Расстояние от арматуры до края бетона: Расстояние от арматуры до края бетона

Содержание

Расстояние от арматуры до опалубки

Арматурные конструкции являются важнейшим элементом любого здания. Арматура применяется при устройстве фундаментов, перекрытий, стен и прочего. Функциями армирующих конструкций является придание жесткости и прочности отливке. Конечные  эксплуатационные характеристики плиты зависят не только от качества арматуры, но и от правильного её расположения внутри опалубки. Существует несколько простых правил укладки, следуя которым можно исключить её смещение и деформации бетонной конструкции в целом. Необходимо:

  • применять армирующие элементы соответствующего для изготавливаемой конструкции типа;
  • производить работы по укладке арматуры только на подготовленную поверхность, очищенную от посторонних предметов, мусора и т.д.;
  • использовать специальные фиксаторы для арматуры, позволяющие выдержать необходимое расстояние между арматурой и листом опалубки;
  • выдерживать прямолинейность конструкции при сборке армирующего комплекса из отдельных прутков.

Расстояние от арматуры до опалубки в различных системах

Перед началом закладки прутковой арматуры в опалубку устанавливаются направляющие. В качестве последних могут быть использованы гвозди, вбитые через равный промежуток (10 см). Доска с направляющими устанавливается поверх песчаной подушки, после чего происходит укладка горизонтальных прутьев, расстояние от арматуры до опалубки должно выдерживаться в приделах 5-7 см.

Расстояние от арматуры до опалубки должно выдерживаться в приделах 5-7 см

Горизонтальные прутья размещаются на фиксаторах, обеспечивающих необходимый зазор между основанием плиты и нижней частью прутка. После установки и фиксации первого уровня арматуры осуществляется её обвязка при помощи стальной проволоки и фиксация в местах стыков.

Если используются готовые арматурные каркасы, последовательность действий не отличается от той, что можно наблюдать при укладке прутков. Для фиксации каркаса в вертикальных опалубках и создания необходимого отступа от контактной поверхности палубы используются фиксаторы «звездочка». Также, может применяться ПВХ трубка, создающая точку опоры и защищающая стяжной винт от коррозии при контакте с жидким бетоном.

Фиксаторы арматуры для опалубки

Расстояние арматуры от опалубки при заливке перекрытий определяется в соответствии с  габаритами плиты и типом армирующей конструкции. В большинстве случаев показатель не превышает 7 см. Пространство между нижней частью арматуры и поверхностью палубы контролируется установкой фиксатора типа «стульчик», обеспечивающим надежное закрепление прутка на плоскости.

Соблюдение норм и стандартов при арматурных работах необходимо для создания качественной отливки, отвечающей эксплуатационным запросам. Соблюдение дистанции между поверхностями арматуры и краем плиты необходимо для равномерного распределения нагрузки. В случае нарушения конструкционных рекомендаций возможно образование трещин и дефектов иного рода. По данным причинам соблюдение требований, относящихся к выдерживанию необходимого расстояния между арматурой и опалубкой, можно отнести к особо важным строительным задачам.

08.05.2019

Правила армирования

Правила армирования

Для продольного и поперечного армирования ленточного фундамента используется арматура класса A-III (A400) или А500. Для вспомогательного поперечного армирования (изготовления хомутов), помимо А400 и А500, может использоваться стержневая горячекатаная гладкая арматура класса A-I (А240), А-II, проволока (гладкая арматура) класса Вр-I. Продольные рабочие стрежни арматуры ленточного фундамента воспринимают совместно с бетоном основные нагрузки растяжения и сжатия, действующие вдоль продольной оси фундамента.  

   Кроме продольных стержней при армировании лент фундамент может устанавливаться поперечная арматура (хомуты) из расчета на восприятие нагрузок, действующих вдоль поперечной оси фундамента. Хомуты устанавливаются в ленту при её высоте более 15см.  Также поперечная арматура служит для ограничения развития трещин в бетоне, для удержания продольных стержней в проектном положении, и для закрепления от их бокового выпучивания при воздействии сжимающих нагрузок. В случае сжимающих нагрузок хомуты  следует устанавливать с шагом не более 15 диаметров сжатой продольной арматуры и не более 50 см, а конструкция хомутов должна обеспесивать отсутствие выпучивания продольной арматуры в любом направлении. Поперечная арматура устанавливается у всех поверхностей фундамента, вблизи которых устанавливается продольная арматура. Закрепление поперечной арматуры производят путем ее загиба и охвата продольной рабочей арматуры. 

 Также в фундаменте может использоваться конструктивная арматура, устанавливаемая  для восприятия непредусмотренных усилий, таких как усилия от усадки бетона или температурных деформаций. В частности, для фундаментных лент высотой сечения более 70 см рекомендуется установка дополнительной продольной  конструктивной арматуры на каждые  40 см  высоты ленты. По возможности арматуру следует монтировать укрупненными или пространственными заранее изготовленными элементами, по возможности сокращая объем применения отдельных стержней.

Процент армирования

   Существует некий допустимый диапазон армирования, определённый Сводом Норм и Правил (Пункт 7. 3.5 СНиП 52-01-2003 «Бетонные и железобетонные конструкции»), который является одним из определяющих факторов выбора пространственной схемы армирования и может повлиять на выбор сечения ленты фундамента. Этот параметр лежит в диапазоне от 0,3 до 3% для балок, и не менее 0,1% для фундаментов. При армировании ленточных фундаментов, служащих опорой под колонны (например, при строительстве монолитного железобетонного каркаса здания) площадь сечения продольной арматуры для ребра Т-образного ленточного фундамента предусматривают с процентом армирования не менее 0,4% в каждом ряду. Это относительное содержание продольной рабочей арматуры в бетонном элементе от площади рабочего сечения этого элемента. Например, если у вас лента сечением 300х400мм, то площадь S сечения 300*400=120 000 мм.кв. Минимальное сечение арматуры составит 120 мм.кв., или 4 прута арматуры диаметром 8 мм (или 2 прута диаметром 10мм). Максимум можно заложить 10 прутов диаметром 22мм! Меньшее количество арматуры незначительно укрепит бетон и практически будет равно просто силе бетона на разрыв, но и больше 3% арматуры тоже не хорошо — арматуры будет столько, что она не успеет включится в работу, как бетон уже будет разрушен возникшей нагрузкой.

Если расчёт приведёт вас к проценту армирования более 3%, нужно задуматься над увеличением сечения бетонного элемента. Сечение арматуры нетрудно посчитать, но для облегчения и визуализации я составил табличку сечений при разных количествах прутов арматуры:

Еще один пример из расчёта своего ростверка: У меня было рассчитано сечение ленты-ростверка как 22х30см, Это 66000 мм.кв. Расчёт армирования привёл меня к 6 прутам арматуры диаметром 12мм (3 снизу и 3 сверху) — это 678 мм.кв. арматуры. Посчитаем процент армирования: 678*100/66000=1,027% — он вписывается в допустимый диапазон от 0,1% до 3%, а значит выбранное соотношение между сечением бетона и армированием находится в «равновесии», количество арматуры и бетона экономически и расчётно обосновано. Подошло бы и 5 прутов по 12мм (565*100/66000=0,856%), расчёт по нагрузкам давал 45% запаса по прочности, однако я решил немного перестраховаться заложив 6-й прут и получил 90% запаса.

Диаметр арматуры

   Помимо минимального процента армирования существуют и требования по минимальному диаметру арматуры.

Например, для продольной рабочей арматуры нельзя использовать арматуру диаметром менее 10мм. Продольную рабочую арматуру рекомендуется назначать из стержней одинакового диаметра. Если же применяются стержни разных диаметров, то стержни большего диаметра следует размещать внизу ленты фундамента,  в углах сечения ленты фундамента и в местах перегиба хомутов через рабочую арматуру. Стержни продольной рабочей арматуры должны размещаться равномерно по ширине сечения ленты фундамента. При этом размещение стержней арматуры верхнего ряда над просветами между арматурой нижнего ряда запрещается [пункт 3.94 Руководства по конструированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения, Москва, 1978]. При этом как в сварных, так и в вязаных каркасах диаметр продольных стержней должен быть не менее диаметра поперечных стержней арматуры. Максимальный диаметр сжатых стержней (для верхнего ряда) вряд-ли будет достигнут частными домостроителями, но для справки, он не должен быть более 40мм.
Для удобства я собрал эти требования в нижеследующей табличке:

Минимальное количество стрежней продольной рабочей арматуры в одном ряду

     В балках и ребрах шириной более 15 см число продольных рабочих растянутых стержней в поперечном сечении должно быть не менее двух. При ширине элемента 15 см и менее допускается устанавливать в поперечном сечении один продольный стержень. При этом устройство ленточных фундаментов шириной менее 15 см не допускается.

Максимальное количество стержней продольной арматуры в одном ряду и минимальное расстояние между стержнями арматуры

   Максимальное количество стержней в одном ряду в поперечном сечении монолитной бетонной балки определяется минимальным расстоянием в свету между отдельными стержнями продольной арматуры. Это минимальное  расстояние определено необходимостью свободного протекания бетонной смеси в тело ленты между стержнями арматуры фундамента при заливке бетона, возможностью его уплотнения и хорошей связи бетона с арматурой для совместной работы под нагрузкой.  Минимальные расстояния между стрежнями продольной арматуры определены в пункте 7.3.4 СНиП 52-01-2003  “Бетонные и железобетонные конструкции”. Минимальное расстояние между стержнями продольной арматуры не может быть меньше наибольшего диаметра стержней арматуры и не менее 25 мм для нижнего ряда арматуры и 30 мм — для арматуры верхнего ряда при двух рядах армирования. При трех рядах армирования расстояние между стрежнями арматуры в верхнем ряду должно составить не менее 50 мм. При большом насыщении арматурой должны быть предусмотрены отдельные места с расстоянием между стержнями арматуры в 60 мм для прохождения между арматурными стержнями наконечников глубинных вибраторов, уплотняющих бетонную смесь. Расстояния между такими местами должны быть не более 500мм. Например, имеем ленту фундамента сечением 40х30см с двумя рядами арматуры. Создаются следующие ограничения: 1 — защитный слой бетона по 40мм с каждой стороны; 2 — минимальный диаметр арматуры 10мм; 3 — минимальное расстояние между арматурой 30мм. Итого, соблюдая все ограничения, получается возможным разместить по 6 рядов арматуры, при этом в верхнем ряду нужно один прут исключить для прохождения наконечника вибратора. Допустим, если бы высота ленты была 100 см, то возникает необходимость использовать три ряда арматуры, а это увеличивает минимальное расстояние между арматурой до 50 мм. В этом случае в одном ряду умещается не более 4 прутов арматуры.

Количество рядов арматуры

   В обычных условиях для индивидуальных домов в фундаменте достаточно двух рядов арматуры. Нижний, в большей степени работающий на растяжение и верхний, работающий на сжатие, если не возникнут выталкивающие силы грунтов. При высоте ленты до 70 см средних рядов арматуры делать не нужно, т.к. она там не работает, там не возникает ни растяжений, ни сжатий (если только не аварийная ситуация). Дополнительное  продольное армирование может понадобиться, если высота фундаментной ленты превышает 70 см. В этом случае лента фундамента рассматривается как балка, которой требуется конструктивное армирование. Стержни арматуры при конструктивном армировании не у граней балки (в середине ширины балки) не требуются. Они должны ставиться тлько у боковых поверхностей балок высотой поперечного сечения более 70 см. Расстояние между конструктивными стрежнями арматуры по высоте должно быть не более 40 см.

    Площадь сечения таких арматурных стрежней определяется не менее 0,1 % площади сечения бетона, но не от всей площади сечения балки, а от площади, образуемой расстоянием между этими стержнями и половиной ширины балки, но не менее чем 20 см. Например, при расстоянии между рядами арматуры по вертикали в 40 см и ширине ленты 30 см, определяемая минимальная площадь сечения арматуры будет отсчитываться от площади в 400 мм x 300 мм /2 =60 000 мм2 х 0,001=60 мм2 . Эти арматурные стержни должны соединяться хомутами или шпильками диаметром 6 — 8 мм из арматуры класса A-I с шагом 50 см по длине ленты фундамента.

Максимальный шаг между продольными стержнями арматуры

Максимальный шаг установки поперечной арматуры

Толщина бетонного защитного слоя арматуры

   Защитный слой бетона, то есть расстояние от поверхности арматуры до соответствующей грани фундаментной ленты, предназначен для обеспечения совместной работы арматуры с бетоном, для закрепления (анкеровки) арматуры в бетоне и возможности устройства соединения арматуры. Также защитный слой бетона предохраняет арматуру от воздействия факторов окружающей среды, конструкций, в том числе и от огня.  Толщина защитного слоя бетона зависит от типа конструкции и роли арматуры в ней, ее диаметра и условий окружающей среды.

   Для продольной рабочей арматуры толщина защитного слоя должна быть, как правило, не менее диаметра стержня и не менее: 30 мм — для фундаментных балок и сборных фундаментов; 35 мм — для монолитных фундаментов при наличии бетонной подготовки; 70 мм — для монолитных фундаментов при отсутствии бетонной подготовки. При использовании бетонной подготовки (или на скальном грунте) – толщина бетонного защитного слоя снижается в отечественных нормах до 40 мм, а в американских до 25мм. Для сборных элементов минимальные значения толщины защитного слоя бетона рабочей арматуры уменьшают на 5 мм. Для конструктивной арматуры минимальные значения толщины защитного слоя бетона принимают на 5 мм меньше по сравнению с требуемыми для рабочей арматуры. Во всех случаях толщину защитного слоя бетона следует также принимать не менее диаметра стержня арматуры.
    По требованиям ACI 318-05  защитный слой бетона на уличную строну для арматуры до 20 мм составляет 25 — 40 мм. Для диаметра арматуры толще 20 мм — 50 мм. Защитный слой для арматуры диаметром до 40 мм на стороне не подверженной действию природных факторов составляет 20 мм. По отечественным нормам защитный слой бетона с обеих сторон составляет 40 мм. Требуемую величину защитного слоя нижней арматуры и проектное положение арматуры в процессе бетонирования можно установить с помощью пластиковых фиксаторов, подкладок из бетона и  путем конструирования арматурного каркаса таким образом, чтобы некоторые стержни упирались в опалубку, фиксируя положение каркаса. Нижний защитный слой можно установить, закладывая под нижние стержни арматуры заранее изготовленные бетонные прокладки (сухари) размером 100×100 мм и толщиной, равной требуемой толщине защитного слоя. Применение прокладок из обрезков арматуры, деревянных брусков и щебня запрещается. Также для задания толщины защитного можно использовать пластиковые фиксаторы — спейсеры требуемого стандартного размера. Фиксаторы для арматуры выпускаются в размерах от 15 до 50 мм с шагом размера 5 мм.
Толщина защитного слоя для поперечной арматуры бетонных элементов сечением меньше 25 см составляет 1 см, а для элементов сечением более 25 см – 1,5 см.

Требования к поверхности арматуры

    Арматуру следует монтировать укрупненными или пространственными заранее изготовленными элементами, по возможности сокращая объем применения отдельных стержней. С бетонной подготовки (подушки) в местах установки арматуры должны быть удалены мусор, грязь, снег и лед. Стержни арматуры должны быть обезжирены, очищены от любого неметаллического покрытия, краски, грязи, льда и снега, отслаивающегося налета ржавчины. Удаляется отслаивающаяся ржавчина с помощью металлической щетки. Разрешается наличие эпоксидного покрытия на арматуре. Существует мнение некоторых строителей — поливать водой арматуру за несколько дней перед укладкой, чтобы она заржавела и к ней сильнее прилипал бетон. В официальных комментариях к нормам указано: Обычная поверхностная неотслаивающаяся ржавчина усиливает силу сцепления арматуры с бетоном.  Ржавая поверхность лучше склеивается с цементным гелем в составе бетона. Но отслаивающуюся ржавчину требуется удалить. Арматура периодического профиля имеет в 2-3 раза большее сопротивление выдергиванию, чем гладкая арматура. А арматура с гладкой полированной поверхностью держится в бетоне еще в 5 раз слабее.

Сварка или вязка арматуры

    Идеальным армированием фундамента является армирование сплошным безразрывным контуром арматуры. Однако, такое безразрывное армирование может быть получено только с использованием сварки или с использованием специальных резьбовых соединителей. В строительстве фундаментов часто применяют арматуру класса А-III А400 — такую арматуру сваривать недопустимо, она сильно теряет в прочности при нагревании. Сваривать можно только арматуру c литерой «С» в маркировке, например А500С.  Длина сварного шва для такой арматуры должна быть не менее 10 диаметров. Т.е. если арматура диаметром 12мм, то шов должен быть не менее 120мм. При этом отечественные нормы разрешают дуговую электросварку перекрестий арматуры только не менее 25 мм диаметром.

   Соединение арматуры нахлестом – самый распространенный вариант в дачном строительстве  из-за своей очевидной простоты исполнения. Однако есть ряд требований, которые необходимо выполнить, чтобы обеспечить правильную работу соединяемой арматуры. Соединение арматуры нахлестом допустимо для арматуры диаметром до 36 мм. Это ограничение связано с отсутствием экспериментальных данных по соединениям нахлестом для арматуры больших диаметров. Соединение арматуры не должно размещаться в местах концентрированного приложения нагрузки и местах наибольшего напряжения. Соединение арматуры нахлестом может производиться:

  • Со связкой стержней вязальной проволокой. В этом случае расстояние между прутами обусловлено лишь высотой выступов периодического профиля и может приниматься равным нулю.

