пластиковой панели. При этом следует иметь некоторый запас саморезов.
Схема крепленияС целью определения количества плинтуса, в случае его применения, основным базовым параметром является периметр потолка. Для этого величину периметра делят на длину одного изделия (стандартный размер) и округляют полученное значение до числа, кратного трем. Округление производится в большую сторону.
Монтаж короба на потолке под пластик
На начальном этапе требуется определить горизонталь поверхности потолка. С этой целью производятся замеры углов и выбирают тот, который имеет наименьшую высоту. От этого угла отступают вниз 40-50 мм. Это расстояние даст возможность впоследствии монтировать светильники.
Короб для пластикового потолкаПри помощи уровня осуществляется разметка горизонтали. После этого производится сверловка отверстий через профиль, в которые вставляют дюбеля, и происходит крепление UD-профиля. При недостатке стандартной длины профиля (3 м) ее наращивают, скрепляя саморезами-“клопами”.
Закрепив профиль по периметру помещения, переходят к установке подвесов. Их располагают таким образом, чтобы они находились на одной линии с интервалом 600-700 мм и были параллельны. В случае присутствия выступов, подвесы монтируют чаще.
Для создания горизонтальной плоскости крепления CD-профилей натягивают нить от одной до другой стены. При этом необходимо предусмотреть достаточное натяжение нити, чтобы полученная горизонтальная поверхность не имела изъянов.
Материалы для работыПосле завершения подготовки, крепится с помощью “клопов” CD-профиль в соответствии с уровнем полученной горизонтальной плоскости. Эту часть работы желательно осуществлять вдвоем с помощником, который фиксирует профиль в требуемом положении, а другой человек производит его крепление.
Окончив монтаж профилей, незадействованная часть подвесов отгибается. Соединение CD и UD-профилей происходит клопами.
Обшивка потолка пластиком: как сделать и на что обратить внимание?
В результате подготовительных мероприятий на потолке получается каркас идеальных размеров полностью готовый для монтажа пластика. Крепление необходимо производить так, чтобы все точки касания с профилем были зафиксированы саморезами-“клопами”.
Монтаж пластиковых панелейСледует быть крайне аккуратными при перемещении пластика, чтобы в дальнейшем стыки имели высокое качество. В случае возникновения дефектов, их скрывают белым силиконом. Если панель цветная, то дефекты щели скрыть невозможно.
Подробный гид по выбору пластика для 3D-печати
Содержание:
Введение
Каждый, кто начинает заниматься 3D-печатью, задается вопросом: “Чем печатать, с чего начать?” На рынке десятки доступных пластиков для 3D-печати, производящихся в форме филамента — прутка намотанного на бобины. Разнообразие материалов может ввести неподготовленного человека в замешательство. Какой пластик для 3D-печати выбрать — именно тот вопрос, с решением которого данная статья поможет определиться начинающему 3D-печатнику.
Диаметр
В стародавние времена, когда экструдеры были большими, а скорость печати — маленькой, инструкция по приготовлению пластика для печати начиналась приблизительно так: “Возьмите термоклей для клеевого пистолета…”.
В поиске материалов для 3D-печати, первые энтузиасты обратили внимание на пруток для сварки пластика, он был диаметром 3 мм. И долгое время диаметр 3 мм оставался стандартом для любительской 3D-печати.
Но у этого диаметра есть недостаток: для работы с таким прутком необходимо достаточно большое усилие на экструдере, что требовало установки дополнительного редуктора.
Из-за стремления к удешевлению оборудования, диаметр прутка был сильно уменьшен и сейчас составляет 1,75 мм, что теперь стало стандартом. Малый диаметр филамента позволяет проталкивать его шестеренкой, надеваемой непосредственно на двигатель экструдера.
Пруток диаметром 3 мм, из-за его повышенной жесткости, до сих пор любят производители топовых 3D-принтеров с экструдером типа “боуден”. Например, его используют принтеры производства Ultimaker.
При выборе пластика для печати решающее значение имеет назначение печатаемых деталей. Также важны характеристики используемого принтера, так как не каждый пластик подойдет к каждому принтеру — помимо диаметра филамента, имеют значение его температура плавления, жесткость, наличие или отсутствие у принтера подогреваемой платформы и закрытой камеры.
Перейдем к рассмотрению типов пластиков:
Материалы
PLA (Полилактид)
PLA (Полилактид) — биоразлагаемый пластик, в основе которого находится молочная кислота. Производится из сахарного тростника или кукурузы. Может также производиться из других натуральных продуктов, таких как картофельный крахмал или целлюлоза.
Параметры печати:
-
Температура экструзии — 190-230°C
-
Температура стола — 20-60°C
-
Обдув — желателен
-
Межслойная адгезия — хорошая
-
Адгезия к столу — хорошая
Технические характеристики:
-
Температура плавления — 175-180°C
-
Температура размягчения — 50°C
-
Температура эксплуатации изделий — -20+40°C
-
Твердость (по Роквеллу) — R70-R90
-
Относительное удлинение при разрыве — 3,8%
-
Прочность на изгиб — 55,3 МПа
-
Прочность на разрыв — 57,8 МПа
-
Модуль упругости при растяжении — 3,3 ГПа
-
Модуль упругости при изгибе — 2,3 ГПа
-
Температура стеклования — 60-65°C
-
Плотность — 1,23-1,25 г/см³
-
Минимальная толщина стенок — 1 мм
-
Точность печати — ± 0,1%
-
Усадка при изготовлении изделий — нет
-
Влагопоглощение — 0,2-0,4%
Данный пластик нетоксичен и представлен разными производителями в широкой цветовой гамме.
Является одним из самых популярных пластиков для 3D-печати. Хорошо подходит для печати дома. Причиной данной популярности являются следующие характеристики:
Плюсы:
-
Не дает усадки при печати, что позволяет получить точное соответствие размеров напечатанного изделия смоделированному.
-
Не требует подогреваемого стола и не боится сквозняков при печати, а значит может использоваться для печати на самом дешевом китайском принтере с открытым корпусом.
-
Нетоксичен. Во время печати приятно и несильно пахнет, что позволяет печатать им в квартире без использования специальной вытяжки.
-
Твердый, прочный и скользкий, широкий диапазон применений.
-
Производится из натуральных компонентов, может использоваться для контакта с пищевыми продуктами.
-
Биоразлагаемый, вещи из данного пластика не наносят вреда окружающей среде при утилизации.
Минусы:
-
Под воздействием воздуха и ультрафиолета, как и любой натуральный материал, со временем становится более хрупким, вследствие чего не рекомендуется для долговременного применения при больших физических нагрузках или использования без защитного покрытия на открытом воздухе.
-
Низкая температура размягчения (50°C) — в салоне машины, оставленной на солнце в жаркий день, легко размягчается и теряет форму.
-
Узкий температурный диапазон использования (-20 — +40°C).
-
Высокая твердость пластика затрудняет его механическую обработку.
-
Пластик некоторых производителей, из-за высокого содержания остаточных мономеров, склонен к образованию пробок в цельнометаллических хотэндах.
Исходя из достоинств и недостатков данного пластика, можем обозначить следующие способы его применения.
3D-печать крупногабаритных изделий.
3D-печать изделий с точными размерами.
3D-печать декоративных элементов мебели.
3D-печать элементов интерьерного декора.
3D-печать изделий под покраску.
3D-печать прототипов корпусов и механических изделий.
Для дома, 3D-печать деталей, 3D-печать моделей, макетирование, 3D-печать корпусов и электроники, 3D-печать фурнитуры, 3D-печать посуды, пищевой пластик для 3D-принтера, биоразлагаемый пластик для 3D-принтера, пластик для 3D-принтера pla.