  • Без связки. В случае свободного соединения с нахлестом расстояние между стыкуемыми нахлестом стержнями арматуры по вертикали и горизонтали должно быть не менее 25 мм или 1 диаметр арматуры, если диаметр арматуры больше 25 мм,  для обеспечения свободного проникновения бетона. Максимальное расстояние по ширине ленты фундамента между стыкуемыми свободным нахлестом стержнями должно быть не более 8 диаметров стержней арматуры. В нормативах ACI 318-05 рекомендуется делать свободные (не связанные) соединения стержней арматуры  в предварительно не напряженных конструкциях. Это объясняется тем, что при свободном соединении бетон охватывает все стороны каждого арматурного стержня и фиксирует стержень арматуры надежнее, чем при обхвате неполной окружности стержня при связке его проволокой с соседним стержнем.

  • Механическим способом.  C точки зрения экономии (перерасход арматуры на нахлесты до 27%), и безопасности здания (ограничение объема бетона в месте стыков), арматуру диаметром свыше 25 мм рекомендуется соединять механическим способом (винтовые муфты или опрессованые соединения).

  Соседние соединения арматуры по длине должны быть разнесены в разбежку так, чтобы в одном сечении одновременно соединялось не более 50% арматуры. минимальное расстояние между стыками арматуры по длине составляет 61 см. Не более половины всех стержней в одном расчетном сечении элемента фундаментной ленты могут иметь соединения. Стыкование отдельных стержней арматуры и сварных сеток без разбежки допускается при использовании арматуры для конструктивного (нерабочего) армирования.

  Нормы для анкеровки арматуры, работающей как на растяжение, так и на сжатие предусматривают нахлест стержней в 50 диаметров этих стержней, но не менее 30 см. Однако, величина нахлеста зависит и от класса (марки бетона: если для бетона класса В15 (M200) минимальный нахлест составляет  50d (диаметров арматуры), то при использовании бетона класса  В20 (M250), нахлест можно уменьшить до 40d. Для бетона класса В25 (M300) минимальный нахлест равен 35d. Для арматуры А-I и А-II минимальный нахлест равен 40d.

В общем, в двух словах: 1 — арматуру лучше вязать, чем варить, 2 — нахлёсты лучше не связывать, а оставлять между прутами расстояние около 25мм.

Наблюдения

  Только соблюдая все эти ограничения и рекомендации можно сказать, что вы получите достаточное для большинства случаев армирование без дополнительных расчётов! Жизненные наблюдения показывают, что обычно люди льют столько бетона в фундамены, что если бы они их так же основательно армировали, то можно было бы на их фундаментах строить многоэтажки (правда, несущая способность грунтов обычно никак не учитывается). В большинстве случаев застройщики стремятся к самому минимальному проценту армирования, поскольку бетона у них такое количество, что даже 0,1% арматуры выглядит внушительно.  

Основные нарушения правил армирования

  •   Некоторые строители армируют углы ленточных фундаментов и примыканий лент с помощью перекрестий стрежневой арматуры. Такой способ является грубейшим нарушением типовых схем армирования углов и примыканий, ослабляющих конструкцию, который может привести к расслоению бетона. Не смотря на именно такую рекомендацию автора технологии ТИСЭ Яковлева я считаю это совершенно неприемлемым способом.

  •    Арматуру класса А-III можно гнуть в холодном состоянии на угол до 90° по диаметру изгиба с оправкой радиусом равным пяти диаметром сгибаемой арматуры без потери прочности. При загибе арматуры на 180 градусов прочность арматуры снижается на 10%. По американским нормам диаметр оправки  для арматуры номинальным диаметром до 26 мм сгибается по диаметру равному шести диаметрам сгибаемой арматуры, а арматура диаметром 28-36 мм сгибается по восьмикратному диаметру. При этом свободный загибаемый конец арматуры должен быть не короче 12 диаметров стержня арматуры. Нельзя сгибать арматуру, один конец которой уже замоноличен в бетон.  

  •    Практикуется как минимум два широко распространенных недопустимых приема гибки арматуры.  Если заказчик требует от рабочих сгибать арматуру для армирования углов и примыканий фундаментной ленты (как и положено), а не класть ее перекрестиями, то рабочие, ленясь, либо нагревают место сгиба автогеном, на костре или паяльной лампой, либо надпиливают место сгиба арматуры болгаркой. Понятно, что оба способа значительно ослабляют стрежни арматуры, что может привести к разрушению их целостности под  нагрузкой. Требование (пункт 7.3.1 ACI 318-08) гласит: Все виды арматуры должны сгибаться в холодном состоянии, если иное не предписано проектировщиком.

  • Некоторые строители считают, что в качестве рабочей арматуры можно использовать любой металл любой конфигурации: трубы, алюминиевые изделия, плоские листы, отходы от промышленной вырубки деталей, сетку рабицу, проволоку и т.п. Все эти материалы не обладают требуемыми характеристиками, чтобы адекватно воспринять нагрузки на сжатие или растяжение, и не предохраняют бетон от деформаций и образования трещин. Армирование рельсами также не рекомендуется из-за низкого сцепления бетона с гладкой поверхностью металла.  Включение в состав бетона алюминия приводит к химическим реакциям, разрушающим бетон. 

схемы, расчет диаметра арматуры, расположение по углам и в подошве

Ленточный фундамент имеет нестандартную геометрию: его длинна в десятки раз больше глубины и ширины. Из-за такой конструкции почти все нагрузки распределяются вдоль ленты. Самостоятельно бетонный камень не может компенсировать эти нагрузки: его прочности на изгиб недостаточно. Для придания конструкции повышенной прочности используют не просто бетон, а железобетон — это бетонный камень с расположенными внутри стальными элементами — стальной арматурой. Процесс закладки металла называется армированием ленточного фундамента. Своими руками его сделать несложно, расчет элементарный, схемы известны. 

Количество, расположение, диаметры и сорт арматуры — все это должно быть прописано в проекте. Эти параметры зависят от многих факторов: как от геологической обстановки на участке, так и от массы возводимого здания. Если вы хотите иметь гарантированно прочный фундамент — требуется проект. С другой стороны, если вы строите небольшое здание, можно попробовать на основании общих рекомендаций все сделать своими руками, в том числе и спроектировать схему армирования.

Содержание статьи

Схема армирования

Расположение арматуры в ленточном фундаменте в поперечном сечении представляет собой прямоугольник. И этому есть простое объяснение: такая схема работает лучше всего.

Армирование ленточного фундамента при высоте ленты не более 60-70 см

На ленточный фундамент действуют две основные силы: снизу при морозе давят силы пучения, сверху — нагрузка от дома. Середина ленты при этом почти не нагружается. Чтобы компенсировать действие этих двух сил обычно делают два пояса рабочей арматуры: сверху и снизу. Для мелко- и средне- заглубленных фундаментов (глубиной до 100 см) этого достаточно. Для лент глубокого заложения требуется уже 3 пояса: слишком большая высота требует усиления.

О глубине заложения фундамента прочесть можно тут.

Для большинства ленточных фундаментов армирование выглядит именно так

Чтобы рабочая арматура находилась в нужном месте, ее определенным образом закрепляют. И делают это при помощи более тонких стальных прутьев. Они в работе не участвуют, только удерживают рабочую арматуру в определенном положении — создают конструкцию, потому и называется этот тип арматуры конструкционным.

Для ускорения работы при вязке арматурного пояса используют хомуты

Как видно на схеме армирования ленточного фундамента, продольные прутки арматуры (рабочие) перевязываются горизонтальными и вертикальными подпорками. Часто их делают в виде замкнутого контура — хомута. С ними работать проще и быстрее, а конструкция получается более надежной.

Какая арматура нужна

Для ленточного фундамента используют два типа прутка. Для продольных, которые несут основную нагрузку, требуется класс АII или AIII. Причем профиль — обязательно ребристый: он лучше сцепляется с бетоном и нормально передает нагрузку. Для конструкционных перемычек берут более дешевую арматуру: гладкую первого класса АI, толщиной 6-8 мм.

В последнее время появилась на рынке стеклопластиковая арматура. По заверениям производителей она имеет лучшие прочностные характеристики и более долговечна. Но использовать ее в фундаментах жилых зданий многие проектировщики не рекомендуют. По нормативам это должен быть железобетон. Характеристики этого материала давно известны и просчитаны, разработаны специальные профили арматуры, которые способствуют тому, что металл и бетон соединяются в единую монолитную конструкцию.

Классы арматуры и ее диаметры

Как поведет себя бетон в паре со стеклопластиком, насколько прочно такая арматура будет сцепляться с бетоном, насколько успешно эта пара будет сопротивляться нагрузкам — все это неизвестно и не изучено. Если хотите экспериментировать — пожалуйста, используйте стекловолокно. Нет — берите железную арматуру.

Расчет армирования ленточного фундамента своими руками

Любые строительные работы нормируются ГОСТами или СНиПами. Армирование — не исключение. Оно регламентируется СНиП 52-01-2003 «Бетонные и железобетонные конструкции». В этом документе указывается минимальное количество требуемой арматуры: оно должно быть не менее 0,1% от площади поперечного сечения фундамента.

Определение толщины арматуры

Так как ленточный фундамент в разрезе имеет форму прямоугольника, то площадь сечения находится перемножением длин его сторон. Если лента имеет глубину 80 см и ширину 30 см, то площадь будет 80 см*30 см = 2400 см2.

Теперь нужно найти общую площадь арматуры. По СНиПу она должна быть не менее 0,1%. Для данного примера это 2,8 см2. Теперь методом подбора определим, диаметр прутков и их количество.

Цитаты из СНиПа, которые относятся к армированию (чтобы увеличить картинку щелкните по ней правой клавишей мышки)

Например, планируем использовать арматуру диаметром 12 мм. Площадь ее поперечного сечения 1.13 см2 (вычисляется по формуле площади окружности). Получается, чтобы обеспечить рекомендации (2,8 см2)  нам понадобится три прутка (или говорят еще «нитки»), так как двух явно мало: 1,13 * 3 = 3,39 см2, а это больше чем 2,8 см2, которые рекомендует СНиП. Но три нитки на два пояса разделить не получится, а нагрузка будет и с той и с другой стороны значительной. Потому укладывают четыре, закладывая солидный запас прочности.

Чтобы не закапывать лишние деньги в землю, можно попробовать уменьшить диаметр арматуры: рассчитать под 10 мм. Площадь этого прутка 0,79 см2. Если умножить на 4 (минимальное количество прутков рабочей арматуры для ленточного каркаса), получим 3,16 см2, чего тоже хватает с запасом. Так что для данного варианта ленточного фундамента можно использовать ребристую арматуру II класса диаметром 10 мм.

Армирование ленточного фундамента под коттедж проводят с использованием прутков с разным типом профиля

Как рассчитать толщину продольной арматуры для ленточного фундамента разобрались, нужно определить, с каким шагом устанавливать вертикальные и горизонтальные перемычки.

Шаг установки

Для всех этих параметров тоже есть методики и формулы. Но для небольших строений поступают проще. По рекомендациям стандарта расстояние между горизонтальными ветками не должно быть больше 40 см. На этот параметр и ориентируются.

Как определить на каком расстоянии укладывать арматуру? Чтобы сталь не подвергалась коррозии, она должна находится в толще бетона. Минимальное расстояние от края — 5 см. Исходя из этого, и рассчитывают расстояние между прутками: и по вертикали и по горизонтали оно на 10 см меньше габаритов ленты. Если ширина фундамента 45 см, получается, что между двумя нитками будет расстояние 35 см (45 см — 10 см = 35 см), что соответствует нормативу (меньше 40 см).

Шаг армирования ленточного фундамента — это расстояние между двумя продольными прутками

Если лента у нас 80*30 см, то продольная арматура находится одна от другой на расстоянии 20 см (30 см — 10 см). Так как для фундаментов среднего заложения (высотой до 80 см) требуется два пояса армирования, то один пояс от другого располагается на высоте 70 см (80 см — 10 см).

Теперь о том, как часто ставить перемычки. Этот норматив тоже есть в СНиПе: шаг установки вертикальных и горизонтальных перевязок должен быть не более 300 мм.

Все. Армирование ленточного фундамента своими руками рассчитали. Но учтите, что ни масса дома, ни геологические условия не учитывались.  Мы основывались на том, что на этих параметрах основывались при определении размеров ленты.

Армирование углов

В конструкции ленточного фундамента самое слабое место — углы и примыкание простенков. В этих местах соединяются нагрузки от разных стен. Чтобы они успешно перераспределялись, необходимо арматуру грамотно перевязать. Просто соединить ее неправильно: такой способ не обеспечит передачу нагрузки. В результате через какое-то время в ленточном фундаменте появятся трещины.

Правильная схема армирования углов: используются или сгоны — Г-образные хомуты, или продольные нитки делают длиннее на 60-70 см и загибают за угол

Чтобы избежать такой ситуации, при армировании углов используют специальные схемы: пруток с одной стороны загибают на другую. Этот «захлест» должен быть не менее 60-70 см. Если длины продольного прутка на загиб не хватает, используют Г-образные хомуты со сторонами тоже не менее 60-70 см. Схемы их расположения и крепления арматуры приведены на фото ниже.

По такому же принципу армируются примыкания простенков. Также желательно арматуру брать с запасом и загибать. Также возможно использование Г-образных хомутов.

Схема армирования примыкания стен в ленточном фундаменте (чтобы увеличить картинку щелкните по ней правой клавишей мышки)

Обратите внимание: в обоих случаях, в углах шаг установки поперечных перемычек уменьшен в два раза. В этих местах они уже становятся рабочими — участвуют в перераспределении нагрузки.

Армирование подошвы ленточного фундамента

На грунтах с не очень высокой несущей способностью, на пучнистых почвах или под тяжелые дома, часто ленточные фундаменты делают с подошвой. Она передает нагрузку на большую площадь, что придает большую стабильность фундаменту и уменьшает величину просадок.

Чтобы подошва от давления не развалилась, ее также необходимо армировать. На рисунке представлены два варианта: один и два пояса продольной арматуры. Если грунты сложные, с сильной склонностью к зимнему печению, то можно укладывать два пояса. При нормальных и среднепучнистых грунтах — достаточно одного.

Уложенные в длину пруты арматуры являются рабочими. Их, как и для ленты, берут второго или третьего класса. Располагаются друг от друга они на расстоянии 200-300 мм. Соединяются  при помощи коротких отрезков прутка.

Два способа армирования подошвы ленточного фундамента: слева для оснований с нормальной несущей способностью, справа — для не очень надежных грунтов

Если подошва неширокая (жесткая схема), то поперечные отрезки — конструктивные, в распределении нагрузки не участвуют. Тогда их делают диаметром 6-8 мм, загибают на концах так, чтобы они охватывали крайние прутки. Привязывают ко всем при помощи вязальной проволоки.

Ели подошва широкая (гибкая схема), поперечная арматура в подошве тоже является рабочей. Она сопротивляется попыткам грунта «схлопнуть» ее. Потому в этом варианте подошвы используют ребристую арматуру того же диаметра и класса, что и продольную.

Сколько нужно прутка

Разработав схему армирования ленточного фундамента, вы знаете, сколько продольных элементов вам необходимо. Они укладываются по всему периметру и под стенами. Длинна ленты будет длиной одного прутка для армирования. Умножив ее на количество ниток, получите необходимую длину рабочей арматуры. Затем к полученной цифре добавляете 20%  — запас на стыки и «перехлесты». Вот столько в метрах вам и нужно будет рабочей арматуры.

Считаете по схеме сколько продольных ниток, потом высчитываете сколько необходимо конструктивного прутка

Теперь нужно посчитать количество конструктивной арматуры. Считаете, сколько поперечных перемычек должно быть: длину ленты делите на шаг установки (300 мм или 0,3 м, если следовать рекомендациям СНиПа). Затем подсчитываете, сколько уходит на изготовление одной перемычки (ширину арматурного каркаса складываете с высотой и удваиваете). Полученную цифру умножаете на количество перемычек. К результату добавляете тоже 20% (на соединения). Это будет количество конструктивной арматуры для армирования ленточного фундамента.

По похожему принципу считаете количество, которое необходимо для армирования подошвы. Сложив все вместе, вы узнаете, сколько арматуры нужно на фундамент.

О выборе марки бетона для фундамента прочесть можно тут. 

Технологии сборки арматуры для ленточного фундамента

Армирование ленточного фундамента своими руками начинается после установки опалубки. Есть два варианта:

Оба вариант неидеальны и каждый решает, как ему будет легче. При работе непосредственно в траншее, нужно знать порядок действий:

  • Первыми укладывают продольные прутки нижнего армопояса. Их нужно приподнять на 5 см от края бетона. Лучше использовать для этого специальные ножки, но у застройщиков популярны куски кирпичей. От стенок опалубки арматура также отстоит на 5 см.
  • Используя поперечные куски конструкционной арматуры или сформованные контура, их фиксируют на необходимом расстоянии при помощи вязальной проволоки и крючка или вязального пистолета.
  • Далее есть два варианта:
    • Если использовались сформованные в виде прямоугольников контура, сразу к ним вверху привязывают верхний пояс.
    • Если при монтаже используют нарезанные куски для поперечных перемычек и вертикальных стоек, то следующий шаг — подвязывание вертикальных стоек. После того как все они привязаны, привязывают второй пояс продольной арматуры.