ABS (акрилонитрилбутадиенстирол)
ABS (акрилонитрилбутадиенстирол) — ударопрочный пластик, очень популярен в промышленности и 3D-печати. Изделия из ABS достаточно прочны, поэтому его часто используют для печати функциональных объектов, имеющих практическое применение.
Параметры печати:
-
Температура экструзии — 210-245°C
-
Температура стола — 90-120°C
-
Обдув — нежелателен
-
Межслойная адгезия — средняя
-
Адгезия к столу — средняя
Технические характеристики
-
Температура плавления — 175-210°C
-
Температура размягчения — 100°C
-
Температура эксплуатации — -40+80°C
-
Твердость (по Роквеллу) — R105-R110
-
Относительное удлинение при разрыве — 6%
-
Прочность на изгиб — 41 МПа
-
Прочность на разрыв — 22 МПа
-
Модуль упругости при растяжении — 1,6 ГПа
-
Модуль упругости при изгибе — 2,1 ГПа
-
Температура стеклования — 105°C
-
Плотность — 1,1 г/см³
-
Точность печати — ± 1%
-
Усадка при изготовлении изделий — до 0,8%
-
Влагопоглощение — 0,45%
Выпускается различными производителями в широком ассортименте цветовых оттенков. Некоторые производители, для снижения стоимости, выпускают его без катушек.
Из-за невысокой стоимости сырья, является одним из самых доступных по цене пластиков.
Плюсы:
-
Хорошее сочетание прочности и упругости позволяет использовать его для изготовления механических изделий рассчитанных на долгий срок эксплуатации.
-
Широкий диапазон используемых температур позволяет эксплуатировать изделия из него в технических целях.
-
Простота механической обработки, в комплексе с химическим сглаживанием поверхности недорогими растворителями типа ацетона, позволяют делать декоративные изделия или корпуса с высоким качеством поверхности.
Минусы:
-
Плохо переносит воздействие ультрафиолетового излучения, желтеет на солнечном свете, что ограничивает применение неокрашенных поверхностей на улице
-
Не любит сквозняков при печати, что ограничивает применение дешевых принтеров с открытым корпусом.
-
Из-за относительно высокой усадки склонен к деламинации (расслоению), требует наличия подогреваемого стола, без него возникают проблемы с прилипанием к столу первого слоя.
-
В процессе печати может образовываться неприятных запах, печатать лучше в проветриваемом помещении, или оснащать принтер специальной системой вытяжной вентиляции, с выводом за пределы квартиры.
Эти свойства обуславливают следующие применения данного пластика:
Печать декоративных изделий с последующей обработкой.
Печать механических изделий.
Мелкосерийная печать корпусов и комплектующих.
Печать изделий, рассчитанных на долгий срок службы в отсутствие воздействия прямого солнечного света.
Для дома, 3D-печать деталей, 3D-печать моделей, производство, макетирование, протезирование, 3D-печать корпусов и электроники, 3D-печать механизмов, 3D-печать фурнитуры, пластик для печати табличек, 3d печать в рекламе, промышленный пластик для 3D-принтера, прочный пластик для 3D-принтера, abs пластик для 3D-принтера
HIPS (высокопрочный полистирол)
HIPS (высокопрочный полистирол) — достаточно мягкий пластик, создавался для использования совместно с ABS, для поддержек при двуэкструдерной 3D-печати. Этому способствовали его следующие свойства: одинаковая с ABS температура экструзии, низкая спекаемость с ABS, наличие растворителя (D-Limonene), который растворяет HIPS и не растворяет ABS.
Параметры печати:
-
Температура экструзии — 210-245°C
-
Температура стола — 90-120°C
-
Обдув — нежелателен
-
Межслойная адгезия — средняя
-
Адгезия к столу — средняя
Технические характеристики
-
Температура плавления — 175-210°C
-
Температура размягчения — 97°C
-
Температура эксплуатации — -40+70°C
-
Твердость (по Роквеллу) — L79
-
Относительное удлинение при разрыве — 64%
-
Прочность на изгиб — 37,6 МПа
-
Прочность на разрыв — 16,4 МПа
-
Модуль упругости при растяжении — 0,93 ГПа
-
Модуль упругости при изгибе — 1,35 ГПа
-
Температура стеклования — 55°C
-
Плотность — 1,05 г/см³
-
Точность печати — ± 0,5%
-
Усадка при изготовлении изделий — 0,4%
-
Влагопоглощение — 1%
Но его характеристики сделали возможным использование данного пластика и для самостоятельного применения. На данный момент выпускается различными производителями в широком диапазоне цветов, однако меньшем, чем для PLA или ABS.
Плюсы:
-
Меньшая усадка, чем у ABS, что делает его пригодным для печати точных изделий.
-
Меньшая плотность, чем у PLA, что позволяет печатать изделия, где необходима легкость конструкции.
-
Мягкость поверхности, которая гарантирует простоту механической обработки.
-
Матовость, которая придает эффект сглаженности изделиям.
-
Температура размягчения почти как у ABS, что позволяет использовать его в уличных условиях.
Минусы:
-
Как и ABS, требует подогреваемой платформы и подвержен деламинации, хоть и в меньшей степени.
-
Меньшая, чем у ABS, прочность на изгиб и, как следствие, большая хрупкость изделий.
-
Низкая устойчивость к ультрафиолетовому излучению, что ограничивает использование изделий на солнечном свете.
Все это позволяет использовать данный пластик для производства мебельного декора и интерьерных украшений.
Основное применение — это печать поддержек для ABS.
Для дома, 3D-печать моделей, производство, макетирование, 3D-печать фурнитуры, растворимый пластик для 3D-принтера, hips пластик для 3D-принтера
PETG
PETG (полиэтилентерефталат-гликоль) — относительно новый, по сравнению с тем же ABS, материал, но уже завоевавший заслуженное признание у 3D-печатников. Пластик достаточно ударопрочный, а спекаемость слоев получается такой, что при нагрузке изделие часто ломается против слоев, а не вдоль.
Параметры печати:
Декоративный пластик для мебели Lemark
Завод ЛЕМАРК производит листовой мебельный пластик, который относится к облицовочному и конструкционному видам ДБСП HPL. Основная сфера применения облицовочного пластика для мебели толщиной от 0,55 до 2,0 мм — мебельная промышленность. Он используется в качестве декоративного покрытия плит — ДСП (ДСтП) и МДФ. Пластик, применяемой в технологии постформинга, выпускается толщиной до 1,2 мм.
Пластик под дерево
Пластик под камень/песок
Конструкционный вид пластика HPL, который часто называют компакт или самонесущий (т.е. сам заменяет плиту и не требуется его наклеивать на более твердое основание), выпускается толщиной от 3 до 25 мм. Он используется при изготовлении специализированной мебели и отделке интерьеров и экстерьеров общественных объектов: вокзалов, лабораторий, больниц, фитнес клубов, офисов, производственных предприятий, пассажирского транспорта.
Богатая складская программа листового пластика для мебельных фасадов включает в себя 5 коллекций: однотонные (монохромы), однотонные перламутры, дерево, камень и песок, фантазия, что позволяет дизайнерам, архитекторам и потребителям иметь неограниченные возможности для реализации своих художественных идей.
Пластик для мебельных фасадов
Основными достоинствами ДБСП HPL Lemark являются его высокие эксплуатационные показатели, гигиеничность и экологичность. Например, древесностружечная плита, облицованная листовым мебельным пластиком со всех сторон, становится более безопасной, так как пластик HPL, имеющий внешнее меламиновое монолитное покрытие, препятствует выделению из нее вредных веществ. Поэтому и мебель, изготовленная из такой плиты, тоже становится более экологически чистой. Листовой пластик для мебели Lemark — является ее надежной защитой от внешних воздействий. Пластик для мебельных фасадов устойчив к влаге, теплу, пару, удобен в эксплуатации, т.к. хорошо очищается мягкой тряпочкой смоченной в мыльном растворе.
Завод ЛЕМАРК, постоянно поддерживает и пополняет складскую программу, поэтому наши клиенты всегда могут купить пластик для мебели Lemark в кротчайшие сроки. Несмотря на высокое качество нашей продукции, цена на мебельный пластик Lemark, намного ниже, чем цена на европейские аналоги, и в основном зависит от его толщины и выбранного декора.
Купить пластик Lemark Вы всегда можете в офисе на заводе, который находится по адресу: Московская область, город Солнечногорск, ул. Бутырский тупик, д.1 или у наших партнеров в регионах.
Декоры Перламутровые фантазии
Любой декор может быть выполнен в следующих отделках (тиснениях)
Купить пластик для мебели Вы можете у нашего дилера – компании «Пластики и пленки»,
сайт www.plastics-foils.ru, тел. +7 (499) 638-24-86
Литье пластмасс в силикон — доступное мелкосерийное производство в домашних условиях
Многие из тех, кто печатает на 3D-принтере сталкиваются или с необходимостью получить партию моделей в короткие сроки, или скопировать удачно получившуюся деталь, или получить изделия с прочностными характеристиками, превосходящими таковые у пластиков для домашней 3d-печати.3D-принтер далеко не всегда способен выполнить такие задачи, но отлично подойдет для создания единственного образца, или мастер-модели. А дальше на помощь нам приходят материалы производства компании Smooth-On, наверное, самого популярного производителя материалов холодного отверждения.
В этом обзоре мы сравним самые основные и популярные силиконы, полиуретаны и добавки к ним, кратко посмотрим на основные способы создания форм и изделий, подумаем, где это может найти применение и, наконец, создадим свою силиконовую форму и модель.
Перед написанием этого поста мы прошли трехдневный тренинг у официального дилера Smooth-On в России, чтобы разобраться во всех тонкостях литья в силикон.
Обзор процесса
Процесс создания изделий методом литья практически всегда одинаков: создаем модель, с её помощью создаем силиконовую форму, заливаем в нее материал, получаем изделие. Но в зависимости от модели, необходимых свойств, количества отливок, каждый этап может кардинально меняться. Существует несколько способов как создания формы, так и готового изделия.
Пару слов о подготовке моделей, напечатанных на 3D-принтере. Компания Smooth-On обратила своё внимание на эту технологию и выпустила специальный лак под названием XTC-3D. Он прекрасно сглаживает характерные для напечатанных моделей огрехи, видимые слои, которые обязательно перейдут на силиконовую форму, и придает поверхности гладкость и глянцевый вид.
Подробный обзор XTC 3D Вы можете прочитать здесь.
Методы создания форм
• Сплошная заливка
Самый простой способ: модель помещается в опалубку (специальную герметичную емкость из обычного оргстекла, пластика или другого материала), фиксируется в ней и заливается силиконом. Хорошо подходит для простых двухмерных моделей, рельефов, сувенирной и брендинговой продукции.
• Разрезная форма
Аналогичен предыдущему, только модель размещается с учетом того, что форма будет разрезаться полностью или частично для облегчения съема. Модель может быть подвешена с помощью проволоки или размещена на тонкой опоре. Способ предназначен для более сложной геометрии, технических изделий, сложных фигур.
• Двухсоставная форма
Это один из самых сложных способов. Заключается в помещении модели на глиняную или пластилиновую основу, которая делит силиконовую форму пополам.
На основе размещаются специальные замки, которые будут обеспечивать точное совмещение двух форм и отсутствие смещений. Вокруг основы собирается опалубка, герметизируется горячим клеем или пластилином, и в неё заливается первая половина формы. Затем, после отверждения силикона, форма переворачивается, глина или пластилин счищаются, силикон покрывается разделительным составом, и заливается вторая половина формы.
• Метод «в намазку»
Этим методом создаются так называемые «чулочные» формы, когда силикон точно повторяет форму объекта и имеет толщину от 3 мм до нескольких сантиметров. Для создания формы «в намазку» необходим достаточно вязкий силикон, который бы не стекал с модели.
Можно использовать как специально предназначенные для этого силиконы, называемые тиксотропными, так и обычные, но модифицированные с помощью загустителей.
Силикон наносится кисточкой или шпателем в несколько слоёв, в которых чередуется вязкость и скорость отвердевания, чтобы форма была максимально детализированной и прочной. После того, как все слои готовы, с помощью специального состава создается жесткая внешняя оболочка, которая будет держать форму.
Методы заливки пластиков
Самый простой метод заключается в обычной заливке пластика в форму, он подходит для домашнего использования и позволяет достичь приемлемого качества. Но, по необходимости, для более качественного результата возможно использование установок высокого давления, что позволит практически полностью убрать пузырьки воздуха.
Для этого форма вместе с залитым пластиком помещается в камеру, в которой создается повышенное до 4 атмосфер давление. Форма должна оставаться в камере все время отвердевания полиуретана. При таком давлении пузыри уменьшаются до почти невидимых глазу размеров, что значительно повышает качество изделия.
Еще один метод, так называемая заливка «в обкатку», используется для создания полых изделий. В форму заливается небольшое количество пластика, около 10% от общего объема, отверстие для заливки закрывается, и начинается вращение формы по всех плоскостях, вручную или на специальной ротационной машине. При этом пластик отвердевает на стенках формы, создавая полую модель, что позволяет существенно снизить вес изделия и экономить материал.
Обзор силиконов
• Серия Mold Star 15, 16, 30
Силиконы для создания форм на основе платины. Застывают при комнатной температуре, образуют прочную, гибкую и очень детализированную форму. Предназначены для литья силикона, полиуретана, смол, полиэстера, воска и других материалов. Химически чувствительны и не способны работать с латексом, серой и некоторыми другими соединениями.
Самые базовые и основные силиконы, способные решать большинство задач. Цифра в названии отражает твердость по шкале Шор А. Обладает низкой вязкостью, что позволяет в большинстве случаев работать без оборудования для дегазации. Материал двухкомпонентный, части смешиваются в удобном соотношении 1:1 по объему. В основном предназначены для создания форм методом сплошной заливки.
• Серия Rebound 25, 40
Серия силиконов для создания форм методом «в намазку», который состоит в том, чтобы наносить силикон кистью или шпателем на поверхность модели. Обладает высокой вязкостью, возможностью модификации свойств с помощью загустителей и ускорителей для создания качественной многослойной формы. Двухкомпонентный, смешивается в соотношении 1:1 по объему.
• Серия Equinox 35, 38, 40
Силиконовые пасты с временем жизни 1, 4 и 30 минут. Предназначены для ручного смешивания, по консистенции напоминают густое тесто. Цифры соответствуют твердости по Шору А. Обладает крайне высокой прочностью на разрыв и долговечностью. В отвержденном состоянии является безопасным для заливки шоколада, карамели и других ингридиентов.
• Серия SortaClear 18, 37, 40
Серия полупрозрачных силиконов. Такая особенность, как оптическая прозрачность, используется для создания сложных разрезных форм — изделие прекрасно просматривается, что позволяет сделать точный разрез. Как и серия Equinox, является безопасным при контакте с пищевыми продуктами.
Также к силиконам существует большое количество добавок, обладающих самыми разными эффектами. Accel-T и Plat-Cat являются ускорителями отверждения, Slo-jo — увеличивает время жизни силикона, Thi-Vex увеличивает вязкость силикона и позволяет намазывать его кистью или шпателем на модель, Silc-Pig — это концентрированные пигменты для окрашивания.