Есть еще одна технология армирования ленточного фундамента. Каркас получается жесткий, но идет большой расход прутка на вертикальные стойки: их забивают в грунт.

Вторая технология армирования ленточного фундамента — сначала вбивают вертикальные стойки, к ним привязывают продольные нитки, а потом все соединяют поперечными
  • Сначала вбивают вертикальные стойки в углах ленты и местах соединения горизонтальных прутков. Стойки должны иметь большой диаметр 16-20 мм. Их выставляют на расстоянии не менее 5 см от края опалубки, выверяя горизонтальность и вертикальность, забивают в грунт на 2 метра.
  • Затем забивают вертикальные прутки расчетного диаметра. Шаг установки мы определили: 300 мм, в углах и в местах примыкания простенков в два раза меньше — 150 мм.
  • К стойкам привязывают продольные нитки нижнего пояса армирования.
  • В местах пересечения стоек и продольных арматурин привязываются горизонтальные перемычки.
  • Подвязывается верхний пояс армирования, который располагается на 5-7 см ниже верхней поверхности бетона.
  • Привязываются горизонтальные перемычки.

Удобнее и быстрее  всего делать армирующий пояс с использованием сформованных заранее контуров. Прут сгибают, формируя прямоугольник с заданными параметрами. Вся проблема в том, что их необходимо делать одинаковыми, с минимальными отклонениями. И требуется их большое количество. Но потом работа в траншее движется быстрее.

Армирующий пояс можно вязать отдельно, а потом установить в опалубку и связать в единое целое уже на месте

Как видите, армирование ленточного фундамента — длительный и не самый простой процесс. Но справиться можно даже одному, без помощников. Потребуется, правда, много времени. Вдвоем или втроем работать сподручнее: и прутки переносить, и выставлять их.

Как рассчитать количество арматуры для заливки фундамента?

Казалось бы, всем понятно, что прочность и долговечность фундамента — это основа будущего дома. Ошибки, допущенные на этапе проектирования, армирования и заливки фундамента, в дальнейшем исправить практически невозможно. Поэтому во избежание трещин в фундаменте под действием нагрузок и движения грунта необходимо правильно рассчитать количество бетона, который будет работать на сжатие, а также количество и диаметр арматуры, которая будет работать на растяжение. В комплексе правильный расчет арматуры и четкое выполнение работ согласно проекту обеспечит вашему дому надежный фундамент на долгие годы.

Фундаменты бывают разные, и расчет арматуры для каждого из них проводится по отдельной схеме:

  1. Ленточный фундамент — наиболее популярный вид фундамента для частных домов.
  2. Свайный буронабивной — используется на слабом грунте при глубине промерзания до 1,5 метров.
  3. Свайно-ростверковый — это сочетание свай и железобетонной ленты, которое обходится дешевле ленточного фундамента, но при этом отлично себя показывает на склонах и при подвижной почве.
  4. Столбчатый фундамент — применим для легких домов и построек.
  5. Плитный фундамент – самый прожорливый в плане использования бетона и арматуры фундамент, который очень дорого обходится в частном домостроении.

Чтобы материал был более полезен для тех, кто пытается произвести расчет количества и диаметра арматуры самостоятельно, мы проведем расчет на примере ленточного фундамента под дачный дом 6 на 8 метров, а потом сравним расход арматуры на этот же проект с плитным и столбчатым фундаментом.


Металлобаза «Аксвил» продает оптом и в розницу:

• АРМАТУРУ РИФЛЕНУЮ А3 • ВЯЗАЛЬНУЮ ПРОВОЛОКУ • СВАРНУЮ СЕТКУ

Первый поставщик проката. Низкие оптовые и розничные цены. Консультация по выбору. Оформление заказа на сайте и в офисе. Нарезка в размер. Доставка по Беларуси, в том числе, и в выходные дни.

 

Схемы армирования ленточного фундамента

Для расчета количества и диаметра арматуры в первую очередь нужно определиться со схемой армирования фундамента. В зависимости от нагрузки на фундамент и пучинистости грунта для строительства частных домов чаще всего применяют армирование:

  1. Четырьмя стержнями арматуры;
  2. Шестью стержнями арматуры;
  3. Восемью стержнями арматуры.

Как же определиться со схемой армирования, чтобы она была достаточно надежной, но в то же время не излишне затратной?

Согласно правилам по проектированию и строительству (СП 52-101-2003), максимальное расстояние между продольными стержнями арматуры должно быть не более 40 см. А также арматурные стержни должны отстоять от края опалубки, верха и низа мелкозаглубленного ленточного фундамента на 5-7 см. 

Исходя из этих данных, если проектом предусмотрен ленточный фундамент шириной 50 см, то лучше всего подойдет армирование в четыре стержня:

5+40+5=50 см.

При более широком фундаменте будет целесообразно использовать схему армирования 6-8 стержнями.

Расчет диаметра продольной арматуры

От диаметра арматуры зависит прочность всей конструкции: чем толще арматура, тем прочнее. При выборе ее толщины стоит ориентироваться на вес дома и тип грунта. Если грунт плотный, то под нагрузкой от дома он будет меньше деформироваться, а значит, от плиты требуется меньшая устойчивость.

Второй фактор — это вес здания. Если вы собираетесь построить легкий деревянный дом или гараж, то устойчивость такому дому может обеспечить и арматура диаметром 10 мм. Но если это капитальное строение в несколько этажей, то может потребоваться арматура 14-16 мм. Это все учитывается на этапе разработки проекта и отражается на глубине и ширине фундамента. Далее стоит полагаться на строительные нормы, которые зависят от ширины и высоты фундамента.

Согласно правилам по проектированию и строительству (СНиП 52-01-2003), минимальная площадь сечения продольной арматуры в ленточном фундаменте должна составлять 0,1% от общего поперечного сечения железобетонной ленты.

Для того, чтобы посчитать площадь поперечного сечения фундамента, нужно его ширину умножить на высоту. Допустим, высота нашего фундамента 80 см. Тогда при ширине 50 см поперечное сечение даст:

80*50=4000 см2

Тогда суммарная площадь поперечного сечения арматуры получится:

4000*0,1%=4 см2

При схеме армирования в 4 стержня и известной площади суммарного поперечного сечения арматуры в ленточном фундаменте мы можем определить диаметр продольной арматуры по таблице:

Казалось бы, при площади поперечного сечения арматуры в 4 см2 и 4 стержнях можно сделать вывод, что вам хватит и десятки. Но в таблице видно, что 4 стержня диаметром 10 мм имеют площадь поперечного сечения 3,14 см2. Не попадитесь на эту удочку и не допустите глупых математических ошибок при расчете фундамента вашего дома.

Выбрав столбец с 4 стержнями арматуры, нам нужно найти значение, наиболее приближенное к 4 см2, но не менее того. Поэтому нам подойдет значение 4,52 см2 и, соответственно, арматура 12 мм в диаметре.

Согласно таблице, при 4 стержнях площадь их поперечного сечения будет 4,52 см2 при диаметре арматуры 12 мм. Это наиболее ходовой тип арматуры, применяемый для армирования ленточных фундаментов малоэтажных строений.

Рассчитать диаметр арматуры при схеме армирования шестью или восемью стержнями можно аналогичным образом, найдя необходимой значение в соответствующей колонке.

Также правилами регламентируется минимальный диаметр арматуры в зависимости от ее длины: При длине фундамента до 3 м этот минимум составляет 10 мм, а при длине от 3 м — 12 мм.

Также отметим, что продольная арматура железобетонной ленты должна быть одинакового диаметра. Если же вы строите сарай или баню из остатков арматуры, то стержни большего диаметра должны оказаться в нижней части армокаркаса.

Расчет диаметра поперечной и вертикальной арматуры

Продольная арматура для ленточного фундамента должна быть рифленой, тогда как поперечная и вертикальная арматура может быть гладкой.

Рассчитать диаметр поперечной и вертикальной арматуры можно без сложных вычислений. Стоит ориентироваться на данные таблицы:

В нашем случае при высоте фундамента 80 см для поперечной и вертикальной арматуры можно брать гладкие стержни 6 мм в диаметре. Если же вы строите, скажем, двухэтажный коттедж, то для поперечной и вертикальной арматуры будет достаточно прутьев диаметром 8 мм.

Расчет количества продольной арматуры

Очень часто при возведении фундамента в разгар стройки становится понятно, что арматуры не хватает. Или же наоборот: после приемки работ оказывается, что несколько десятков погонных метров арматуры осталось, а ведь она не копейки стоит. А потом еще придется думать, куда ее пристроить. Поэтому так важно на этапе проектирования и планирования точно рассчитать количество необходимой арматуры для заливки фундамента.

К примеру, наш дачный дом имеет вот такую схему фундамента:

При фундаменте 6*8 нам потребуется посчитать периметр основания и добавить к нему длину несущих стен, под которыми также будет возводится фундамент. В нашем случае периметр равен:

 6+8+6+8=28 м

К периметру прибавим еще длину несущей стены:

28+6=34 м

Полученную цифру нам необходимо умножить на количество стержней в схеме армирования, в нашем случае на 4:

34*4=136 м

При расчете арматуры необходимо помнить, что обычно она поставляется в стержнях длиной 3-6 метров. Далеко не каждый поставщик металлопроката имеет возможность поставлять арматуру длиной 0,5 до 11,7 метров. Чаще всего на месте арматуру приходится резать в размер и стыковать внахлест, как показано на схеме.

При стыковке арматуры нужно помнить, что соседние прутья должны соединяться не строго друг над другом. Расстояние между соседними соединениями стержней арматуры должно составлять 1,5 длины нахлеста, но не менее 61 см.

Нахлест рассчитывается исходя из диаметра арматуры, умноженного на 30. В нашем случае это:

12*30=360 мм (36 см)

Чтобы добавить припуски с учетом нахлеста, можно:

  1. Посчитать количество стыков;
  2. Прибавить 10-15% к общей сумме длины арматуры.

Мы воспользуемся вторым способом и прибавим к нашей цифре 10%:

136+136*0,1=149,6 м

Учитываем то, что в угловой части фундамента арматуру придется изгибать  с загибом длиной 0,5 м. Итого на каждый угол придется 4 м таких выпусков или 20 м всего на весь фундамент. Прибавляем это количество к метражу ребристой арматуры:

149,6+20=169,6 м

Итого, для ленточного фундамента дачного дома 6*8 нам потребуется около 170 метров рифленой арматуры диаметром 12 мм.

Расчет количества вертикальной и поперечной арматуры

После того, как мы определились, сколько нам нужно купить рифленой арматуры 12 мм, нам нужно рассчитать, сколько потребуется гладкой арматуры диаметром 6 мм.

Взглянем на схему поперечного сечения фундамента:

Периметр каждого прямоугольника, который опоясывает продольную арматуру, в нашем случае составит:

40+70+40+70=220 см (2,2 метра)

Если взглянуть на припуски в местах соединения и учесть, что некоторые строители вертикальную арматуру вбивают в землю для устойчивости армокаркаса, то к этой сумме смело можно прибавлять сантиметров 20.

220+20=240 см (2,4 м)

Теперь нам нужно подсчитать, сколько таких прямоугольников разместится в нашем фундаменте. Это можно сделать двумя способами:

  1. Просто поделив длину нашего периметра и несущих оснований на расстояние между перемычками;
  2. Начертив схему фундамента и подсчитав места связок на чертеже.

Мы попробуем подсчитать количество связывающих колец на плане фундамента. Связки продольной арматуры вертикальными и поперечными прутьями необходимо производить каждые полметра (допустимо расстояние 0,3-0,8 метра). К тому же, на углах у нас разместится по две таких связки.

Сперва посчитаем, сколько таких опоясывающих прямоугольников поместится на стене 8 метров. Как видно из схемы, на восьмиметровой стене уже есть 6 угловых элементов. А если принять во внимание, что такие перемычки необходимо делать через каждые полметра, то на ней необходимо будет разместить еще 12 таких соединений. То же самое на второй восьмиметровой стене.

(6+12)*2=36 штук

Оставшиеся три стены по 5 метров предполагают еще по 9 перемычек:

9*3+36=63 перемычки

Получается, нам нужно длину гладкой арматуры, необходимой для фиксации в неподвижном состоянии продольной арматуры, умножить на количество таких соединений:

2,4*63=151,2 м

Получается, что для фундамента нашего дачного домика нам потребуется примерно 170 метров рифленой арматуры диаметром 12 мм и 150 гладкой арматуры диаметром 6 мм.

Учитывайте также, что в процессе работы часто остается много коротких стержней, непригодных для дальнейшего использования, поэтому к полученной цифре лучше прибавить еще процентов 10.

170+170*0,1=187 метров диаметром 12 мм

151,2+151,2*0,1=166,22 метров диаметром 6 мм

Зачастую поставщики считают количество арматуры не метрами погонными, а тоннами, поэтому на заключительном этапе подсчета вам может потребоваться перевести эти данные из расчета, что вес 1 мп рифленой арматуры 12 мм в диаметре равен 0,89 кг, а гладкой арматуры 6 мм в диаметре — 0,222 кг.

Итого:

187*0,89=166,43 кг

166,22*0,222=39,9 кг

Расчет количества вязальной проволоки

В места пересечения продольных, поперечных и вертикальных прутьев стыки связываются проволокой. Сварка при армировании фундамента крайне нежелательна, так как ухудшает свойства металла в местах соединения и может вызвать трещины при вибрации.

Рассчитать количество вязальной проволоки можно, зная количество стыков и длину проволоки, которая потребуется на каждый стык. Как правило, на каждый стык необходимо 15 см проволоки, сложенной вдвое, итого 30 см (0,3 м).

Ранее мы подсчитали, что в нашем фундаменте будет 63 перемычки, в каждой из которых 4 соединения для связки проволокой.

63*4=252 соединения

Далее нам необходимо количество соединений умножить на длину проволоки, необходимой для  каждого соединения:

252*0,3=75,6 метров

Если вы не имеете навыков вязки арматуры, то лучше вязальной проволоки взять с запасом, так как в неумелых руках даже обожженная проволока часто ломается.

Таким образом, для ленточного фундамента 6*8 с несущей стеной нам потребуется 166,43 кг рифленой арматуры диаметром 6 мм и 40 кг гладкой арматуры, а также 75,6 метров вязальной проволоки.

Расход арматуры в сравнении с плитным и столбчатым фундаментом

А теперь попробуем подсчитать, сколько бы нам понадобилось арматуры, если бы мы выбрали плитный или столбчатый фундамент.

Примерный расчет арматуры для плитного фундамента

Плитный фундамент состоит из двух арматурных сеток, связанных между собой. Для него, как правило, используется рифленая арматура диаметром 12 мм.

Ячейка между продольными и поперечными стержнями арматуры в сетке представляет собой квадрат 20*20 см. При фундаменте 6*8 нам потребуется узнать, сколько прутьев арматуры ляжет вдоль каждой стены с шагом в 20 см.

6/0,2=30 штук по 8 метров

8/0,2=40 штук по 6 метров

Если мы суммируем полученные цифры, мы получим количество прутков на одну сетку.

30*2+40*2=140 штук

В нашем варианте идеально было бы заказать 80 прутков длиной 6 метров и 60 прутков длиной 8 метров. Но чаще всего арматура продается длиной 3-6 метров, поэтому ее придется стыковать внахлест. Допустим, если заказать всю арматуру длиной 6 метров, то к 140 нужно будет прибавить еще 30 на наращивание по длинной стороне, которые потом разрежутся на трехметровые стержни с запасом на связку внахлест.

140+30=170 штук

170*6=1020 м рифленой арматуры

После этого необходимо соединить верхнюю и нижнюю сетку вертикальными стержнями, которых будет ровно столько, сколько пересечений продольной и поперечной арматуры.

30*40=1200 соединений

Допустим, высота плитного фундамента 20 см, то, соблюдая отступ от верха и низа бетонной плиты по 5 см, мы получим расстояние между верхней и нижней сеткой арматуры в 10 см.

1200*0,1=120 метров вертикальной арматуры

Общее количество арматуры для плитного фундамента составит:

1020+120=1122 метра погонных,
что в 6 раз больше, чем для ленточного фундамента.

Вязальной проволоки также нужно в несколько раз больше, так как в каждом месте, где пересекаются два горизонтальных и один вертикальный стержень, получится по два узла проволоки. Таких пересечений у нас 1200 в верхней сетке и столько же в нижней. На каждый узел необходимо в среднем 30 см вязальной обожженной проволоки.

1200*2*0,3=720 метров вязальной проволоки,
что в 10 раз больше, чем для ленточного фундамента на тот же дачный дом.

Примерный расчет арматуры для столбчатого фундамента

В принципе, для легкого дачного дома подойдет и столбчатый фундамент.

Для армирования свай достаточно арматуры диаметром 10 мм. Для вертикальных прутков используется ребристая арматура, горизонтальные прутки применяются только для того, чтобы связать их в единый каркас. Обычно арматурный каркас для столбика состоит из 2-4 прутков, длина которых равна высоте столба. Если диаметр столба превышает 20 см, то надо использовать больше стержней, равномерно распределяя их внутри столба. Для армирования 2-метрового столба диаметром 20 см можно ограничиться четырьмя прутками из арматуры диаметра 10 мм, которые расположены на расстоянии 10 см друг от друга и перевязаны в четырех местах гладкой арматурой диаметром 6 мм.

Предположим, что сваи для фундамента нашего дачного дома будут диаметром 200 мм с интервалом в 1,5 метра.

Делим периметр основания на шаг между сваями и получаем их количество:

34/1,5=22,6

Округляем до 23 столбов.

Свая будет армироваться тремя прутами рифленой арматуры и четырьмя хомутами — из гладкой. Посчитаем, сколько нужно рифленой арматуры на один столбик высотой 1,5 метра с выпуском под ростверк 0,3 м:

(1,5+0,3)*3=5,4 м

На все сваи уйдет:

5,4*23=124,2м рифленой арматуры

Для армокаркаса будет использоваться гладкая арматура, согнутая в окружность. Длина этой окружности с запасом составит:

3,14*0,2=0,628 м

Таких хомутов на одну сваю потребуется, как минимум, 4:

0,628*4=2,512 м

На все 23 столба гладкой арматуры потребуется:

2,512*23=57,776 м ≈58 м

Для расчета вязальной проволоки нам нужно посчитать количество соединений в наших столбах. Три прутка рифленой арматуры соединяются с четырьмя опоясывающими кольцами гладкой арматуры в шести местах:

3*4*0,3=3,6 метра проволоки на каждый столб

3,6*23=82,8 метра проволоки

Итого на свайный фундамент нашего дачного домика 6*8 потребуется около 125 метров погонных рифленой арматуры и 58 м гладкой арматуры, а также 83 м вязальной проволоки, что, конечно, получится экономичнее, чем ленточный фундамент и вполне подойдет для каркасного дачного дома.

Выводы:

 

В общем, совсем не сложно самостоятельно рассчитать количество и диаметр арматуры, необходимой для заливки фундамента. Особенно, при наличии проектно-сметной документации. Используя данный материал, вы без проблем сможете довольно точно рассчитать количество арматуры для заказа, чтобы потом не переплачивать за повторную доставку или излишний металлопрокат, оставшийся после стройки.

Сравнение расчетов количества арматуры для разных видов фундамента показало, что для дачного дома лучше всего подходят столбчатый и ленточный фундамент. А уж какой из них выбрать, будет зависеть от материала стен, кровли, перекрытий и количества этажей дома, пучинистости грунта и личных предпочтений.

 

Металлобаза «Аксвил» предлагает купить рифленую арматуру А3 и гладкую арматуру А1, вязальную проволоку, по безналичному и наличному расчету, оптом и в розницу с доставкой по Беларуси.

Расстояние между арматурой по СП 63.13330 (СНиП 52-01-2003)

Требования к минимальному расстоянию между стержнями арматуры

Требования к минимальному расстоянию между стержнями арматуры приведены в  разделе 10.3 СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. (раздел 10.3 СП 63.13330.2018)

Для чего необходим обеспечить минимальное расстояние между стержнями в железобетонной конструкции:

  • обеспечение совместной работы арматуры с бетоном;
  • качественное изготовление конструкций (укладка и уплотнение бетонной смеси)

Согласно п. 10.3.5 (СП 63.13330.2012, СП 63.13330.2018), минимальное расстояние между стержнями арматуры должно составлять:

1. Не менее наибольшего диаметра стержня!

2. При горизонтальном или наклонном положении стержней в один или два ряда при бетонировании:

  • для нижней арматуры не менее 25 мм;
  • для верхней арматуры не менее 30 мм;

3. При горизонтальном или наклонном положении стержней более чем в два ряда при бетонировании:

  • для нижней арматуры не менее 50 мм (кроме стержней двух нижних рядов).

4. При вертикальном положении стержней при бетонировании.

5. При стесненных условиях допускается располагать стержни группами — пучками (без зазора между ними).

При этом расстояния в свету между пучками должны быть также не менее приведенного диаметра стержня, эквивалентного по площади сечения пучка арматуры, принимаемого равным по формуле:

d si -диаметр одного стержня в пучке, 

n- число стержней в пучке.

Требования к максимальному расстоянию между стержнями арматуры

Требования к максимальному расстоянию между стержнями арматуры приведены в  разделе 10.3 СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003.

Для продольной арматуры

В соответствии с п.10.3.8 — 10.3.10 СП 63.13330.2012 (СП 63.13330.2018), максимальное расстояние между осями стержней продольной арматуры составляет:

1. в железобетонных балках и плитах:

  • не более 200 мм — при высоте поперечного сечения h≤150 мм;
  • не более 400 мм или 1,5 h  — при высоте поперечного сечения  h>150 мм;

2. в  железобетонных колоннах:

  • не более 400 мм — в направлении, перпендикулярном плоскости изгиба;
  • не более 500 мм — в направлении плоскости изгиба.

3. В железобетонных стенах:

  • не более 400 и не более 2t (t- толщина стены) — между стержнями вертикальной арматуры;
  • не более 400 — между стержнями горизонтальной арматуры.

Важные примечания!

  1. В балках и ребрах шириной более 150 мм число продольных рабочих растянутых стержней в поперечном сечении должно быть не менее двух.
  2. В балках и ребрах при ширине элемента 150 мм и менее допускается устанавливать в поперечном сечении один продольный стержень.
  3. В балках до опоры следует доводить стержни продольной рабочей арматуры с площадью сечения не менее 1/2 площади сечения стержней в пролете и не менее двух стержней.
  4. В плитах до опоры следует доводить стержни продольной рабочей арматуры на 1 м ширины плиты с площадью сечения не менее 1/3 площади сечения стержней на 1 м ширины плиты в пролете.

Для поперечной арматуры

В соответствии с п.10.3.11-10.3.20- СП 63.13330.2012 (СП 63.13330.2018), максимальное расстояние между осями стержней продольной арматуры составляет:

Поперечную арматуру устанавливают у всех поверхностей железобетонных элементов, вблизи которых ставится продольная арматура.

Ее устанавливают с целью восприятие усилий, а также ограничения развития трещин, удержания продольных стержней в проектном положении и закрепления их от бокового выпучивания в любом направлении.

Диаметр поперечной арматуры (хомутов) в вязаных каркасах внецентренно сжатых элементов (колонны, стойки и т.д.) принимают не менее 0,25 наибольшего диаметра продольной арматуры и не менее 6 мм.

Диаметр поперечной арматуры в вязаных каркасах изгибаемых элементов (балках, ригелях и т.д)  принимают не менее 6 мм.

В сварных каркасах диаметр поперечной арматуры принимают не менее диаметра, устанавливаемого из условия сварки с наибольшим диаметром продольной арматуры.
Максимальное расстояние для поперечной арматуры:

  • не более 0,5 h0 и не более 300 мм — в железобетонных элементах, в которых поперечная сила по расчету не может быть воспринята только бетоном.
  • не более 0,75 h0 и не более 500 мм — в балках и ребрах высотой 150 мм и более, а также в часторебристых плитах высотой 300 мм и более, на участках элемента, где поперечная сила по расчету воспринимается только бетоном.
  • можно не устанавливать — в сплошных плитах, а также в часторебристых плитах высотой менее 300 мм и в балках (ребрах) высотой менее 150 мм на участках элемента, где поперечная сила по расчету воспринимается только бетоном.
  • не более 15d и не более 500 мм — во внецентренно сжатых линейных элементах, а также в изгибаемых элементах при наличии необходимой по расчету сжатой продольной арматуры в целях предотвращения выпучивания продольной арматуры (d — диаметр сжатой продольной арматуры).

Важные примечания!

  • Если площадь сечения сжатой продольной арматуры, устанавливаемой у одной из граней элемента, более 1,5%, поперечную арматуру следует устанавливать с шагом не более 10d и не более 300 мм.
  • Конструкция хомутов (поперечных стержней) во внецентренно-сжатых линейных элементах должна быть такой, чтобы продольные стержни (по крайней мере через один) располагались в местах перегибов, а эти перегибы — на расстоянии не более 400 мм по ширине грани. При ширине грани не более 400 мм и числе продольных стержней у этой грани не более четырех допускается охват всех продольных стержней одним хомутом.
  • В элементах, на которые действуют крутящие моменты, поперечная арматура (хомуты) должна образовывать замкнутый контур.
  • Поперечную арматуру в плитах в зоне продавливания в направлении, перпендикулярном сторонам расчетного контура, устанавливают с шагом не более 1/3h0 и не более 300 мм. Стержни, ближайшие к контуру грузовой площади, располагают не ближе 1/3h0 и не далее 1/2h0  от этого контура. При этом ширина зоны постановки поперечной арматуры (от контура грузовой площади) должна быть не менее 1/3h0. Допускается увеличение шага поперечной арматуры до 1/2h0. При этом следует рассматривать наиболее невыгодное расположение пирамиды продавливания и в расчете учитывать только арматурные стержни, пересекающие пирамиду продавливания.
  •  Расстояния между стержнями поперечной арматуры в направлении, параллельном сторонам расчетного контура, принимают не более 1/4 длины соответствующей стороны расчетного контура.
  • Поперечная арматура, предусмотренная для восприятия поперечных сил и крутящих моментов, должна иметь надежную анкеровку по концам путем приварки или охвата продольной арматуры, обеспечивающую равнопрочность соединений и поперечной арматуры.
  • У концов предварительно напряженных элементов должна быть установлена дополнительная поперечная или косвенная арматура

Условные обозначения:

h0 — рабочая высота сечения в м, вычисляется по формуле

h0=h-a’, где

h —  высота сечения в м.

a’ — расстояние от центра тяжести растянутой арматуры, до ближайшего края сечения

Рабочая высота сечения — это расстояние от сжатой грани элемента до центра тяжести растянутой продольной арматуры (п.3.22 СП63).

Защитный слой бетона для арматуры по СП 63.13330 (СНиП 52-01-2003)

Арматурные работы. Допустимые отклонения при укладке по СП

Арматура А500С (ГОСТ, расшифровка, таблица весов и тип стали)

Ограничения при армировании железобетонных конструкций

При общении с энтузиастами строителями, которые не отягощены специализированным образованием, звучит мнение, что чем больше арматуры положить в бетон, тем он будет прочнее. Это не всегда справедливо, ведь кроме площади поперечного сечения арматуры в конструкции, которая растет при увеличении ее количества, на прочность конструкции также влияет ее монолитность. Поэтому важно не только обеспечить необходимое количество металла в бетоне, но и обеспечить эффективное сцепление арматуры с бетоном. Для этого, существуют нормы и ограничения, выведенные как теоретическим, так и практическим путем. Они описаны в регламентирующих проектирование и строительство документах — СНиПах и СП.

Фотография: Pixabay

Рассмотрим наиболее распространенные в любительском строительстве случаи. Для начала, определимся с терминологией. Арматурой, в пределах данной статьи, будем именовать металлические стержни круглого сечения, использующиеся для армирования железобетонных конструкций. Эти стержни бывают как гладкие, так и рифленые. Для общего понимания, посмотрите на перечень изделий крупного поставщика арматуры «Сталепромышленная компания» в России, здесь https://www.spk.ru/catalog/metalloprokat/sortovoy-prokat/armatura/. Основная функция строительной арматуры — увеличение прочности железобетонной конструкции на растяжение и изгиб.

Минимальное расстояние между стержнями

Чтобы обеспечить эффективное сцепление бетона с арматурой, нужно сделать так, чтобы в процессе бетонирования, смесь заполнила все пространство в опалубке. В густо-армированных зонах, с этим могут быть трудности. Причина заключается в вязкости бетонной смеси и в ее неоднородности. Если с вязкостью проблема решается вибрированием, то неоднородность (наличие щебня) смеси приводит к тому, что щебень может застрять между близко расположенных стержней, препятствую проникновению жидкой части бетона к стенкам арматуры. Таким образом, в будущей конструкции образуется воздушный пузырь, бетон не контактирует с арматурой, снижая монолитность и прочность всей конструкции.

Чтобы этого не произошло, следует придерживаться следующих правил при армировании:

  1. Если в нижний пояс балки требуется разместить вплотную два стержня, расстояние между ними следует принимать не менее 25 мм и не менее диаметра стержня наибольшего диаметра;
  2. Для верхнего пояса, минимальное расстояние составляет 30 мм;
  3. Если нужно разместить три стержня, то первые два нужно размещать в соответствии в правилами 1 и 2 настоящего списка, а третий — на расстоянии не менее 50 мм от второго;
  4. Для вертикального армирования, минимальное расстояние между стержнями — 50 мм.

Максимальное расстояние между стержнями

Чтобы не допустить больших зон без армирования, максимальное расстояние между стержнями тоже регламентируется. Нужно следовать следующим правилам:

  1. В балках и плитах, при высоте конструкции меньше или равной 150 мм, максимальное расстояние между стержнями арматуры должно быть 200 мм.
  2. В балках и плитах, при высоте конструкции более 150 мм, расстояние между стержнями не должно превышать 400 мм, или полторы высоты конструкции. Например, при высоте плиты 200 мм, это расстояние может быть 300 мм или меньше;
  3. В колоннах, перпендикулярно плоскости изгиба, расстояние не может превышать 400 мм. Параллельно плоскости изгиба — не может превышать 500 мм;
  4. В стенках, вертикальная арматура не должна быть на расстоянии более 400 мм или двух толщин стены. Например, если стена толщиной 150 мм, то расстояние между стержнями вертикальной арматуры должно быть не более 300 мм;
  5. Горизонтальная арматура в стенах не должна быть расположена с шагом более 400 мм, независимо от толщины стены.

Минимальное расстояние от края стержней до опалубки

Проникновение бетона в пространство между каркасом и опалубкой обеспечивается следующими правилами:

  1. Расстояние не должно быть меньше 20 мм и меньше диаметра арматуры;
  2. Для влажных помещений, арматура со стороны помещения должна быть защищена минимум 25 мм бетона. Это правило обусловлено уже не доступностью смеси во время бетонирования, а обеспечением защиты арматуры в период эксплуатации;
  3. Для конструкций, контактирующих с улицей, это расстояние не должно быть меньше 30 мм;
  4. Для конструкций, контактирующих с грунтом, минимально расстояние от арматуры до опалубки — 40 мм. Это может быть стена фундамента, или боковая стенка ленточного фундамента;
  5. Для нижней арматуры в ленточном фундаменте без бетонной подготовки, расстояние должно быть не менее 70 мм.

Соблюдение этих правил обеспечивает работу железобетонной конструкции как единого целого. Кроме того, обеспечивается защита металла арматуры от коррозии.

 

расстояние от арматуры до края бетона, минимальная толщина по СНиП и максимальная величина слоя в фундаменте

Железобетонные строительные конструкции нуждаются в защитном слое бетона. За такой берется расстояние от края каркаса до монолитной поверхности. Нормативные документы устанавливают минимальное значение данного параметра. Важно, чтобы слой надежно защищал металл от коррозии, если край получит какие-либо механические повреждения.

Что это такое и зачем нужен?

Если металлический каркас железобетонного строения смонтирован верно, то даже на фотографии будет заметно, что прутья не прикасаются к опалубке. Получается, что край конструкции и стальные элементы разделены слоем бетона с определенным значением толщины. Именно последнее по техдокументации является определением защитного слоя бетона для арматуры. Недостаток бетона в полной мере компенсируется армирующим каркасом в свае, который повышает прочность при нагрузках. Надежная конструкция получится только в случае, если одновременно следить и за качеством бетонирования, и за правильным армированием.

Как правило, пруты для арматуры создаются по ГОСТам и имеют определенный запас прочности, которого хватит для длительной эксплуатации. Однако сталь подвержена воздействию влаги и химвеществ, которые могут привести к коррозии. Чтобы снизить негативное влияние на металлические пруты, можно воспользоваться антикоррозионной обработкой в виде оцинкования и оксидирования. Конечно, эти методы весьма недешевые и не дают полной гарантии от возникновения ржавчины.

Образующаяся пленка на прутах настолько тонкая, что при плохой перевозке или неаккуратной сварке легко повреждается.

Для арматуры опасность представляет и наполнитель в бетонном растворе в виде гравия или щебня. Когда опалубка с металлическим каркасом заполняются им, острые камни могут легко повредить защитный слой на прутах. В итоге может возникнуть коррозия прямо внутри конструкции, и в ней со временем образуются внутренние пустоты. Конечно, сперва они будут небольшие, но затем станут расширяться и превратятся в трещины. На них будет воздействовать влага и низкие температуры, что приведет к разрушению бетонной конструкции.

Металлический каркас внутри монолитной плиты перекрытия нуждается в максимальной защите от проникновения влаги. Также важно создать барьер, способный защитить от воздействия разных химрастворов, которые возникают из-за загрязненного воздуха и грунта. Значительную роль в этом играет бетон, который является щелочной средой. Поэтому при закладке фундамента важно уделить внимание защитному слою. Если он выполнен правильно, то сталь с бетоном будут работать стабильно, вместе и длительное время.

Среди функций такого слоя выделяют следующие:

  • фиксирование каркаса из стали внутри бетона определенным образом;
  • равномерное распределение нагрузки на армирование и бетон;
  • защита металлических элементов от влажности, химических веществ и различных негативных воздействий;
  • качественная анкеровка стальных прутов в бетонной массе с целью стыковки соседних каркасов или перехода на другой уровень;
  • повышение огнеупорности всей конструкции;
  • создание качественного основания для того, чтобы в дальнейшем смонтировать допзащиту на участках фундамента, находящихся над землей.