Обзор полиуретанов
• Серия Smooth-Cast
Самая основная и популярная серия полиуретанов для создания конечных изделий. Линейка включает в себя более 10 наименований различных пластиков с самыми разными свойствами, позволяющими подобрать материал именно для Вашего проекта. Например, Smooth-Cast 300 обладает коротким временем жизни в 3 минуты и временем отверждения в 10 минут, что позволяет быстро воспроизводить большие партии деталей. Smooth-Cast 305 аналогичен предыдущему, но «живет» уже 7 минут, что позволяет провести дегазацию смешанных компонентов и получить еще более качественное изделие. ONYX обладает глубоким черным цветом, которого не достичь с помощью красителей, 65D ROTO предназначен для создания полых моделей с помощью метода «в обкатку», 325 незаменим для точного воспроизведения цвета, 385 отверждается практически без усадки и максимально точно копирует изделие.
• Серия TASK
Серия полиуретанов специального назначения. Разработана для промышленного применения и обладает специфическими свойствами для конкретных задач.
Для Вашего удобства мы сформировали специальные фильтры по сферам применения:
• Пищевые:
Smooth-Sil 940, серия Sorta Clear, серия Equinox, TASK 11.
• Архитектурные, заливка бетона и других абразивных материалов:
Серия VytaFlex, серия Brush-On, серия Ez-Spray, серия PMC.
• Медицинские: симуляция тканей и органов
Серия Dragon Skin, добавки Slacker, Ecoflex 0030, Ecoflex Gel, Body Double.
• Прототипирование:
Практически любые полиуретаны и силиконы, в зависимости от задач и требований. Серии Mold Max, Mold Star, Smooth-Cast, TASK.
• Спецэффекты и грим:
Skin Tite, Body Double, Dragon Skin, Alja-Safe, Ecoflex, Soma Foama, Rubber Glass, Encapso K.
Стоит отметить, что это деление все же условное, и дано, чтобы примерно представить возможности широкого ассортимента компании Smooth-On.
Обзор процесса
Мы будем использовать только те материалы и оборудование, которые можно применить в домашних условиях. Мы попробуем создать самую сложную в изготовлении двухсоставную форму.
Нам понадобятся:
• Платиновый силикон Mold Star 30
• Заливочный полиуретан Smooth-Cast 300
• Лак для 3D-моделей XTC-3D
• Упаковка виниловых перчаток
• Несколько одноразовых пластиковых стаканчиков
• Емкости для смешивания
• Термоклеевой пистолет
• Материал для опалубки (пластиковые панели)
• Скульптурная глина
• Несколько малярных кистей
В роли мастер-модели выступит модель довольно популярного среди печатников тестового болта. Мы распечатали его черным PLA пластиком на Picaso 3D Designer с толщиной слоя 100 микрон. Сделали мы это специально для того, чтобы продемонстрировать эффект XTC 3D, поскольку далеко не каждый 3D принтер может печатать с качеством 50 микрон.
Далее — обработка, чтобы отлитая модель не переняла слоистость напечатанного объекта. Обрабатываем болт лаком XTC-3D (подробнее об этом процесс можно прочитать тут), а затем шкурим, чтобы получить гладкую матовую поверхность.
Теперь модель готова к заливке силиконом. Помещаем её на глиняную основу, с помощью которой мы создадим силиконовую форму из двух частей.
Модель должна быть погружена в глину ровно наполовину, так что начинаем процесс выравнивания глины. Края должны быть максимально ровными и полностью прилегать к модели, от этого зависит качество разделения силиконовых половинок. Убираем лишнюю глину и заключаем модель в пластиковую опалубку.
Все стыки пластика обрабатываем термоклеевым пистолетом и закрываем опалубку, окончательно обрабатываем глиняную основу, делаем в ней выемки для замков.
Все готово к заливке силикона. Поскольку двухкомпонентные силиконы и полиуретаны склонны к разделению на фракции, перед каждым использованием их необходимо тщательно перемешивать в емкости.
После перемешивания отмеряем равное количество двух компонентов по объему и приступаем к смешиванию.
Для данной марки силикона дегазация в вакуумной камере необязательна, что очень удобно: исключены появления пузырьков, которые могут испортить нашу форму. Медленно заливаем силикон в опалубку, в самую нижнюю её точку.
И оставляем застывать. Время застывания для этой марки силикона составляет 6 часов. По истечении этого времени освобождаем модель от опалубки.
Затем убираем глину, тщательно очищаем модель от её остатков, смазываем силикон разделительным составом. В случае его отсутствия, можно использовать и обычный вазелин, но качество будет немного хуже.
И дальше полностью повторяем процесс, заливая вторую половину силиконовой формы.
Спустя еще 6 часов силиконовая форма готова. С помощью лезвия аккуратно разъединяем половинки, вынимаем деталь и оцениваем, что у нас получилось.
Хорошо видны замки, закладывавшиеся в глиняной основе, хорошая детализация, несмотря на то, что разделительная линия проходила по довольно сложным местам, вроде вдавленных букв.
На самом деле, для данной модели это не самый оптимальный способ создания формы. Но нам было интересно протестировать именно этот метод, несмотря на сложности.
Итак, все готово к заливке полиуретана. Соединяем две половинки формы, используя элементы опалубки для жесткости, скрепляем с помощью резинок, скотча или другим способом, и приступаем к подготовке полиуретана.
Хорошо перемешиваем оба компонента, встряхивая их в течение 5-10 минут. После этого даем немного отстояться, чтобы вышли образовавшиеся пузыри. Все остальное точно так же, как и с силиконом: отмеряем равное количество по объему и смешиваем их. А дальше действовать нужно быстро: время жизни этого полиуретана составляет всего 3 минуты, а время начинает идти сразу, как вы смешали два компонента вместе. Так что мешаем быстро, но аккуратно, чтобы не создавать лишних пузырьков, и сразу заливаем в форму.
Примерно через 3 минуты, в зависимости от объема материала, произойдет быстрое схватывание пластика, а через 10 минут деталь готова к извлечению.
Модель готова. Переданы абсолютно все детали оригинала.
Заключение
Хочется отметить, что поистине огромные возможности использование материалов Smooth-On открывает в совокупности с 3D-печатью.
Теперь Вы можете получать изделия из огромного количества материалов с самыми различными свойствами, а не ограничиваться лишь классическими PLA и ABS. К тому же, доступным станет мелкосерийное производство: распечатав всего один экземпляр и должным образом его обработав, Вы сможете в довольно короткие сроки создать необходимое Вам количество копий в домашних условиях. Для достижения приемлемого результата вовсе не обязательно использование дорогостоящего оборудования.
В случае если Вам необходимы услуги мелкосерийного производства Top 3D Shop к вашим услугам.
Виды и свойства пластмасс. Определение типа пластика
В современных автомобилях доля пластмассовых деталей постоянно растет. Растет и количество ремонтов на пластмассовых поверхностях, все чаще мы сталкиваемся с необходимостью их окрашивания.
Во многом окраска пластмасс отличается от окраски металлических поверхностей, что обусловлено, в первую очередь, самими свойствами пластмасс: они более эластичны и имеют меньшую адгезию к ЛКМ. А так как спектр полимерных материалов, применяемых в автомобилестроении, очень разнообразен, то не будь каких-то универсальных ремонтных материалов, способных создавать качественное декоративное покрытие на многих из их типов, малярам бы, наверное, пришлось получать специальное образование по химии.
К счастью, все на самом деле окажется значительно проще и погружаться с головой в изучение молекулярной химии полимеров нам не придется. Но все же некоторые сведения о типах пластмасс и их свойствах, хотя бы с целью расширения кругозора, будут явно нелишними.