Какой должна быть толщина?

Минимальная и максимальная толщина берется из установленных нормативов. Если не придерживаться указанных значений, то металлические части быстрее поддадутся коррозии. Требования к толщине также учитывают расчетные размерные параметры арматуры, чтобы не допустить роста затрат на стройматериалы. Поэтому важно выбирать данный параметр, руководствуясь СНиП и другой документацией.

Толщина защиты из бетона зависит от целого ряда моментов.

  • Величина диаметра и тип металлического прута для арматуры. Как правило, чем больше сечение прута, тем нужно делать защитный слой большей толщины.
  • Предполагаемая нагрузка механического характера на фундамент, а точнее ее сила.
  • Условия среды, в которых планируется эксплуатировать готовое строение или изделие. К примеру, для основания на влажном грунте важна надежная гидроизоляция. При этом желательно делать толщину слоя максимально возможной по СП.
  • Тип железобетонной конструкции. Есть определенные нормы, которые диктуют, каким должен быть слой бетона для каждого отдельного типа.
  • Технические условия для эксплуатации.
  • Функциональная нагрузка на пруты из металла.

Конечно, все нормативы невозможно найти в одном документе, но можно выделить и собрать воедино ряд основных пунктов по толщине защитного слоя.

  • Согласно Строительным нормам и правилам 52–01-2003 (пункт 7.3), бетон должен быть наложен слоем не менее, чем диаметр металлического прута. При этом он не может быть менее 1 сантиметра.
  • В СП 50–101-2004 толщина защиты указывается для более конкретных вариантов.
    • Для ленточных и сборных оснований слой должен составлять от 3 сантиметров.
    • Для монолитных желательно подготовить основание с толщиной 10 сантиметров. При этом его можно сделать путем утрамбовки песка или щебенки в виде заполнения, которые затем заливаются стяжкой. При этом минимальная защита для арматуры, лежащей продольно, начинается от 3,5 сантиметров.
    • Для монолитных оснований на подушке из песка и щебня важно положить защитный слой толщиной от 7 сантиметров.
  • По своду правил 52–01-2003 защитный слой должен иметь следующие значения.
    • Для конструкций из железобетона, которые располагаются в помещениях, где наблюдается нормальная или пониженная влажность, достаточно защиты с толщиной 2 сантиметра.
    • Для помещений с повышенной влажностью и без специальных защитных мер минимальный слой должен составлять 2,5 см.
    • Для конструкций, находящихся на открытом воздухе без специальных дополнительных мер, понадобится защита в 3 сантиметра.
    • Для железобетона, который будет располагаться в почве, защитный слой должен начинаться от 4 см. Если в данном случае использовать сборные элементы, то можно сократить защиту на 5 миллиметров. Однако важно, чтобы слой был не меньше, чем диаметр арматурного прута.
  • Справочное пособие под названием «Проектирование железобетонных конструкций», выпущенное в 1985 году, стало для многих профессионалов настольной книгой. В нем приведены следующие значения.
    • Для фундаментов сборного типа и фундаментных балок защитный слой составляет от 3 см. При этом сечение не играет никакой роли.
    • Для монолитных конструкций с бетонной подготовкой и без нее, но при учете скального грунта, толщина защиты должны быть не менее 3,5 сантиметров.
    • Для монолитных фундаментов без подготовки слой бетона с защитной целью необходимо брать минимум в 7 сантиметров.
    • Для арматуры распределительного, поперечного и конструктивного видов с минимальным размером сечения до 25 см стоит выбирать защиту от 1 сантиметра. При сечении от 25 см слой должен вырасти до 1,5 см.
  • В Строительных нормах и правилах 3.03.01–87 указаны отклонения, которые допустимы при определенной толщине слоя защиты из бетона:
    • от полутора сантиметров – на 3 мм;
    • более 1,5 сантиметра – на 5 мм;
    • до 20 сантиметров – на 9 мм.

Как правильно заливать?

Важно понимать, что величина защитного слоя из бетона должна быть заложена еще на стадии, когда фундамент только проектируется. Согласно рекомендациям и ряду требований, которые указаны в нормативах, определяется расстояние до края основания от конца арматуры. Данный параметр обязательно надо внести в план.

Практика показывает, что важно добросовестно подходить к стандартным требованиям. Следует арматурную сетку, а точнее ее нижний уровень, приподнять выше дна котлована на определенную величину. Это нужно для того, чтобы каркас не упирался в подсыпку. Для этого следует воспользоваться подпорками, в роли которых могут выступать полимерные материалы, камень, кирпич или бетон.

Не рекомендуется брать недолговечные материалы, боящиеся влаги, к примеру, дерево.

Еще один важный момент при заливке – равномерное распределение раствора по всей опалубке. Также надо постараться избегать различных неоднородностей и пропусков в бетоне.

Если предстоит работа с тяжеловесным раствором, то стоит подстраховаться, чтобы каркас не сместился. С этой целью его следует качественно зафиксировать в одном положении. Для чего лучше всего подходят специальные фиксаторы, которые часто называются звездочками. Они легко устанавливаются и могут отличаться радиусом.

Как восстановить?

Порой встречается разрушение защитного слоя с оголением, и его приходится частично, а иногда даже полностью восстанавливать. При этом надо учитывать геометрические особенности рабочей поверхности (вертикальная, горизонтальная, с кривыми линиями), поврежденную площадь и условия эксплуатации.

Чаще всего профессионалы с большим опытом пользуются следующими способами, которые позволяют восстановить защитный слой из бетона.

Штукатурные работы

Начинать надо с тщательного очищения поверхности, которая была повреждена. После того как аморфный слой удален, следует провести оштукатуривание раствором из цемента и песка. При этом необходимо использовать присадки, которые повысят устойчивость к влаге, образованию трещин и низким температурам. Когда штукатурка высохнет, можно ее окрасить при помощи красок по бетону.

Оклеивание

Данный способ подразумевает, что на все участки, получившие повреждения, наклеиваются специальные полимерные материалы.

При этом поверхность также необходимо заранее подготовить.

Обетонирование

Предварительная подготовка для восстановления этим способом подразумевает, что сначала надо убрать разрушившийся слой, а затем зачистить арматуру. После этого на поверхность следует нанести бетонный раствор. Причем можно использовать как полимерный, так и общестроительный. Главное, чтобы его прочность соответствовала прочности основания.

Торкетирование

В этом случае для восстановления применяют раствор бетона или цемента, который подается под высоким давлением из специального устройства.

Конечно, предварительно поверхность нужно очистить и подготовить.

О защитном слое бетона для арматуры смотрите в видео.

Установка и размеры арматуры

Если вы устанавливаете бетонный пол гаража, внутренний дворик, подъездную дорожку, тротуар или опорные колонны, вам следует рассмотреть возможность использования арматурных стержней, как показано на Рисунке 1, или, как их называют в промышленности, «арматуры» по всей плите. Арматурные стержни помогают удерживать бетон и предотвращают образование трещин.

Рисунок 1 — Арматура, уложенная для бетонного проезда

Конечно, как и у большинства строительных изделий, у арматуры есть своя терминология размеров.В таблице 1 представлены стандартные размеры арматурных стержней и их вес.

Таблица 1 — Размеры и масса арматуры

Обозначение промышленного размера

Обозначение размера в метрической системе

Диаметр (дюймы)

Вес (фунт / фут)

3

10

3/8

0,376

4

13

1/2

0.668

5

16

5/8

1.043

6

19

3/4

1,502

7

22

7/8

2,044

8

25

1

2.670

9

29

1 1/8

3,400

Диаметр в таблице 1 является номинальным числом и измеряется в самых узких точках стержня.

Один из самых распространенных вопросов: «Арматурный стержень какого размера мне следует использовать?»

Для проездов и террас арматурного стержня № 3 диаметром 3/8 дюйма должно быть достаточно.Если вы строите стены, опоры или колонны, я рекомендую использовать арматурный стержень №4 (1/2 дюйма). Для строительства фундаментов я бы использовал арматуру №5 (5/8 дюйма).

Установка арматуры имеет решающее значение для успеха всего проекта. Арматуру следует размещать равномерно по всему проекту. Для плоской плиты, например проезжей части, рассмотрите возможность размещения арматурного стержня с шагом сетки 18 дюймов, сохраняя край арматурного стержня на одинаковом расстоянии с каждой стороны. Для патио вы можете использовать сетку размером 24 дюйма.

В качестве примера, если у вас есть подъездная дорожка длиной 10 футов, вы должны начать первый ряд арматурного стержня на расстоянии 15 дюймов от края, а затем уложить еще 5 арматурных стержней с центрами 18 дюймов. Это оставит 15 дюймов от противоположного края, как показано на рисунке 2.

Рисунок 2 — Монтажная сетка арматуры

Чтобы создать прочную сетку из арматурных стержней, важно, чтобы в местах пересечения двух или более частей или арматурных стержней они были соединены вместе, как показано на рисунке 3, с помощью арматурной стяжки, как показано на рисунке 4.

Рисунок 3 — Арматура, соединенная в стыках

Имеется специальный ручной инструмент для стяжки арматуры, показанный на рис. 5, который помогает плотно наматывать проволоку вокруг арматурного стержня.

Арматурный стержень

не следует соединять по углам, поэтому производитель арматуры предоставляет арматурный стержень, который изгибается под углом 90 градусов, как показано на Рисунке 6.

Рисунок 4 — Стяжная проволока для арматуры

Рисунок 5 — Инструмент для связывания арматуры

Рисунок 6 — Арматурный стержень, изогнутый на 90 °

Рисунок 7 — Опоры арматуры

Арматурный стержень должен заканчиваться посередине плиты, а не вверху или внизу.Арматуру можно разместить на кусках кирпича или камня, как показано на рисунке 1, чтобы удерживать ее над землей при заливке бетона. Затем потяните на место с помощью стержня с крюком на конце, чтобы захватить арматурный стержень.

В качестве альтернативы использованию кирпичей или камней для поддержки арматуры во время заливки бетона вы можете использовать недорогие опоры для арматуры, как показано на рис. 7, которые специально сделаны для удержания арматуры над землей во время заливки бетона.

Дополнительная информация о строительстве бетонных плит, патио, проездов и тротуаров.

Размещение арматурной стали | Журнал Concrete Construction

Adobe Stock / Peangdao

Несмотря на то, что на более крупных проектах металлурги будут размещать арматурную сталь, большинство подрядчиков размещают некоторую арматуру. Размещение его в нужном месте и удержание его там во время укладки бетона имеет решающее значение для производительности конструкции. Арматуру следует размещать, как показано на чертежах размещения. Там детейлер укажет количество стержней, длину стержней, изгибов и положения.

Крышка

Одной из важных причин для правильного размещения арматурной стали является достижение нужного количества бетонного покрытия — количества бетона между арматурной сталью и поверхностью бетонного элемента. Покрытие является самым важным фактором защиты арматурной стали от коррозии. Покрытие также необходимо, чтобы гарантировать, что сталь достаточно хорошо сцепляется с бетоном и развивает его прочность. Требования к минимальному покрытию обычно перечислены в спецификациях проекта или показаны на чертежах.Если не указано иное, минимальное покрытие для монолитного бетона указано в Строительном кодексе ACI 318.

Выбор позиции

Важно помнить, что конструкция конструкции основана на размещении стали в нужном месте. Неправильное размещение арматуры может привести и привело к серьезным разрушениям конструкции бетона. Например, опускание верхних стержней или подъем нижних стержней на ½ дюйма больше, чем указано для плиты глубиной 6 дюймов, может снизить ее грузоподъемность на 20%.

Укладка арматуры поверх слоя свежего бетона с последующей заливкой поверх нее не является приемлемым методом позиционирования. Вы должны использовать опоры для арматурных стержней, которые сделаны из стальной проволоки, сборного железобетона или пластика. Стулья и опоры доступны разной высоты для поддержки определенных размеров и положений арматурных стержней. В целом пластиковые аксессуары дешевле металлических опор. Справочное руководство по арматурной стали Института бетонной арматурной стали или классический Размещение арматурных стержней содержит три таблицы, в которых показано большинство доступных в настоящее время опор из различных материалов и описываются ситуации, в которых каждая из них используется наиболее эффективно.

Недостаточно просто разместить штанги на опорах. Арматурная сталь должна быть закреплена, чтобы предотвратить смещение во время строительных работ и укладки бетона. Обычно это делается с помощью проволочной стяжки. Связующая проволока поставляется в мотках по 3 или 4 фунта. Провода помещаются в держатель для проволоки или катушка подвешивается к ремню рабочего для доступа. Обычно это проволока 16½ или черная, мягкая, отожженная проволока калибра 16, хотя для более тяжелого армирования может потребоваться проволока калибра 15 или 14 для удержания арматурного стержня в правильном положении.В индустрии армирования бетона используются различные типы стяжек (стяжки — это в основном проволочные скрутки для соединения пересекающихся стержней), от карабинов до седельных стяжек. CRSI Размещение арматурных стержней иллюстрирует типы связей и описывает ситуацию, в которой каждая из них используется наиболее эффективно.

Для связывания стержней с эпоксидным покрытием используйте стяжки из ПВХ (можно приобрести в компании American Wire Tie). Также доступны запатентованные защелкивающиеся стяжки, такие как стяжка Speed-Clip Rebar Tie от Con-Tie Inc. Это простое устройство, которое вручную прикрепляет арматурный стержень параллельно или под любым углом.Никаких инструментов не требуется.

При связывании стержней нет необходимости связывать каждое пересечение — обычно достаточно каждого четвертого или пятого. Помните, что стяжка не придает прочности конструкции, поэтому больше необходимо только тогда, когда сталь может сместиться во время укладки бетона. Обязательно держите концы стяжных проволок подальше от поверхности бетона, где они могут заржаветь. Для предварительно собранных матов или арматурной стали свяжите достаточное количество пересечений, чтобы сделать сборку достаточно жесткой для размещения — обычно каждое пересечение вокруг внешней стороны и каждое другое в середине мата.Прихваточная сварка пересечений обычно не допускается, так как это уменьшает поперечное сечение стержней.

Допуски при размещении
Хотя стержни следует размещать как можно ближе к указанному положению, всегда будут небольшие отклонения. Допуски на положение арматурных стержней, определенные ACI 117, «Допуски для бетонных конструкций и материалов», показаны в таблице. Помните, что это означает: допуск, согласно ACI 117, — это допустимое отклонение от заданного размера, другими словами, насколько далеко арматурный стержень на самом деле находится от того, что показано на чертежах.Так, например, если расстояние в свету между внешней стороной арматурного стержня и лицевой стороной бетонной балки шириной 6 дюймов задано равным 2 дюймам, допуск позволяет ему быть не менее 1 5/8 дюйма.
Допуск на положение продольных стержней довольно слабый — ± 3 дюйма. Это потому, что точное положение не так важно, если поддерживается надлежащее покрытие и указанное количество полосок.

При размещении арматуры следует помнить о некоторых вещах:

  • Опоры для стержней не предназначены для использования в качестве опоры для строительного оборудования, такого как бетононасосы, тележки или лазерные стяжки.
  • Расстояние между опорами стержня зависит от размера поддерживаемого арматурного стержня. Например, для односторонней цельной плиты с стержнями для термоусадки №5 высокие стулья используются на расстоянии 4 фута от центра; для баров №4 высокие стулья должны быть размещены на расстоянии 3 фута от центра.
  • Нельзя допускать укладку арматуры на слои свежего бетона или регулировку положения стержней или арматуры из сварной проволоки во время укладки бетона. Неосмотрительная практика при строительстве плит, когда арматура укладывается на земляное полотно и поднимается вверх при укладке бетона, называется «зацеплением».”
  • Распорки для вертикального бетона (конструкции стен) традиционно использовались в качестве опции. Боковые распорки включают двуглавые гвозди, сборные бетонные блоки (dobies) и запатентованные цельнопластиковые профили.
  • Слесарь, слесарь-слесарь, подрядчик и инспектор несут ответственность за правильное размещение арматурных стержней в бетонной конструкции.
  • Отклонение от указанного местоположения: в перекрытиях и стенах, кроме хомутов и стяжек ± 3 дюймаСтремена: глубина балки в дюймах, разделенная на 12. Стяжки: ширина колонны в дюймах, разделенная на 12.

Стандартная практика для предприятий по производству арматурных стержней из нержавеющей стали (ANSI / CRSI – IPG4.1)

Основы бетона в строительстве от Construction Knowledge.net

СТРОИТЕЛЬНЫЕ ЗНАНИЯ >> БЕТОН >>

ПЛИТЫ МАРКИ


1.Как работает бетон?
2. Каковы структурные основы бетона?
3. Что такое железобетон?
4. Что мне нужно знать о арматуре?
5. Почему количество воды так важно для бетона?
6. Что мне нужно знать об испытаниях бетона?
7. Как получить конкретную работу?
8. Какие документы общественного достояния доступны для дальнейшего использования Изучение?
9.Уловки торговли и практические правила для бетонных основ:

Как работает бетон?