Сегодня вы узнаете
Пластмассы — в массы
В XX веке человечество пережило синтетическую революцию, в его жизнь вошли новые материалы — пластмассы. Пластмассу можно смело считать одним из главных открытий человечества, без ее изобретения многие другие открытия были бы получены намного позже или их не было бы вовсе.
Александр Паркс. Изобретатель первой пластмассы
Первая пластмасса была изобретена в 1855 году британским металлургом и изобретателем Александром Парксом. Когда он решил найти дешевый заменитель дорогостоящей слоновой кости, из которой в то время делались бильярдные шары, вряд ли он мог себе представить, какое значение впоследствии приобретет полученный им продукт.
Ингредиентами будущего открытия стала нитроцеллюлоза, камфора и спирт. Смесь этих компонентов прогревалась до текучего состояния, а затем заливалась в форму и застывала при нормальной температуре. Так на свет появился паркезин — прародитель современных пластических масс.
От природных и химически модифицированных природных материалов к полностью синтетическим молекулам развитие пластмасс пришло несколько позже — когда профессор Фрейбургского университета немец Герман Штаудингер открыл макромолекулу — тот «кирпичик», из которого строятся все синтетические (да и природные) органические материалы. Это открытие принесло в 1953 году 72-летнему профессору Нобелевскую премию.
С тех-то пор все и началось… Чуть ли не ежегодно из химических лабораторий шли сообщения об очередном синтетическом материале с новыми, невиданными свойствами, и сегодня в мире ежегодно производятся миллионы тонн всевозможных пластических масс, без которых жизнь современного человека абсолютно немыслима.
Пластмассы используются везде, где только можно: в обеспечении комфортной жизнедеятельности людей, сельском хозяйстве, во всех областях промышленности. Не исключением является и автомобилестроение, где пластик используется все шире, неудержимо вытесняя своего основного конкурента — металл.
По сравнению с металлами пластмассы — очень молодые материалы. Их история не насчитывает и 200 лет, в то время как олово, свинец и железо были были знакомы человечеству еще в глубокой древности — за 3000-4000 лет до н. э. Но несмотря на это, полимерные материалы по ряду показателей значительно превосходят своего основного технологического конкурента.
Преимущества пластмасс
Преимущества пластмасс по сравнению с металлами очевидны.
Во-первых, пластик существенно легче. Это позволяет снизить общий вес автомобиля и сопротивление воздуха при движении, и тем самым — уменьшить расход топлива и, как следствие, выброс выхлопных газов.
Общее снижение веса автомобиля на 100 кг за счет применения пластмассовых деталей позволяет экономить до одного литра топлива на 100 км.
Во-вторых, использование пластмасс дает почти неограниченные возможности для формообразования, позволяя воплощать в реальность любые дизайнерские идеи и получать детали самых сложных и хитроумных форм.
К преимуществам пластмасс также можно отнести их высокую коррозионную стойкость, устойчивость к атмосферным воздействиям, кислотам, щелочам и прочим агрессивным продуктам химии, отличные электро- и теплоизоляционные свойства, высокий коэффициент шумоподавления… Словом, неудивительно, почему полимерные материалы находят столь широкое применение в автомобилестроении.
Предпринимались ли попытки создать полностью пластмассовый автомобиль? А как же! Вспомнить хотя бы небезызвестный «Трабант», выпускавшийся в Германии более 40 лет назад на заводе в Цвик-кау — его кузов был целиком изготовлен из слоистого пластика.
Для получения этого пластика 65 слоев очень тонкой хлопчатобумажной ткани (поступавшей на завод с текстильных фабрик), чередующихся со слоями размолотой крезолоформальдегидной смолы, спрессовывались в очень прочный материал толщиной 4 мм при давлении 40 атм. и температуре 160 °С в течение 10 мин.
До сих пор кузова гэдээровских «Трабантов», про которые пели песни, рассказывали легенды (но чаще сочиняли анекдоты), лежат на многих свалках страны. Лежат… но ведь не ржавеют!
Trabant. Самый популярный в мире автомобиль из пластика
Шутки шутками, а перспективные разработки цельнопластмассовых кузовов серийных авто есть и сейчас, многие кузова спортивных автомобилей целиком изготавливаются из пластика. Традиционно металлические детали (капоты, крылья) на многих автомобилях сейчас также меняют на пластиковые, например, у автомобилей Citroën, Renault, Peugeot и других.
Вот только в отличие от кузовных панелей народного «Траби», пластиковые детали современных автомобилей уже не вызывают иронической улыбки. Напротив — их стойкость к ударным нагрузкам, способность деформированных участков к самовосстановлению, высочайшая антикоррозионная стойкость и малый удельный вес заставляют проникнуться к этому материалу глубоким уважением.
Завершая разговор о достоинствах пластмасс нельзя не отметить тот факт, что хоть и с некоторыми оговорками, но все-таки большинство из них отлично поддается окрашиванию. Не имей серая полимерная масса такой возможности, вряд ли бы она снискала такую популярность.
Зачем красить пластик?
Необходимость окрашивания пластмасс обусловлена с одной стороны эстетическими соображениями, а с другой — необходимостью защищать пластики. Ведь ничего вечного нет. Пластики хоть и не гниют, но в процессе эксплуатации и воздействия атмосферных влияний, они все равно повергаются процессам старения и деструкции. А нанесенный лакокрасочный слой защищает поверхность пластика от различных агрессивных воздействий и, следовательно, продлевает срок его службы.
Если в условиях производства окрашивание пластмассовых поверхностей производится очень просто — в данном случае речь идет о большом количестве новых одинаковых деталей из одной и той же пластмассы (да и технологии там свои), то маляр в авторемонтной мастерской сталкивается с проблемами разнородности материалов различных деталей.
Вот здесь то и приходится ответить себе на вопрос: «Что вообще такое пластмасса? Из чего ее делают, каковы ее свойства и основные виды?».
Что такое пластмасса?
В соответствии с отечественным государственным стандартом:
Пластмассами называются материалы, основной составной частью которых являются такие высокомолекулярные органические соединения, которые образуются в результате синтеза или же превращений природных продуктов. При переработке в определенных условиях они, как правило, проявляют пластичность и способность к формованию или
деформации.
Если из такого сложного даже для чтения, а не только для понимания, описания убрать первое слово «пластмассами», пожалуй, вряд ли кто догадается, о чем вообще идет речь. Что ж, попробуем немного разобраться.
«Пластмассы» или «пластические массы» назвали так потому, что эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать определенную форму, которая при дальнейшем охлаждении и отверждении сохраняется.
Основу любой пластмассы составляет полимер (то самое «высокомолекулярное органическое соединение» из определения выше).
Слово «полимер» происходит от греческих слов «поли» («много») и «мерос» («части» или «звенья»). Это вещество, молекулы которого состоят из большого числа одинаковых, соединенных между собой звеньев. Эти звенья называют мономерами («моно» — один).
Так, например, выглядит мономер полипропилена, наиболее применяемого в автомобилестроении типа пластика:
Молекулярные цепи полимера состоят из практически бесчисленного числа таких кусочков, соединенных в единое целое.
Цепочки молекул полипропилена
По происхождению все полимеры делят на синтетические и природные. Природные полимеры составляют основу всех животных и растительных организмов. К ним относят полисахариды (целлюлоза, крахмал), белки, нуклеиновые кислоты, натуральный каучук и другие вещества.
Хотя модифицированные природные полимеры и находят промышленное применение, большинство пластмасс являются синтетическими.
Синтетические полимеры получают в процессе химического синтеза из соответствующих мономеров.