Современный бетон состоит в основном из четырех компонентов: портландцемента, песок, гравий и вода. Распространенное заблуждение относительно бетона состоит в том, что он сохнет и затвердевает. Фактически, гидравлический цемент вступает в реакцию с вода в химическом процессе, называемом гидратацией. Например, бетон может быть помещен под воду и все равно будет переходить из жидкого состояния в твердое состояние и достичь полной прочности.

В базовую бетонную смесь можно добавить множество дополнительных ингредиентов. для того, чтобы изменить свойства получаемого бетона. Следующие В списке представлены некоторые общие добавки (добавки) и дополнительные ингредиенты и их основное назначение:

Добавки

  1. Ускорители ускоряют гидратацию или отверждение мокрый бетон. Часто используется при более низких температурах, поэтому бетон У бригады меньше времени ожидания между укладкой и отделкой бетона.
  2. Замедлители схватывания замедляют гидратацию или твердение влажного бетона. Часто используется при более высоких температурах, поэтому бетон тоже не схватывается быстро, позволяя бригаде отделки бетона получить надлежащие отделочные работы завершены.
  3. Воздухововлекающие агенты добавляют и помогают распределять крошечные пузырьки воздуха по всему бетону. Эти крошечные пузырьки воздуха помогают бетону выдерживают циклы замораживания-оттаивания с гораздо меньшим растрескиванием и повреждением.
  4. Пластификаторы и суперпластификаторы улучшают удобоукладываемость бетон во время мокрой (или пластической) стадии, позволяя бетону течь легче. Они особенно полезны при укладке бетона. вокруг перегруженных арматурных стержней. В качестве альтернативы пластификаторам и Суперпластификаторы можно использовать для снижения содержания воды в бетон при сохранении достойного уровня удобоукладываемости.
  5. Пигменты изменяют цвет бетона по эстетическим причинам.

Дополнения

  1. Летучая зола может заменить примерно половину необходимого количества портленда цемент. Летучая зола является побочным продуктом выработки электроэнергии на угле. растения, поэтому часто легко доступны и экономичны. Бетон сделан с летучей золой и портландцементом может иметь более высокую прочность и улучшенные химическая стойкость и долговечность. Использование бетона золы-уноса считается экологически безопасным, поскольку большая часть летучей золы в противном случае попадает в на свалках и энергии для производства замененного портландцемента тоже можно спасти.
  2. Измельченный гранулированный доменный шлак (GGBS или GGBFS) также может заменить часть необходимого портландцемента. GGBS является побочным продуктом процесс производства стали. GGBS получил наибольшее распространение в Европе и Азия.
  3. Silica Fume может также заменить часть необходимого портландцемента. Кремнеземный дым является побочным продуктом производства кремнеземных сплавов. В размер частиц микрокремнезема в 100 раз меньше, чем у Портландцемент.Silica Fume улучшает прочность бетона, абразивный износ стойкость и коррозионная стойкость к химическим веществам, особенно к соли.
Каковы структурные основы бетона?


Бетон прочен на сжатие. Так что это на самом деле означает?

Чтобы понять прочность на сжатие, подумайте о нескольких упаковках крекеры, сидящие на полу. Если вы внимательно встанете на эти пачки крекеры, ваш вес, вероятно, будет поддерживаться, но вы кладете эти сухари в сжатии.Ваш вес стремится сокрушить тех сухарики. Если вы подпрыгнете и приземлитесь на эти пачки крекеров, вы увеличьте прилагаемое усилие и, возможно, раздавите крекеры. Ты сможешь заставили крекеры потерпеть неудачу при сжатии.

А теперь попробуйте прыгнуть по бетонному тротуару. Тебе придется прыгать красиво высокий, чтобы тротуар прогнулся под вашим весом. На самом деле ты вероятно, не смог бы заставить этот тротуар обрушиться на сжатие. Вот почему бетон так часто используется в строительстве.Но на этом история не заканчивается со сжатием.

Возьмите веревку и потяните в любом направлении. Вы только что положили натянуть струну. Если вы можете натянуть достаточно сильно, веревка будет потерпят неудачу в напряжении, щелкнув. Бетон, при этом довольно прочный в сжатие, быстро выходит из строя при растяжении из-за растрескивания. Резистивный прочность бетона на сжатие составляет около 4000 фунтов на квадратный метр. дюйм, в то время как сопротивление растяжению бетона, вероятно, составляет менее 400 фунтов на квадратный дюйм.Как правило, сила натяжения бетон составляет менее 10% от его прочности на сжатие.

Строители в прошлом понимали эти свойства бетона и камень и обычно используются эти материалы только в сжатии. Так стены могут быть бетонными и каменными, как и фундаменты, поскольку оба в первую очередь сопротивлялись нагрузкам сжатия вниз.

Арки — интересная структурная форма, потому что арки также действуют полностью в сжатии.Поэтому арки над окнами в старых постройках может быть бетон или камень, потому что нагрузка переносится на арку удерживая конструкцию в сжатии, чтобы трещины растяжения не возникали в бетон или камень. Потолки в виде бочек на самом деле всего три. размерные арки, поэтому они также работали только как элементы сжатия.

Однако если арка над окном станет слишком плоской, она остановится. работая как арка, нижняя часть члена будет в напряжении.Итак, регулярные трещины в бетоне внизу луч, рядом с центром, в этом сценарии. Затем растрескивание вызывает балка выйти из строя. Этот пример показывает, как бетон разрушается при растяжении, что традиционно было основным недостатком конструкции для бетона.

При рассмотрении инженерного использования материалов более подробное понимание Базовый структурный анализ помогает.

Что такое железобетон?


В середине 1800-х годов строители начали добавлять в бетон сталь для переноски. силы натяжения.Этот железобетон стал феноменально популярный строительный метод. Есть несколько причин, по которым комбинация арматуры и бетона работает так хорошо:

  1. Коэффициент теплового расширения аналогичен для бетона и стали, поэтому, когда армированный бетон замерзает или нагревается, два материалы сжимаются и расширяются аналогичным образом. Если они этого не сделали, комбинация со временем разорвется на части.
  2. Связь между арматурными стальными стержнями (арматурой) и бетоном сильный и эффективный. Арматурный стержень имеет деформации поверхности (гребни) до еще больше улучшить эту связь. Благодаря прочной связи бетон эффективно передает нагрузки на сталь и наоборот.
  3. Когда цементная паста контактирует со стальной арматурой, она образует инертная поверхностная пленка, препятствующая коррозии. Эта пассивация процесс помогает арматуре от коррозии внутри железобетона.
  4. Расположение арматуры в конструкции зависит от области применения. Простые балки и плиты часто имеют арматуру только на растяжение (нижняя сторона. Когда непрерывная балка перекрывает колонны, натяжение находится в верхней части балки, поэтому арматура необходима в верхней части балка над опорами колонн.

Опоры колонн интересно рассмотреть. Многие люди не знают где сторона напряжения существует на опоре.Как простой способ помните, протяните левую руку ладонью вверх. Теперь возьмите указательным пальцем правой руки и воткните в середину протянутая ладонь. Слегка сложите левую руку, как будто реагируя на направленная вниз сила указательного пальца. Вставьте фото сюда. Легко увидеть кожа в нижней части левой руки становится натянутой (переходит в напряжение) и кожа на верхней части ладони становится морщинистой (переходит в сжатие).Следовательно, нижняя часть простой бетонной опоры находится в напряжение прямо под колонкой. Таким образом, арматурный стержень должен быть ближе к низу. основания.

Важно, чтобы арматурная сталь имела достаточное бетонное покрытие. так что бетон сцепляется с арматурой и позволяет бетону и сталь, чтобы действовать вместе как монолитная конструктивная единица. Бетон крышка также защищает арматурную сталь от чрезмерной влаги или химическая коррозия.Строительные нормы Американского института бетона рекомендует следующее.

Правила для арматуры по расстоянию до края бетона Минимум
Бетонное покрытие
Бетон, залитый и постоянно контактирующий с землей 3 «
Формованный бетон, подверженный воздействию земли или погоды: # 5 бар и меньше 1 1/2 «
Формованный бетон, подверженный воздействию земли или погодных условий: стержни № 6 — № 18 2 «
Формованный бетон, не подверженный воздействию земли или погодных условий: плиты, стены, балки: стержни № 14 и № 18 1 1/2 «
Формованный бетон, не подверженный воздействию земли или погодных условий: плиты, стены, балки: № 11 и меньшие стержни 3/4 «
Формованный бетон, не подверженный воздействию земли и погодных условий: балки и колонны: 1 1/2 «

Здесь может оказаться полезным простой обзор конструкции из железобетона.Бетон — это материал с высокой прочностью на сжатие и низким пределом прочности на растяжение. сила. Сталь как материал превосходит бетон 10: 1 при сжатии. прочность и 100: 1 прочности на растяжение. Однако сталь стоит около 50. центов за фунт, в то время как бетон стоит около 2 центов за фунт. Таким образом в экономичной конструкции из железобетона для выдерживания напряжения используется сталь напряжения в элементе конструкции и бетоне, чтобы выдержать сжатие стрессы.

Железобетон должен быть спроектирован с небольшим внимание уделено расширению и сжатию. Конечно, все здание материалы имеют некоторую степень расширения и сжатия, но с железобетон, эти силы могут буквально сломать бетон отдельно.

Два дополнительных свойства конструкции из железобетона, которые Инструктору по строительству полезно знать о ползучести и усталости.Опять же, все элементы конструкции должны иметь дело с ползучестью и усталостью, но бетон может быть очень сильно изменен этими явлениями.


Что мне нужно знать о арматуре?


Количество арматуры, используемой в типовых конструкциях, составляет небольшой процент от количество бетона. Например, в большинстве балок для несущие силы натяжения при изгибе. В колоннах можно использовать арматуру до 6%, отчасти потому, что арматурный стержень несет как растягивающие, так и осевые силы.С арматура стоит намного дороже бетона, эффективное инженерное проектирование сводит к минимуму использование арматуры.

Арматура занимает центральное место в железобетоне, поэтому базовое понимание помогает. Важно знать разные размеры: стержень №3 составляет 3/8 дюйма в диаметр стержня №7 составляет 7/8 дюйма в диаметре и т. д. Простое практическое правило для Размер арматуры: размер арматурного стержня должен быть разделен на 8 для диаметра. в дюймах.

Арматура Диаметр Вес / фут
№ 2 2/8 «или 0.25 « 0,167 фунта
№ 3 3/8 дюйма или 0,375 дюйма 0,376
№ 4 4/8 дюйма или 0,5 дюйма 0,668
№ 5 5/8 «или 0,625» 1.043
№ 6 6/8 «или 0.75 « 1,502
№ 7 7/8 дюйма или 0,875 дюйма 2,044
№ 8 8/8 дюйма или 1,0 дюйма 2,67
№ 9 9/8 «или 1,125» 3,4
№ 10 10/8 «или 1.25 « 4.303
№ 11 11/8 «или 1,375» 5,313
№ 14 14/8 дюйма или 1,75 дюйма 7,65
№ 18 18/8 дюйма или 2,25 дюйма 13,6

Как отмечалось выше, элемент конструкции нуждается в арматуре, чтобы выдерживать напряжение в железобетоне.Таким образом, для опоры требуется арматура на снизу, для простой балки или плиты требуется арматура снизу и т. д. также обычно используется для контроля усадки бетона. Как бетон застывает со временем он продолжает сокращаться. Большая часть усадки происходит в первые несколько часов, затем в первые несколько дней усадка меньше. В усадка продолжается вечно, но количество изменений становится меньше и меньше.

Помимо усадки при отверждении, бетон будет расширяться или сжимаются в результате изменения температуры (как и все материалы, в некоторой степени).Поэтому дополнительную арматуру часто используют в структурный элемент и называется «Температурная сталь». Эта арматура помогает контролировать растрескивание бетона из-за усадочных трещин от затвердевания или от перепады температуры.

Обычно можно увидеть №4 на расстоянии 12 дюймов по центру, №3 на расстоянии 12 дюймов. по центру или даже №3 на 18 дюймов по центру, как термостойкая сталь. А Начальник строительства должен иметь возможность ознакомиться с чертежами усиленного бетонные элементы и понимать, какая арматура является конструктивной. и который является термостойкой сталью.

Часто полевые решения принимаются в отношении прохождения труб и воздуховодов. через конструктивные элементы, мешающие установленному количеству арматуры. Хотя в идеале эти решения должны приниматься Инженер-конструктор, руководитель строительства должны хорошо разбираться в структура, чтобы знать, когда спрашивать. Простая заповедь: «Когда сомневаешься, всегда спрашивайте инженера-строителя », — легко сказать, но не особо практично, когда руководитель строительства принимает сотни решений в день.В Мудрый руководитель строительства понимает, почему и как использовать арматуру.

Для того, чтобы арматурные стержни находились в нужном месте в железобетонные, стержни часто приходится изготавливать по специальному формы. Обычно специалист по деталировке стали рисует производственный чертеж, на котором схематическая информация из структурного чертежа и показывает фактические длина стержня, изгибы, зазоры и т. д. для фактического изготовления и установки бары.Эти чертежи магазина должны быть внимательно изучены Строительный супервайзер для проверки соответствия, конфликтов и ошибок.

Как только начнется просмотр рабочих чертежей арматурной стали, возникнут вопросы с заделкой и стыковкой стержней. Железобетон конструкции обычно отливаются отдельными сегментами, но целиком конструкция должна действовать как единое целое. Строительные швы создают место для остановки заливки бетона, но часто это важно для напряжения в стальной арматуре, переносимые через конструкцию соединение.В этом случае арматурные стержни проходят через строительный шов и приправа с решетками с другой стороны. Слишком долгое использование стыковка неэкономична, потому что сталь стоит намного дороже бетона. Минимальное количество стыков стержней должно быть описано на конструктивных чертежах и фактические стыки показаны на рабочих чертежах арматурной стали.

В недавнем прошлом на конструктивных чертежах было принято указывать Пруток диаметром 40 мм для всех стыков.Опыт показал, что просто решение может быть в некоторых случаях излишне консервативным и приводить к сбою в работе другие случаи. Следовательно, значительно более сложный набор правил были адаптированы для сращивания стержней. Это важно для строительства Руководитель хотя бы понимать терминологию Американского института бетона (ACI) правила сращивания арматуры.


Еще один полезный факт для арматуры касается маркировки, которую необходимо наносить. каждый бар.Начальник строительства должен понимать маркировку, чтобы иметь возможность взять кусок арматуры и узнать стан, на котором он производится, размер стержня и вид и марка стали. На рисунке ниже показано, где расположены эти маркировки. найдено на арматуре.



Почему количество воды так важно для бетона?


В бетонных работах важно понимать, что вода цементная. соотношение.Минимальное количество воды, примерно 25% от веса цемент, должен быть добавлен для химической гидратации бетонной смеси. В Фактический процесс смешивания, однако, требуется от 35% до 40% воды для проработать процесс смешивания, добраться до фактического цемента и вызвать эффективное увлажнение.

На практике, однако, для увеличения удобоукладываемость бетона. Так почему это важно, если много вода в бетонной смеси? Любая вода выше теоретического идеала 25% не используется в процессе химической гидратации.Следовательно Излишек воды остается в бетоне, пока бетон застывает. Над Со временем эта избыточная вода испаряется из бетона, и остаются пустоты. Эти пустоты ослабляют бетон, снижая прочность и увеличивая растрескивание.

Водоцементное соотношение имеет значение для инженера, но почему Забота инспектора строительства? Каждый, кто укладывал бетон, знает, сколько легче укладывать текучий, более жидкий бетон, чем более сухой конкретный.Есть тенденция добавлять воду в смесь, когда она готова к быть размещенными, чтобы бетон лучше текал. На самом деле, если бетон не течет должным образом, он может неправильно окружать арматурный стержень (вызывая плохое сцепление с арматурой), или он может не течь должным образом по опалубке (вызывая пустоты и участки, требующие ремонта). Вставить фото.

Итак, на стройплощадке часто бывает конфликт:

  1. Добавьте воды в бетонную смесь, чтобы она лучше текла, но ослабла качество бетона (прочность и трещиностойкость)
    или
  2. Не добавляйте воду в бетонную смесь, чтобы водоцементное соотношение, но работать над укладкой бетона и, возможно, имеют значительные пустоты.

Простой ответ: никогда не добавляйте воду на стройплощадке в бетон, но это ответ игнорирует реальность дилеммы размещения. Часто это сложное решение, с инженерами-строителями, строителями, Спецификации, Бетонный Бригадир и другие, имеющие ввод. Его важно, чтобы инспектор строительства хотя бы знал об этой проблеме для каждого укладка бетона и понять, как будет принято решение о добавлении воды обработано.


Что мне нужно знать об испытаниях бетона?


Тест на оседание бетона был создан, чтобы помочь последовательно измерить удобоукладываемость бетона. «Удобоукладываемость» бетона — важный коэффициент для укладывающих бетон. Правильно обработанная бетонная смесь течет и правильно заполняет форму, оставляя минимальные пустоты на форме лицевой стороной и полностью окружает арматурный стержень, чтобы создать связь.