В качестве исходного сырья обычно применяются нефть, природный газ или уголь. В результате химической реакции полимеризации (или поликонденсации) множество «маленьких» мономеров исходного вещества соединяются между собой, будто бусины на ниточке, в «огромные» молекулы полимера, который затем формуют, отливают, прессуют или прядут в готовое изделие.
Так, например, из горючего газа пропилена получают пластик полипропилен, из которого делают бамперы:
Теперь вы наверное догадались, откуда берутся названия пластмасс. К названию мономера добавляется приставка «поли-» («много»): этилен → полиэтилен, пропилен → полипропилен, винилхлорид → поливинилхлорид и т.д.
Международные краткие обозначения пластмасс являются аббревиатурами их химических наименований. Например, поливинилхлорид обозначают как PVC (Polyvinyl chloride), полиэтилен — PE (Polyethylene), полипропилен — PP (Polypropylene).
Кроме полимера (его еще называют связующим) в состав пластмасс могут входить различные наполнители, пластификаторы, стабилизаторы, красители и другие вещества, обеспечивающие пластмассе те или иные технологические и потребительские свойства, например текучесть, пластичность, плотность, прочность, долговечность и т.д.
Виды пластмасс
Пластмассы классифицируют по разным критериям: химическому составу, жирности, жесткости. Но главным критерием, который объясняет природу полимера, является характер поведения пластика при нагревании. По этому признаку все пластики делятся на три основные группы:
- термопласты;
- реактопласты;
- эластомеры.
Принадлежность к той или иной группе определяют форма, величина и расположение макромолекул, наряду с химическим составом.
Термопласты (термопластичные полимеры, пластомеры)
Термопласты — это пластмассы, которые при нагреве плавятся, а при охлаждении возвращаются в исходное состояние.
Эти пластмассы состоят из линейных или слегка разветвленных молекулярных цепей. При невысоких температурах молекулы располагаются плотно друг возле друга и почти не двигаются, поэтому в этих условиях пластмасса твердая и хрупкая. При небольшом повышении температуры молекулы начинают двигаться, связь между ними ослабевает и пластмасса становится пластичной. Если нагревать пластмассу еще больше, межмолекулярные связи становятся еще слабее и молекулы начинают скользить относительно друг друга — материал переходит в эластичное, вязкотекучее состояние. При понижении температуры и охлаждении весь процесс идет в обратном порядке.
Если не допускать перегрева, при котором цепи молекул распадаются и материал разлагается, процесс нагревания и охлаждения можно повторять сколько угодно раз.
Это особенность термопластов многократно размягчаться позволяет неоднократно перерабатывать эти пластмассы в те или иные изделия. То есть теоретически, из нескольких тысяч стаканчиков из-под йогурта можно изготовить одно крыло. С точки зрения защиты окружающей среды это очень важно, поскольку последующая переработка или утилизация — большая проблема полимеров. Попав в почву, изделия из пластика разлагаются в течение 100–400 лет!
Кроме того, благодаря этим свойствам термопласты хорошо поддаются сварке и пайке. Трещины, изломы и деформации можно легко устранить посредством теплового воздействия.
Большинство полимеров, применяемых в автомобилестроении, являются именно термопластами. Используются они для производства различных деталей интерьера и экстерьера автомобиля: панелей, каркасов, бамперов, решеток радиатора, корпусов фонарей и наружных зеркал, колпаков колес и т.д.
К термопластам относятся полипропилен (РР), поливинихлорид (PVC), сополимеры акрилонитрила, бутадиена и стирола (ABS), полистирол (PS), поливинилацетат (PVA), полиэтилен (РЕ), полиметилметакрилат (оргстекло) (РММА), полиамид (РА), поликарбонат (PC), полиоксиметилен (РОМ) и другие.
Реактопласты (термореактивные пластмассы, дуропласты)
Если для термопластов процесс размягчения и отверждения можно повторять многократно, то реактопласты после однократного нагревания (при формовании изделия) переходят в нерастворимое твердое состояние, и при повторном нагревании уже не размягчаются. Происходит необратимое отверждение.
В начальном состоянии реактопласты имеют линейную структуру макромолекул, но при нагревании во время производства формового изделия макромолекулы «сшиваются», создавая сетчатую пространственную структуру. Именно благодаря такой структуре тесно сцепленных, «сшитых» молекул, материал получается твердым и неэластичным, и теряет способность повторно переходить в вязкотекучее состояние.
Из-за этой особенности термореактивные пластмассы не могут подвергаться повторной переработке. Также их нельзя сваривать и формовать в нагретом состоянии — при перегреве молекулярные цепочки распадаются и материал разрушается.
Эти материалы являются достаточно термостойкими, поэтому их используют, например, для производства деталей картера в подкапотном пространстве. Из армированных (например стекловолокном) реактопластов производят крупногабаритные наружные кузовные детали (капоты, крылья, крышки багажников).
К группе реактопластов относятся материалы на основе фенол-формальдегидных (PF), карбамидо-формальдегидных (UF), эпоксидных (EP) и полиэфирных смол.
Эластомеры
Эластомеры — это пластмассы с высокоэластичными свойствами. При силовом воздействии они проявляют гибкость, а после снятия напряжения возвращают исходную форму. От прочих эластичных пластмасс эластомеры отличаются способностью сохранять свою эластичность в большом температурном диапазоне. Так, например, силиконовый каучук остается упругим в диапазоне температур от -60 до +250 °С.
Эластомеры, так же как и реактопласты, состоят из пространственно-сетчатых макромолекул. Только в отличие от реактопластов, макромолекулы эластомеров расположены более широко. Именно такое размещение обуславливает их упругие свойства.
В силу своего сетчатого строения эластомеры неплавки и нерастворимы, как и реактопласты, но набухают (реактопласты не набухают).
К группе эластомеров относятся различные каучуки, полиуретан и силиконы. В автомобилестроении их используют преимущественно для изготовления шин, уплотнителей, спойлеров и т.д.
В автомобилестроении используются все три типа пластиков. Также выпускаются смеси из всех трех видов полимеров — так называемые «бленды» (blends), свойства которых зависят от соотношения смеси и вида компонентов.
Определение типа пластика. Маркировка
Любой ремонт пластиковой детали должен начинаться с идентификации типа пластмассы, из которой изготовлена деталь. Если в прошлом это давалось не всегда просто, то сейчас «опознать» пластик легко — все детали, как правило, маркируются.
Обозначение типа пластмассы производители обычно выштамповывают с внутренней стороны детали, будь то бампер или крышка мобильного телефона. Тип пластика, как правило, заключен в характерные скобки и может выглядеть следующим образом: >PP/EPDM<, >PUR<, <ABS>.
Контрольное задание: снимите крышку своего мобильного телефона и посмотрите из какого типа пластмассы он сделан. Чаще всего это >PC<.
Вариантов подобных аббревиатур может быть множество. Все рассмотреть мы не сможем (да и нет в том необходимости), поэтому остановимся на нескольких наиболее распространенных в автомобилестроении типах пластмасс.
Примеры наиболее распространенных в автомобилестроении типов пластика
Полипропилен — РР, модифицированный полипропилен — PP/EPDM
Самый распространенный в автомобилестроении тип пластика. В большинстве случаев при ремонте поврежденных или окраске новых деталей нам придется иметь дело именно с различными модификациями полипропилена.
Полипропилен обладает, пожалуй, совокупностью всех преимуществ, какими только могут обладать пластмассы: низкой плотностью (0,90 г/см³ — наименьшее значение для всех пластмасс), высокой механической прочностью, химической стойкостью (устойчив к разбавленным кислотам и большинству щелочей, моющим средствам, маслам, растворителям), термостойкостью (начинает размягчаться при 140°C, температура плавления 175°C). Он почти не подвергается коррозионному растрескиванию, обладает хорошей способностью к восстановлению. Кроме того, полипропилен является экологически чистым материалом.
Характеристики полипропилена дают повод считать его идеальным материалом для автомобильной промышленности. За свои столь ценные свойства он даже получил титул «короля пластмасс».
На основе полипропилена изготовлены практически все бампера, также этот материал используется при изготовлении спойлеров, деталей салона, приборных панелей, расширительных бачков, решеток радиатора, воздуховодов, корпусов и крышек аккумуляторных батарей и т.д. В быту даже чемоданы изготавливаются из полипропилена.
При литье большинства вышеперечисленных деталей используется не чистый полипропилен, а его различные модификации.
«Чистый» немодифицированный полипропилен очень чувствителен к ультрафиолетовому излучению и кислороду, он быстро теряет свои свойства и становится хрупким при эксплуатации. По этой же причине нанесенные на него лакокрасочные покрытия не могут иметь долговечной адгезии.
Введенные же в полипропилен добавки — чаще в виде резины и талька — значительно улучшают его свойства и дают возможность его окрашивать.
Окрашиванию поддается только модифицированный полипропилен. На «чистом» полипропилене адгезия будет очень слабой! Из чистого полипропилена >РР< изготавливают бачки омывателей, расширительные емкости, одноразовую посуду, стаканчики и т.д.
Любые модификации полипропилена, какой бы длинной не была аббревиатура его маркировки, первыми двумя буквами обозначен все равно, как >РР…<. Наиболее распространенный продукт этих модификаций — >PP/EPDM< (сополимер полипропилена и этиленпропиленового каучука).
ABS (сополимер акрилонитрила, бутадиена и стирола)
ABS — эластичный, но в тоже время ударопрочный пластик. За эластичность отвечает составляющая каучука (бутадиена), за прочность — акрилонитрил. Этот пластик чувствителен к ультрафиолетовому излучению — под его воздействием пластик быстро стареет. Поэтому изделия из ABS нельзя долго держать на свету и нужно обязательно окрашивать.
Чаще всего используется для производства корпусов фонарей и наружных зеркал, решеток радиатора, облицовки приборной панели, обивки дверей, колпаков колес, задних спойлеров и т. п.
Поликарбонат — PC
Один из наиболее ударопрочных термопластов. Чтобы понять, насколько прочен поликарбонат, достаточно того факта, что это материал используется при изготовлении пуленепробиваемых банковских стоек.
Помимо прочности поликарбонаты характеризуются легкостью, стойкостью к световому старению и перепадам температур, пожаробезопасностью (это трудно воспламеняющийся самозатухающий материал).
К сожалению, поликарбонаты достаточно чувствительны к воздействию растворителей и имеют склонность к растрескиванию под воздействием внутренних напряжений.
Не подходящие агрессивные растворители могут серьезно ухудшать прочностные характеристики пластика, поэтому при покраске деталей, где прочность имеет первостепенное значение (например мотоциклетного шлема из поликарбоната) нужно быть особенно внимательными и четко следовать рекомендациям производителя, а иногда даже принципиально отказываться от окрашивания. Зато спойлеры, решетки радиатора и панели бамперов из поликарбоната можно красить без проблем.
Полиамиды — PA
Полиамиды — жесткие, прочные и при этом эластичные материалы. Детали из полиамида выдерживают нагрузки, близкие к нагрузкам, допустимым для цветных металлов и сплавов. Полиамид обладает высокой стойкостью к износу, химической устойчивостью. Он почти невосприимчив к большинству органических растворителей.
Чаще всего полиамиды используют для производства съемных автомобильных колпаков, различных втулок и вкладышей, хомутов трубок, языков замка дверей и защелок.
Полиуретан — PU, PUR
До широкого внедрения в производство полипропилена, полиуретан был самым популярным материалом для изготовления различных эластичных деталей автомобиля: рулевых колес, грязезащитных чехлов, покрытия для педалей, мягких дверных ручек, спойлеров и т.д.
У многих этот тип пластика ассоциируется с маркой Mercedes. Бамперы, боковые накладки дверц, порогов практически на всех моделях изготавливались до недавнего времени из полиуретана.
Производство деталей из этого типа пластмассы требует менее сложного оборудования чем для полипропиленовых. В настоящее время многие частные компании, как за рубежом, так и в странах бывшего Союза предпочитают работать именно с этим типом пластика для изготовления всевозможных деталей для тюнинга автомобилей.
Стеклопластики — SMC, BMC, UP-GF
Стеклопластики являются одним из важнейших представителей так называемых «армированных пластиков». Они изготавливаются на базе эпоксидных или полиэфирных смол (это реактопласты) со стеклотканью в качестве наполнителя.
Высокие физико-механические показатели, а также стойкость к воздействию различных агрессивных сред определили широкое применение этих материалов во многих областях промышленности. Всем известный продукт, используемый в производстве кузовов американских минивэнов.
При изготовлении изделий из стеклопластика возможно применение технологии типа «сэндвич», когда детали состоят из нескольких слоев различных материалов, каждый из которых отвечает определенным требованиям (прочности, химстойкости, абразивоустойчивости).
Легенда о неизвестном пластике
Вот мы держим в руках пластиковую деталь, не имеющую на себе никаких опознавательных знаков, никакой маркировки. Но нам позарез нужно выяснить ее химический состав или хотя бы тип — термопласт это или реактопласт.
Потому что, если речь идет, например, о сварке, то она возможна лишь с термопластами (для ремонта термореактивных пластмасс применяются клеевые композиции). Кроме того, свариваться могут только одноименные материалы, разнородные просто не взаимодействуют. В связи с этим возникает необходимость идентифицировать пластик «no name», чтобы правильно подобрать ту же сварочную присадку.
Идентификация типа пластика — задача непростая. Анализ пластмасс производится в лабораториях по различным показателям: по спектрограмме сгорания, реакции на различные реактивы, запаху, температуре плавления и так далее.
Тем не менее, существует несколько простейших тестов, позволяющих определить приблизительный химический состав пластика и отнести его к той или иной группе полимеров. Один из таких — анализ поведения образца пластика в открытом источнике огня.
Для теста нам понадобится проветриваемое помещение и зажигалка (или спички), с помощью которой нужно осторожно поджечь кусочек испытуемого материала. Если материал плавится, значит мы имеем дело с термопластом, если не плавится — перед нами реактопласт.
Теперь убираем пламя. Если пластик продолжает гореть, то это может быть ABS-пластик, полиэтилен, полипропилен, полистирол, оргстекло или полиуретан. Если гаснет — скорее всего это поливинилхлорид, поликарбонат или полиамид.
Далее анализируем цвет пламени и запах, образующийся при горении. Например, полипропилен горит ярким синеватым пламенем, а его дым имеет острый и сладковатый запах, похожий на запах сургуча или жженной резины. Слабым синеватым пламенем горит полиэтилен, а при затухании пламени чувствуется запах горящей свечи. Полистирол горит ярко, и при этом сильно коптит, а пахнет довольно приятно — у него сладковатый цветочный запах. Поливинилхлорид, наоборот, пахнет неприятно — хлором или соляной кислотой, а полиамид — горелой шерстью.
Кое-что о типе пластика может сказать и его внешний вид. Например, если на детали наблюдаются явные следы сварки, то оно наверняка изготовлено из термопласта, а если имеются следы снятых наждаком заусенцев, значит это термореактивная пластмасса.
Также можно провести тест на твердость: попробовать срезать небольшой кусочек пластмассы ножом или лезвием. С термопласта (он более мягкий) стружка будет сниматься, а вот реактопласт будет крошиться.