Тест на падение должен быть знаком большинству рабочих на строительстве. сайт. Влажный бетон помещают в стальной конус и кладут на неабсорбирующая поверхность, при этом более широкая часть конуса направлена ​​вниз. Затем стальной конус снимается, позволяя влажному бетону стекать. немного оседать, в зависимости от дизайна микса. Сухая смесь может только осесть От 1 до 2 дюймов. Обычно указанный спад составляет около 4 дюймов. Опускание от 6 до 7 дюймов может достигается за счет использования высокодисперсных водоредуцирующих добавок (суперпластификаторы).Специальные смеси для перекачивания бетона имеют тенденцию высокие просадки.

Еще одним важным испытанием для бетона является цилиндр. испытание на сжатие. Прочность бетона обычно называют его 28-дневным сроком. прочность на сжатие. Почему 28 дней? Что такое волшебство в 28 днях? Ничего такого. 28-дневный период для проверка прочности бетона на сжатие — произвольное время выбран, чтобы обеспечить единообразие процедур тестирования. Таким образом, 28 день прочность на сжатие бетона стала стандартом в промышленность.Таким образом, когда для бетонной балки указано значение 4000 фунтов на квадратный дюйм, это означает, что фактически уложенный бетон должен иметь сжатие. прочность выше 4000 фунтов на квадратный дюйм через 28 дней. Поскольку прочность бетона продолжает увеличиваться с течением времени, стандартный период времени для бетонных измерение прочности необходимо.

Бетонные цилиндры, изготовленные для определения прочности в течение 28 дней. также могут быть сломаны раньше и содержат полезную информацию.Цилиндры обычно нарушается через 7 дней, которые обычно развивают около 75% 28-дневная сила. Было бы неплохо узнать на 3 недели раньше, есть ли проблема с бетонной партией.

Разрыв цилиндров через 3 дня также может дать полезные данные. Если опорная плита была размещена, 3-дневные перерывы в бетоне можно использовать для Определите, будет ли безопасна разборка или формы и опоры для форм. Так разрывы бетонных цилиндров дают много полезной информации.

Основы изготовления цилиндров должны понимать Строительный супервайзер. При укладке влажного бетона цилиндры 6 дюймов в диаметром и высотой 12 дюймов заполнены бетоном и тщательно консолидированы (см. Изготовление бетонных цилиндров для испытаний). Эти цилиндры затем отверждаются, надеюсь, в условиях, аналогичных отверждению условия для основной заливки бетона. Бетонные цилиндры затвердевают в несколько часов и сохранены для будущего тестирования.

Это испытание заключается в помещении цилиндра в машину, которая нажимает на верхнюю и нижнюю части цилиндра, добавляя осевое усилие до тех пор, пока цилиндр давит. Количество силы, необходимое для раздавливания цилиндра. становится прочностью на сжатие для этого цилиндра.

В качестве примера: Примечание: сделайте расчеты чернилами на бумаге и отсканируйте в документ в виде отдельного файла.

——————————————
Для бетонного образца, разрушенного через 28 дней

Цилиндр имеет диаметр 6 дюймов, поэтому его площадь равна 3.14 x Диаметр в квадрате / 4

А = 3,14 х 6 х 6/4

A = 28,26 квадратных дюймов

Если сила, необходимая для разрушения цилиндра, составляла 97 500 фунтов

Тогда прочность на сжатие составляет 97 500 фунтов / 28,26 квадратных дюймов. = 3450 фунтов на кв. Дюйм
——————————————

Начальнику строительства также необходимо обратить внимание на заботу и хранение бетонных испытательных цилиндров между моментами их изготовления и сломан.Несколько лет назад при строительстве пристройки к здание канализационной насосной станции, строитель складирует бетон испытательные цилиндры внутри насосной станции для защиты от агрессивных Погода. Когда через 28 дней цилиндры были сломаны, предположительно 4000 Пропускная способность бетона на сжатие составляла всего 2500 фунтов на квадратный дюйм. Говорить сразу начали сносить новые бетонные стены и пальцем за ответственность началось.Керновое отверстие было взято из стена и бетон прошли испытания, значительно превышающие требования в 4000 фунтов на квадратный дюйм.

Так что же случилось? Кажется, никто не задумывался о том, что постоянно вибрирующий пол насосной подойдет для процесса установки конкретный. Мораль этой истории заключается в том, что бетонные испытательные цилиндры вызывают достаточно проблем по проекту, чтобы у руководителя строительства был ясный, согласованный план их изготовления, хранения, разрушения и составление отчетов.


Как получить бетон на работе?


Бетон можно смешивать на месте или покупать у продавцов в Ready Mix. грузовики. Бетон готовой смеси содержит ингредиенты, смешанные в готовой смеси. завод по заданному рецепту для требуемой смеси. Преимущества Готовая смесь бетона — это единообразие в обращении с сырьем. (ингредиенты), опыт поставщика в том, как конкретный дизайн смеси выполнит (3 дня силы, 28 дней силы, работоспособность и т. д.) а также удобство. К недостаткам бетона Ready Mix можно отнести следующее: длительное время вождения (если завод находится далеко от строительной площадки), при котором бетон становится менее обрабатываемым, трудности с получением бетона при время и количество, которые необходимы, и стоимость.

Бетонные заводы используются на крупных строительных объектах, чтобы замешать бетон на месте. Преимущества серийных заводов на стройплощадке: возможность получать бетон в нужное время и в необходимом количестве, исключая дорожные вопросы и стоимость.Недостатки бетонных заводов количество оборудования, рабочей силы и места на рабочем месте, необходимое для изготовления технологическая работа и возможные проблемы с качеством бетона, так как смешивание дизайн не будет иметь большого предыдущего опыта.

Конечно, для очень небольших бетонных проектов бетон можно смешивать на на стройплощадке вручную или в переносных бетономешалках. Его важно понимать, что бетон, смешанный таким образом, вряд ли быть таким же однородным, как и готовый бетон, из-за различий, присущих процесс:

  1. Измерение (часто выполняемое лопатой) будет гораздо менее точным.
  2. Уровни влажности в песке и гравии будут неизвестны (таким образом добавляется воду в смесь).
  3. Водоцементное соотношение будет определяться ощущениями, а не измерение.

Эти проблемы не означают, что бетонная смесь на стройплощадке будет недопустимо, только то, что качество бетона будет намного больше переменная, чем у готового бетона. Следовательно, конструкция Супервайзер должен будьте осторожны при разрешении смешанного бетона на стройплощадке, если окончательные характеристики бетона имеют решающее значение (т.е. если бетон 4500 фунтов на квадратный дюйм необходим для бетонные колонны или если трещины в полу будут серьезным проблема).

Если на стройплощадке необходимо смешать небольшое количество бетона, информация, представленная на рисунке 1.14, должна быть полезной. Вставить рисунок 1.14.

Какие документы общественного достояния доступны для дальнейшего изучения?


Это министерство армии США Полевое руководство по бетону и кладке прекрасно объясняет Основы бетона и каменной кладки.Это 323 страницы цифр, основные объяснения и инструкции по выполнению работы. Если вы несколько новичок в строительстве, найдите время и просмотрите этот отличный ресурс. Официальное название — US Army FM 5-428.

Еще одно замечательное руководство по строительству, которое покрывает некоторые конкретные элементы установки ВМС США Учебный курс для строителей Том №1. Официальное название этого 332 ресурс страницы — Builder 3 и 2, Volume # 1, NAVEDTRA 14043.

Военно-морской флот США опубликовал главу о арматуре в своей Сталелитейной компании. Том 2 учебного пособия, в котором есть полезная информация. Названный Учебное пособие для сталеваров Том 2, официальное название — НАВЕДТРА. 14251, ноябрь 1996 г.

Министерство обороны США подготовило учебный документ на 59 страницах, в котором хорошие детали стыков и руководства по проектированию для понимания бетонных полов. Названный Бетонный пол Плиты на уклоне, подверженном большим нагрузкам, официальное название — UFC 3-320-06A, 1. Март 2005 г.

Учебное пособие ВВС США по бетонным конструкциям. — это учебное пособие на 39 страницах, которое обучает нескольким основным конкретным навыкам. Это найдено в Квалификационный пакет подготовки ВВС по конструкционному бетону.

Уловки и практические правила для бетона Основы:

  1. Знайте различные бетонные смеси, указанные для проекта. Платить внимание не только к требуемой 28-дневной силе (3000 фунтов на квадратный дюйм, 4000 фунтов на квадратный дюйм, и т. д.), но также и вероятных примесей и добавок к смеси.
  2. Знать испытания бетона, необходимые для каждой бетонной смеси, и иметь четкий план проведения тестирования.
  3. Возьмите за привычку смотреть на арматурный стержень и понимать местоположения конструкционной арматуры и местоположения температурной стали.
  4. Умейте читать маркировку на куске арматуры, чтобы определить производящий стан, размер прутков, тип и марка стали.

Как укрепить бетонную плиту на земле для контроля трещин

Большинство плит на земле не армированы или номинально армированы для контроля ширины трещин. При размещении в верхней или верхней части толщины плиты стальная арматура ограничивает ширину случайных трещин, которые могут возникнуть из-за усадки бетона и температурных ограничений, осадки основания, приложенных нагрузок или других проблем.

Этот тип армирования обычно называют усадочным и температурным армированием.

Усадочная и температурная арматура отличается от структурной арматуры. Структурная арматура обычно размещается в нижней части толщины плиты для увеличения несущей способности плиты. Большинство строительных плит на земле имеют как верхний, так и нижний слои армирования для контроля ширины трещин и увеличения несущей способности. Из-за проблем с конструктивностью и затрат, связанных с двумя слоями армирования, конструкционные плиты на земле не так распространены, как неструктурные плиты.

Несмотря на то, что существует несколько вариантов армирования неструктурных плит на грунте, в этой статье основное внимание уделяется стальным арматурным стержням и арматуре из сварной проволоки для контроля ширины трещин.

Неограниченный рост ширины трещин приводит к выкрашиванию кромок вдоль трещин вне стыков при воздействии колесного транспорта, особенно жестких колесных погрузчиков.

Основы

Стальная арматура и арматура из сварной проволоки не препятствуют растрескиванию. Армирование в основном бездействует, пока бетон не потрескается.После растрескивания он становится активным и регулирует ширину трещины, ограничивая ее рост.

Если плиты размещены на высококачественных основаниях с однородной опорой и состоят из бетона с низкой усадкой и правильно установленными стыками с шагом 15 футов или меньше, в армировании, как правило, нет необходимости. Скорее всего, случайных или несвязных трещин будет немного. Если случайные трещины все же возникают, они должны оставаться достаточно плотными из-за ограниченного расстояния между стыками и низкой усадки бетона, что ограничивает будущую пригодность к эксплуатации или техническому обслуживанию.

Когда плиты размещаются на проблемных основаниях с риском неоднородной опоры или состоят из бетона со средней и высокой усадкой, или если расстояние между стыками превышает 15 футов, то необходимо армирование для ограничения ширины трещин в случае их возникновения. По мере того, как ширина трещины увеличивается и приближается к 35 мил (0,035 дюйма), эффективность передачи нагрузки через блокировку заполнителя уменьшается, и могут происходить дифференциальные вертикальные перемещения по трещинам или «раскачивание» плиты. Когда это происходит, края трещин становятся обнаженными, и, вероятно, произойдет скалывание кромок, особенно если плита подвергается воздействию колесного транспорта и особенно жестких колесных погрузчиков.Как только начинается скалывание, ширина трещин на поверхности становится шире, и износ плиты по трещинам значительно увеличивается.

Если усадочные швы недопустимы и не установлены, требуется усиление усадки и температурного усиления. Такой подход к проектированию иногда называют непрерывно армированными плитами или плитами без стыков, и он допускает многочисленные, близко расположенные (от 3 до 6 футов) мелкие трещины по всей плите.

Неограниченный рост ширины трещин приводит к выкрашиванию кромок вдоль трещин вне стыков при воздействии колесного транспорта, особенно жестких колесных погрузчиков.

Варианты борьбы с трещинами

В целом, существует два варианта контроля трещин в плитах на земле: 1) контроль местоположения трещин путем установки усадочных швов (не контролирует ширину трещин) или 2) контроль ширины трещин путем установки арматуры (не контролирует трещину. место расположения).

В варианте 1 мы указываем плите, где происходит трещина, а ширина усадочных швов или трещин в швах в значительной степени определяется расстоянием между швами и усадкой бетона.По мере увеличения расстояний между швами и усадки бетона ширина швов увеличивается. Подобно трещинам, если ширина шва приближается к 35 мил, эффективность блокировки заполнителя для передачи нагрузок и предотвращения дифференциальных вертикальных перемещений по швам может быть значительно снижена. По этой причине многие проектировщики используют устройства для передачи нагрузки, в том числе стальные дюбели, пластины или непрерывную арматуру через усадочные соединения, чтобы обеспечить положительную передачу нагрузки и ограничить дифференциальные вертикальные перемещения в соединениях.

В варианте 2 мы допускаем случайное растрескивание плит, но контролируем ширину трещин с помощью стальных арматурных стержней или арматуры из сварной проволоки. Обычно с этой опцией не устанавливаются усадочные швы. Вместо этого растрескивание происходит беспорядочно, образуя многочисленные плотно скрепленные трещины. Из-за внешнего вида этот вариант борьбы с трещинами всегда следует обсуждать с владельцем.

Порезка арматуры на стыках

Будьте осторожны при использовании обоих вариантов контроля трещин в одной плите.Если через усадочные стыки проходит слишком много арматуры, стыки становятся слишком жесткими и могут не треснуть и раскрыться, как задумано. Когда усадочные соединения не активируются (т. Е. Трескаются и открываются) из-за армирования, обычно происходит расслоение или случайное растрескивание. Если используются оба варианта, необходимо ограничить количество арматуры, проходящей через стыки, чтобы обеспечить правильную активацию.

Некоторые проектировщики предписывают обрезать всю арматуру в усадочных соединениях, в то время как другие могут указать обрезать все остальные стержни или проволоки.Обрезая все остальные стержни или проволоки, оставшаяся арматура поможет обеспечить передачу нагрузки и минимизировать дифференциальные движения панели, но не ограничит срабатывание соединений. Если в спецификациях и строительных чертежах не указано, что делать с температурной и усадочной арматурой в стыках, подрядчикам следует подать запрос на информацию. Часто подрядчиков необоснованно обвиняют в несоответствующем растрескивании, связанном с этой проблемой проектирования.

Метод «крюк-и-тяни» для перемещения арматуры из сварной проволоки в указанное место является неэффективным методом, которого подрядчикам следует избегать.

Расположение арматуры

Стальную арматуру и арматуру из сварной проволоки следует располагать в верхней трети толщины плиты, поскольку усадочные и температурные трещины возникают на поверхности плиты. Трещины шире на поверхности и сужаются по глубине. Таким образом, арматура для предотвращения трещин никогда не должна располагаться ниже середины плиты. Арматуру также следует размещать достаточно низко, чтобы пропил не повредил арматуру. Для армирования сварной проволокой Институт армирования проволоки рекомендует размещать сталь на 2 дюйма ниже поверхности или в пределах верхней трети толщины плиты, в зависимости от того, что ближе к поверхности.Проектировщики обычно указывают положение армирования, указывая бетонное покрытие (от 1 1/2 до 2 дюймов) для арматуры.

Не рекомендуется размещать один слой арматуры в центре или на средней глубине плиты (за исключением плит толщиной 4 дюйма). Это универсальное место, где проектировщик надеется увеличить несущую способность плиты в дополнение к обеспечению контроля ширины трещин. Однако размещение арматуры в середине плиты не может эффективно решить ни одну из задач.

Стальная арматура и арматура из сварной проволоки должны поддерживаться и в достаточной степени связаны вместе, чтобы минимизировать перемещения во время укладки бетона и отделочных работ. В противном случае арматура может неправильно расположиться в плите. Подкрепите арматуру стульями или опорами из сборных железобетонных стержней. У стульев должен быть песок или опорные плиты, а у брусьев должно быть как минимум 4-дюймовое квадратное основание, чтобы они не проваливались в основание. Используйте такие расстояния между опорами, которые гарантируют, что арматура не провисает между опорами и не сдавливается пешеходами или свежим бетоном.Гибкое армирование, включая арматуру из сварной проволоки, требует меньшего расстояния между опорами. Помимо указания типа и количества арматуры, проектировщики должны указать тип и расстояние между опорами, чтобы обеспечить правильное расположение арматуры.

Сварную проволочную арматуру нельзя класть на землю и тянуть на место после укладки бетона. Техника «зацепи-тяни» всегда приводит к неправильному расположению арматуры. Как рабочие могут равномерно «зацепить и потянуть» арматуру из сварной проволоки в указанном месте, стоя на арматуре?

Арматура, частично заглубленная в основание, не обеспечивает контроль ширины трещины.Без поддержки стульев или сборных бетонных блоков арматура обычно заканчивается в нижней части плиты или закапывается в основание.

Допуски размещения

Допуск вертикального размещения арматуры в плитах на земле составляет ± 3/4 дюйма от указанного места. Для плиты толщиной 12 дюймов или меньше допуск бетонного покрытия составляет — 3/8 дюйма, измеренный перпендикулярно бетонной поверхности, и уменьшение покрытия не может превышать одну треть указанного покрытия.Во многих случаях допуск покрытия перекрывает допуск вертикального размещения. Правильное размещение и поддержка арматуры поможет обеспечить соблюдение этих допусков по вертикальному размещению.

Эта статья была первоначально опубликована 25 февраля 2013 года.