Или еще один способ: погружение пластика в воду. Этот метод позволяет довольно просто определить пластики, входящие в группу полиолефинов (полиэтилен, полипропилен и др.). Эти пластмассы будут плавать на поверхности воды, так как их плотность почти всегда меньше единицы. Другие полимеры имеют плотность больше единицы, поэтому они будут тонуть.
Эти и другие признаки, по которым можно определить тип пластика, представлены ниже в виде таблицы.
P.S. В следующей статье мы уделим внимание вопросам подготовки и покраски пластиковых деталей.
Бонусы
Полноразмерные версии изображений откроются в новом окне при нажатии на картинку!
Расшифровка обозначения пластмасс
Обозначения наиболее распространенных пластиков
Классификация пластиков в зависимости от жесткости
Основные модификации полипропилена и области их применения в автомобиле
Методы определения типа пластмассы
Листовой пластик – характеристики, применение, особенности разных видов материала
В наше время полимерные материалы могут применяться в самых разных сферах деятельности и нередко их невозможно заменить никакими другими. Среди прочих полимеров наибольшую распространенность получил листовой пластик. Он востребован для решения разнообразных задач в строительстве, производстве, рекламе дизайне и других отраслях.
Характеристики листового пластика
В названии этого полимера отражаются его химические составные: поливинилхлорид или ПВХ. Листы пластика трудновоспламеняемые и плохо горят, инертны в агрессивных химических средах, но хорошо поддаются термообработке, сохраняя при этом свою прочность. Листовой пластик ПВХ имеет малый вес, он прозрачен, не впитывает влагу из атмосферы, поэтому на протяжении длительного времени его листы не набухают и не деформируются. Их внешний вид и технические характеристики не изменяются даже при непосредственном контакте с водой.
Листовой пластик – применение
Благодаря отличным эксплуатационным характеристикам применение листового пластика очень разнообразно:
- Автомобилестроение. Листовой ПВХ используют при изготовлении различных частей машины: внутренней обшивки, приборной панели, решетки радиатора, дверной облицовки, бампера и так далее.
- Приборо- и машиностроение. Этот материал идет на изготовление корпусов и внутренней обшивки бытовых приборов и аппаратных блоков, корпуса аккумуляторов, подвижных деталей, инструментов и тому подобного.
- Товары народного потребления. Листовой пластик находит применение в деталях на футлярах и чемоданах, в сантехнических изделиях и канцелярских принадлежностях, в мебельной фурнитуре, спортинвентаре и даже в деталях оружия.
- Пищевая промышленность. Из этого материала могут быть изготовлены упаковочные блистеры, контейнеры для еды, бутылки для напитков, одноразовая посуда, разделочные доски и многое другое.
- Медицина. ПВХ используется в производстве катетеров, трубок для кормления, хирургических перчаток и масок, тонометров, различных медицинских пакетов и контейнеров.
- Реклама. Благодаря прозрачности этот материал широко используют при изготовлении различных рекламных конструкций.
Виды листового пластика
При изготовлении листового пластика применяются разные производственные технологии, что позволяет получать материалы различных видов: вспененный (листы ПВХ малой плотности), жесткий листовой пластик непрозрачный (например, листы АБС-пластика с высокой плотностью) и прозрачный (материал, например, поликарбонат, имеет высокую степень прочности и прозрачности).
Листовое оргстекло
Одним из самых ярких и красивых листовых полимеров является оргстекло. Зачастую при изготовлении наружной рекламы используется прозрачное бесцветное оргстекло, популярны и такие варианты:
- металлик;
- перламутр;
- сатин;
- матовый;
- глянцевый.
Оргстекло можно увидеть на различных вывесках, указателях, рекламных щитах, в сувенирной продукции. Интересной разновидностью оргстекла является зеркальный листовой материал. Он легче обычного зеркала и может иметь самые разные оттенки: золотой, серебряный, бронзовый и даже черный. Интересной особенностью оргстекла является его способность противостоять воздействию солнечного излучения. Благодаря этому такое листовое оргстекло применяют как в наружной рекламе, так и внутри помещений в различных стендах и выставочных конструкциях.
При многих достоинствах оргстекла у этого материала есть и некоторые недостатки:
- боится механических повреждений;
- неустойчив при горении;
- не выносит спирта и ацетона.
Листовой пенокартон
Этот материал представляет собой листы пластика, оклеенные с двух сторон картонными полотнами. Он обладает высокой жесткостью при малом весе. Эти качества позволяют применять пенокартон в рекламной сфере. Такая разновидность листового пластика легка в обработке. Благодаря этому из пенокартона изготавливают ростовые фигуры людей, которые можно встретить в торговых центрах. На идеально гладкую поверхность материала можно наносить печать, аппликацию или краску. Однако применяется он только внутри помещения, поскольку боится влаги, к тому же легко воспламеняется.
Вспененный листовой пластик
Такие листы, имеющие пористую структуру и матовую поверхность, отличаются прекрасными звуко- и теплоизоляционными свойствами, чем не может похвастаться, например, прозрачный листовой пластик. Вспененный ПВХ не гниет и не боится воды, устойчив к погодным факторам. На него хорошо наносится цифровая печать или шелкография. Он легко обрабатывается (фрезеруется, гнется, клеится), поэтому сфера его применения очень широка. К недостаткам такого материала можно отнести его способность изменять размеры под действием температурных колебаний и низкая светостойкость.
Листовой поликарбонат
Листы этого материала могут быть монолитными или сотовыми, а его характеристики, к примеру, светопроницаемость, не уступают обычному стеклу. Поликарбонат и листовой полипропилен имеют смежные сферы применения: строительство, архитектура, обустройство беседок, теплиц и так далее. Вес поликарбоната ниже, чем у схожих материалов. Он отлично гнется, обладает хорошими теплоизоляционными свойствами. Сплав, в состав которого входит поликарбонат и АБС-пластик отличается повышенной ударопрочностью и химической стойкостью. Однако такой листовой пластик имеет и недостатки:
- Разрушается под воздействием солнечных лучей.
- Низкая абразивная устойчивость.
- Повышенная способность к отражению солнечного света.
ПЭТ пластик
Этот прозрачный, прочный и пластичный материал обладает химической стойкостью. Листы пластика ПЭТ хорошо поддаются обработке фрезерованием, пилением, сверлением. Причем все эти характеристики материал сохраняет как при высоких, так и при низких температурах. Листовой ПЭТ пластик пропускает солнечные лучи и устойчив к воздействиям погодных условий, поэтому его применяют в строительстве и сельском хозяйстве. Однако изделия из такого пластика, пропускающие солнечные лучи и кислород, что могут ухудшать качество хранимой в них продукции.
Ударопрочный полистирол
Такой вид листового пластика отличается повышенной ударопрочностью, устойчивостью к разрывам, гибкостью и легкостью. Он может выдерживать температуру до -40ºС. Листы полипропиленовые (полистирольные) обладают отличной влагостойкостью, они легки в обработке и стойки к действию кислот и щелочей. Используют этот материал в наружной рекламе и в изготовлении различного оборудования, в полиграфии и строительстве. К недостаткам полистирола можно отнести его горючесть, и то, что со временем он может выцветать при наружном применении.
Как выбрать листовой пластик?
Благодаря многочисленным преимуществам листовой пластик является очень востребованным во многих сферах современной деятельности. Изучив свойства всех его разновидностей, можно выбирать необходимый материал. Выбор листового пластика зависит, прежде всего от места и цели его применения. Так, например, для изготовления различных емкостей используют ПЭТ пластик, а АБС пластик листовой применяют для медицинских приборов. Основой для наружных вывесок может стать качественный вспененный ПВХ пластик.