Артикул:

ACI 117-06. «Спецификация допусков для бетонных конструкций и материалов»

ACI 302.1R-04. «Руководство по устройству бетонных перекрытий и перекрытий»

ACI 360R-06.«Дизайн плит-на-земле»

Положение ASCC № 2. «Расположение катаной сварной проволочной сетки в бетоне»

WRI Tech Facts. «Опоры необходимы для долговременной работы арматуры сварной проволокой в ​​слэбах» (TF 702-R-08)

WRI Tech Facts. «Как определить, заказать и использовать арматуру из сварной проволоки» (TF 202-R-03)

Расстояние между арматурой в бетонных балках и перекрытиях — Практическое руководство

🕑 Время считывания: 1 минута

Минимальное и максимальное расстояние между армированием в бетонных конструктивных элементах, таких как балки и плиты, требуется в соответствии со стандартными кодами.Минимальное расстояние между арматурой основано на максимальном размере заполнителей, чтобы бетон можно было правильно укладывать и уплотнять. Максимальное расстояние между арматурой, зависящее от глубины балок и плит, чтобы обеспечить адекватную поддержку изгибающего момента и поперечной силы в конструкции.

Расстояние между арматурой в бетонных балках и перекрытиях

1. Минимальное расстояние между стержнями при растяжении Минимальное расстояние по горизонтали между двумя параллельными основными стержнями должно быть равно диаметру большего стержня или максимальному размеру крупного заполнителя плюс 5 мм.Однако, если уплотнение выполняется игольчатым вибратором, расстояние может быть дополнительно уменьшено до двух третей от номинального максимального размера крупного заполнителя. Минимальное расстояние по вертикали между двумя основными стержнями должно быть
  • 15 мм,
  • Две трети номинального размера крупного заполнителя, или
  • Максимальный размер полосы или большее значение.

2. Максимальное расстояние между стержнями при растяжении Обычно этот интервал будет таким, как указано ниже:
    1. Для балок эти расстояния составляют 300 мм, 180 мм и 150 мм для марок основной арматуры Fe 250, Fe 415 и Fe 500 соответственно.
    2. Для плит
      • (i) Максимальное расстояние между двумя параллельными основными арматурными стержнями должно составлять 3 или 300 мм или в зависимости от того, что меньше, и
      • (ii) Максимальное расстояние между двумя вторичными параллельными брусьями должно составлять 5 или 450 мм или в зависимости от того, что меньше.

Рис: Шаг арматуры в балках

3. Минимальные и максимальные требования к арматуре в стержнях

Для балок
  • Сталь с минимальным пределом прочности на растяжение определяется соотношением (для фланцевых балок b = bw)
  • Максимальное усилие на растяжение в балках не должно превышать 0.04 кД.
  • Максимальная площадь сжатия арматуры не должна превышать 0,04 bD.
  • (d) Балка глубиной более 750 мм должна быть обеспечена усилением боковой поверхности 0,1% площади полотна. Эта арматура должна быть равномерно распределена на двух поверхностях на расстоянии не более 300 или толщины стенки, или того, что меньше.
Подробнее на Руководство по армированию

Размещение стыков в бетонных плоских конструкциях — почему, как и когда

Усадочные / контрольные соединения

Усадочные / контрольные соединения помещаются в бетонные плиты для предотвращения случайного растрескивания.Свежая бетонная смесь представляет собой жидкую пластичную массу, которой можно придать практически любую форму, но по мере затвердевания материала происходит уменьшение объема или усадка. Когда усадка сдерживается контактом с опорным грунтом, гранулированным заполнителем, прилегающими конструкциями или арматурой в бетоне, внутри бетонной секции возникают растягивающие напряжения. В то время как бетон очень прочен на сжатие, предел прочности на разрыв составляет всего 8–12 процентов от прочности на сжатие. Фактически, растягивающие напряжения действуют против самого слабого свойства бетонного материала.Результат — растрескивание бетона.

Есть две основные стратегии контроля растрескивания для хорошего общего структурного поведения. Один из методов — обеспечить стальную арматуру в плите, которая плотно удерживает случайные трещины. Когда трещины удерживаются плотно или остаются небольшими, частицы заполнителя на поверхностях трещины сцепляются, обеспечивая передачу нагрузки через трещину. Важно понимать, что использование стальной арматуры в бетонной плите на самом деле увеличивает вероятность возникновения случайных микротрещин на открытой поверхности бетона.

Наиболее широко используемый метод контроля случайного растрескивания в бетонных плитах — это размещение усадочных / контрольных швов на бетонной поверхности в заранее определенных местах для создания ослабленных плоскостей, где бетон может растрескаться по прямой линии. Это обеспечивает эстетичный внешний вид, поскольку трещина возникает под готовой бетонной поверхностью. Бетон все еще имеет трещины, что является нормальным поведением, но отсутствие случайных трещин на поверхности бетона дает вид участка без трещин.

Бетонные плиты на земле неизменно показывают очень хорошие результаты, если учитывать следующие соображения. Грунт или гранулированный наполнитель, поддерживающий плиту в эксплуатации, должен быть либо ненарушенным, либо хорошо уплотненным. Кроме того, следует размещать усадочные швы, чтобы панели были максимально квадратными и никогда не превышали отношение длины к ширине 1,5: 1 (Рисунок 1). Стыки обычно располагаются на расстоянии, равном от 24 до 30 толщине плиты. Расстояние между стыками более 15 футов требует использования устройств передачи нагрузки (дюбелей или алмазных пластин).

Рисунок 1a: Расстояние между швами в метрах

Рисунок 1b: Расстояние между швами в ногах

Усадочные швы могут быть врезаны в бетонную поверхность во время укладки. Стыки можно врезать в поверхность (первый проход) до начала кровотечения или сразу после первого прохода операции всплытия. Чем дольше откладывается первый проход для соединения, тем труднее будет формировать чистые прямые стыки. Замазанные стыки следует восстанавливать при каждом последующем проходе отделочных операций.

В затвердевшей бетонной поверхности также можно пропиливать стыки. Важно понимать, что чем дольше откладывается распиловка, тем выше вероятность образования трещин до завершения распиловки. Это означает, что любые трещины, которые возникают до того, как бетон будет распилен, сделают распиленный шов неэффективным. Время очень важно. Стыки следует распиливать, как только бетон выдержит энергию распиливания, не расслаивая и не смещая частицы заполнителя. Для большинства бетонных смесей это означает, что распиловка должна быть завершена в течение первых 6-18 часов и никогда не откладывается более чем на 24 часа.Доступны пилы для раннего входа, которые могут позволить начать резку в течение нескольких часов после размещения.

Усадочные / контрольные швы должны быть созданы на глубину толщины плиты (Рисунок 2). Правильное расстояние между швами и их глубина важны для эффективного контроля над случайным растрескиванием.

Рисунок 2: Минимальная глубина суженных суставов

Проектирование анкерных болтов: комплексные положения ACI

Автор: Javier Encinas, PE | 12 мая 2020 г.

Конструкция анкерных стержней стала сложной и громоздкой с разработкой положений по анкеровке ACI 318 , первоначально в Приложении D к ACI 318-11 и ранее, а также в Глава 17 из ACI 318-14 и более поздних версий.Этот документ описывает необходимые этапы в процессе проектирования литых анкерных стержней, которые обычно встречаются в опорных плитах колонн.

Анкерные стержни обычно подвергаются действию сочетания сил растяжения и сдвига. ACI 318 рассматривает отдельно растяжение и сдвиг, а затем объединяет оба эффекта в диаграмме взаимодействия. Наше программное обеспечение ASDIP STEEL будет использоваться для поддержки этого обсуждения.

Конструкция анкерного болта

Предположим, что это типичная опорная плита колонны с анкерными стержнями по углам.Для компрессионных колонн без моментов диаграмма подшипников одинакова, как показано на левом рисунке ниже. Если мы добавим небольшой момент, диаграмма подшипников изменится, но вся опорная плита все еще будет сжата, как показано на центральном рисунке ниже. В этих двух случаях анкерные стержни не растягиваются. По мере увеличения приложенного момента только часть плиты подвергается сжатию, а анкерные стержни обеспечивают необходимое натяжение для поддержания статического равновесия, как показано на правом рисунке ниже.

Расчет натяжения анкерных стержней зависит от допущения совместимости деформации для опорной плиты. Для обсуждения различных теорий см. Сообщение в блоге Конструкция опорной плиты и анкерного стержня .

После расчета силы натяжения анкерные стержни должны быть проверены на наличие следующих видов разрушения:

  • Разрушение стали — Это мера прочности анкерного материала, независимо от условий анкеровки.Расчеты основаны на свойствах материала и физических размерах анкера. Номинальная прочность стали:

, где Ase — эффективная площадь поперечного сечения анкера. ASDIP STEEL использует внутреннюю базу данных со свойствами различных размеров анкеров и материалов.

  • Прорыв в бетоне — Предполагается, что разрушение формирует бетонный конус с углом призмы в 35 градусов. Это позволяет прогнозировать прочность группы анкеров с помощью основного уравнения для одного анкера Nb и умножения на коэффициенты, учитывающие количество анкеров, краевое расстояние, шаг, эксцентриситет и т. Д.Следует отметить, что коэффициент эксцентриситета был разработан для жестких пластин, поэтому анализ совместимости деформаций следует использовать с условиями крепления ACI 318 .

Знаменатель — это область прорыва отдельного якоря, а числитель — это область прорыва группы. Первое можно легко рассчитать, но второе может быть довольно трудным, так как оно зависит от геометрических условий опоры, как показано ниже.

Дальнейшее усложнение возникает, когда анкер находится ниже 1.5 hef от трех или более кромок, и в этом случае эффективная глубина hef должна быть пересчитана. ASDIP STEEL точно рассчитывает для любых условий поддержки область прорыва Anc и эффективную глубину заделки hef. Создает графическое представление, как показано ниже.

Расчет режима разрушения отрыва особенно важен, поскольку разрушение бетона не будет пластичным, и поэтому его следует избегать. Чтобы предотвратить такой вид отказа, ACI позволяет использовать арматурную сталь по всей поверхности разрушения.Однако эта анкерная арматура должна быть спроектирована и детализирована так, чтобы прочность арматурных стержней могла быть увеличена с обеих сторон поверхности разрушения.

  • Прочность на вырыв — Это нагрузка, при которой происходит раздавливание бетона из-за опоры на головку анкера. Номинальное усилие на вырыв при растяжении составляет:

Коэффициент ψcp = 1,4 для анкеров, расположенных в области бетонного элемента, где анализ показывает отсутствие трещин на уровнях эксплуатационной нагрузки, в противном случае его значение равно 1.0. Abrg — чистая опорная поверхность головки анкера.

  • Выдувание боковой поверхности бетона — Предполагает раскол бетона на анкерах, нагруженных растяжением, которые расположены близко к краю ( hef> 2,5 Ca1 ). Номинальная прочность на боковой вылет:

, где « — расстояние между внешними анкерами по краю.

Что такое коэффициент

φ- для анкеров растяжения?

Условия анкеровки ACI 318 соответствуют проекту Ultimate Strength Design , поэтому на номинальную прочность будет влиять коэффициент φ для сравнения с учтенной силой натяжения для конструкции анкерного болта.Фактор φ- зависит от пластичности анкерного крепления. Если контролируемым режимом разрушения является прочность стали или прочность арматуры анкера, то разрушение будет вязким. Любое разрушение бетона, будь то прорыв, вырыв или боковой выброс, будет хрупким разрушением.

ACI 318 штрафует хрупкие отказы с более низким коэффициентом φ- , равным 0,70, если не предусмотрено дополнительное армирование, и в этом случае φ составляет 0,75 , за исключением выдергивания.Для вязких отказов коэффициент φ- составляет 0,75. В отличие от анкерной арматуры, дополнительную арматуру не нужно проектировать и детализировать, чтобы выдерживать полную растягивающую нагрузку.

Как рассчитать сдвиг в анкерных стержнях?

Боковые силы, действующие на конструкцию, вызывают горизонтальную реакцию на уровне фундамента. Для стальных рам, поддерживаемых на опорных плитах, небольшой горизонтальной силе может противостоять трение между плитой и лежащим под ней бетоном.Однако по мере увеличения реакции трение может быть недостаточно высоким, чтобы противодействовать силе скольжения.

В этом случае опорная плита будет двигаться до тех пор, пока сила сдвига не будет передана анкерным стержням, опирающимся сбоку на опорную плиту. Опорные плиты обычно изготавливаются с отверстиями увеличенного диаметра для учета небольших перекосов анкерных стержней в полевых условиях, устранение которых было бы дорогостоящим. В результате очень маловероятно, что все стержни будут упираться в опорную пластину, как в идеальном часовом механизме. ACI распознает это, позволяя только передним стержням быть эффективными для целей сопротивления сдвигу, если все шайбы на стержнях не приварены к опорной плите, и в этом случае все стержни будут эффективны, как показано на рисунке ниже.

Конструкция с анкерным срезным болтом.

После расчета силы сдвига анкерные стержни должны быть проверены на наличие следующих видов разрушения:

  • Разрушение стали — Это мера прочности анкерного материала.Он должен оцениваться расчетами, основанными на свойствах материала и физических размерах анкера. Номинальная прочность стали:

, где Ase — эффективная площадь поперечного сечения анкера. ASDIP STEEL использует внутреннюю базу данных со свойствами различных размеров анкеров и материалов.

  • Прорыв в бетоне — Предполагается, что разрушение формирует бетонный конус с углом призмы в 35 градусов.Этот прогнозирует прочность группы анкеров с использованием основного уравнения для одного анкера V b и умножается на коэффициенты, учитывающие количество анкеров, краевое расстояние, эксцентриситет, растрескивание и т. Д.

Первый фактор связан с группой анкеров, образующих конус разрушения. Знаменатель — это область прорыва отдельного якоря, а числитель — область прорыва группы. Первое можно легко рассчитать, но второе может быть довольно трудным, так как оно зависит от геометрических условий опоры, как показано ниже.

Еще одна сложность возникает, когда анкер расположен на расстоянии менее 1,5 hef от трех или более краев, и в этом случае эффективная глубина hef должна быть пересчитана. ASDIP STEEL точно рассчитывает для любых условий поддержки область прорыва Avc и эффективную глубину заделки hef. It создает графическое представление, как показано ниже.

Подобно анкерным стержням при растяжении, расчет режима разрушения отрыва при сдвиге особенно важен, поскольку разрушение бетона не будет пластичным, и поэтому его следует избегать.Чтобы предотвратить такой вид отказа, ACI позволяет использовать арматурную сталь по всей поверхности разрушения. Однако эта анкерная арматура должна быть спроектирована и детализирована так, чтобы прочность арматурных стержней могла быть увеличена с обеих сторон поверхности разрушения.

  • Выталкивание бетона — Номинальное сопротивление сдвигу вырыву может быть приблизительно в два-три раза больше сопротивления разрыву анкера при растяжении, при этом меньшее значение подходит для hef меньше 2.5 дюймов. Для опорных пластин применимый коэффициент равен 2,0.

Что такое коэффициент

φ- для срезных анкеров?

Фактор φ- влияет на номинальную прочность для сравнения с учтенным усилием сдвига в анкерах. ACI устанавливает коэффициент φ- , равный 0,65 для разрушения пластичной стали и 0,70 для разрушения бетона, если не предусмотрено дополнительное армирование, и в этом случае φ составляет 0,75.

Меньшие коэффициенты φ- для сдвига, чем для растяжения, не отражают основные различия материалов, а скорее учитывают возможность неравномерного распределения сдвига в соединениях с несколькими анкерами.В отличие от анкерной арматуры, дополнительную арматуру не нужно проектировать и детализировать, чтобы выдерживать полную нагрузку сдвига.

Взаимодействие сил растяжения и сдвига.

Мы обсудили конструкцию анкерного болта для растяжения и сдвига отдельно. Когда анкерные стержни одновременно подвергаются действию сил растяжения и сдвига, конструкция должна удовлетворять требованиям диаграммы взаимодействия, показанной ниже.

Есть ли дополнительные требования к размерам?

ACI 318 устанавливает, что минимальное расстояние между центрами анкеров должно быть 4da для литых анкеров, которые не будут затягиваться, и 6da для литых анкеров с крутящим моментом, где da диаметр анкера.В коде нет четкого определения понятия «якорь с крутящим моментом». Интерпретация автора такова, что любой анкер, затянутый сверх плотного затяжки, следует рассматривать как «затянутый анкер». Большинство анкерных стержней, используемых в опорных плитах строительных каркасов, не будет затягиваться сверх установленного предела затяжки.

Кроме того, минимальные краевые расстояния для закладных анкеров, которые не будут затягиваться, должны основываться на указанных требованиях к покрытию для арматуры, которые в основном устанавливают бетонное покрытие максимум на 3 дюйма.Однако может быть выгодно использовать более крупную крышку анкера для увеличения противовыбросовой прочности на боковой поверхности. Для литых анкеров, которые будут затягиваться, минимальные краевые расстояния должны составлять 6da .

Takeaway

Конструкция анкерных стержней, подверженных растягивающим и поперечным силам, может быть громоздкой и требовать много времени. Текущие положения по креплению ACI сложны, и необходимо проверить ряд предельных состояний. ASDIP STEEL включает конструкцию опорной плиты и анкерного болта с несколькими вариантами оптимизации конструкции за считанные минуты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *