Размер плит перекрытия пустотных: Размеры пустотных плит — Размеры Инфо

Содержание

толщина пустотных перекрытий, ширина ЖБК, сборные железобетонные пустотелые, ГОСТ объем многопустотных, длина бетонной

Строительство зданий любого назначения можно существенно облегчить, если использовать стандартные унифицированные элементы. Одними из основных строительных единиц считаются плиты перекрытия. В нашей статье мы расскажем о железобетонных конструкциях плит перекрытия.

Это самый распространенный и экономичный вариант, обладающий существенными преимуществами перед другими материалами. Сортамент бетонных плит также достаточно широк, что позволит варьировать размерами и подобрать решение для любой архитектурной задачи.

Почему стоит выбрать из железобетона

Плюсы в использовании есть у каждого из существующих строительных материалов. Выбирая подходящий, необходимо, прежде всего, ориентироваться на вид здания и поставленные перед ним задачи. Деревянные покрытия отличаются большей гибкостью, малым весом и естественностью происхождения, но также весьма подвержены вредителям и имеют меньший срок эксплуатации сравнительно с бетонными разновидностями. Кроме того, имеет смысл принять во внимание разницу в размере балок деревянного перекрытия и бетонных.

Узнать какие они ребристые плиты перекрытия: размеры, гост, можно прочитав статью.

Из недостатков железобетонных конструкций необходимо отметить значительный вес и использование специальной техники. Несмотря на это, трудоемкость деревянных перекрытий будет значительно выше и сам процесс более длительным, по сравнению с готовыми бетонными плитами.

На видео – сортамент и размеры плит перекрытия:

Классификация согласно ГОСТ

Изготовление этого строительного элемента ведется строго ГОСТ 23009-78, разработанному еще в 1979 году. Этим нормативом предусмотрены основные показатели готового изделия и применяемость для строительства различных по функциональности зданий и сооружений. Плиты перекрытия промышленного производства в обязательном порядке имеют особое обозначение, в котором и «зашифрована» вся необходимая информация. Каковы размеры железобетонных плит перекрытия можно узнать здесь.

Классификация изделий ведется по всем показателям:

  • Тип конструкции.
  • Габаритные размеры.
  • Класс используемой арматуры.
  • Вид бетона.
  • Дополнительная стойкость к внешним воздействиям.
  • Конструктивные особенности.

В статье можно узнать о размерах плит перекрытия пустотных по госту.

Для того, что иметь представление обо всех возможных вариантах и расшифровках ПК, рассмотрим каждый из вышеперечисленных параметров отдельно немного подробней.

Тип конструкции согласно классификации ГОСТ

Типоразмер изделия должен обозначаться заглавными прописными буквами, максимальное количество которых не должно превышать три единицы.

Узнать о пустотных плитах перекрытия и о их технических характеристиках можно здесь из статьи.  О возможных вариантах заполнения проёмов между плитами перекрытия, что выбрать пеноблок или газоблок и какой материал лучше, можно тут.

Основные обозначения типа конструкции железобетонных изделий:

№ п/п: Условное обозначение: Наименование изделия:
1. С Сваи.
2. Ф Фундаменты (столбчатые, плиточные).
3. ФЛ Фундаменты ленточные.
4.
ФО
Фундаменты под оборудование.
5. ФБ Фундаментные блоки.
6. БФ Балки фундаментные.
7. К Колонны.
8. КЭ Колонные эстакады (для трубопроводов).
9. Р Ригели.
10. Б Балки (общее обозначение).
11. БК
Балки под краны.
12. БО Балки обвязочные.
13. БП Балки подстропильные.
14. БС Балки стропильные.
15. БЭ Балки под эстакады.
16. БТ Балки тоннелей.
17. ФП Фермы подстропильные.
18. ФС Фермы стропильные.
19. П Плиты перекрытий монолитные.
20. ПД Плиты днищ тоннелей и каналов под коммуникации.
21. ПТ Плиты перекрытий тоннелей и каналов под коммуникации.
22. ЛК Лотки каналов.
23. ПК Питы перекрытия с круглыми пустотами.
24. ПП Плиты под парапет.
25.
ПО Плиты под окна.
26. ОП Опорные подушки.
27. ЛМ Лестничные марши.
28. ЛП Лестничные площадки.
29. ЛС Лестничные ступени.
30. ЛБ Лестничные балки, косоуры.
31. СБ Стеновые блоки.
32. СБЦ Стеновые блоки цокольные.
33. ПС Панели стеновые.
34. ПГ Панели перегородок.
35. ПР Перемычки.
36. СТ Стенки под опоры.
37. Ш Шпалы железобетонные для железной дороги.
38. Т Трубы железобетонные безнапорные раструбные.
39. ТФ Трубы железобетонные безнапорные фальцевые.
40. ТН Трубы железобетонные напорные виброгидропрессованные.
41. БТ Бетонные трубы.

Выбрать подходящие изделия можно согласно основному назначению. Если конструкция может иметь несколько типоразмеров, буквенное обозначение может быть дополнено цифрой. Следовательно, для железобетонных плит перекрытий с круглыми пустотами маркировка изделия будет начинаться с «ПК», монолитные конструкции «П», остальные обозначения расшифруем далее.

Узнать больше о том, какие необходимы плиты перекрытия для частного дома, можно прочитав статью.

Дополнительные сведения

Для изделий, предназначенных для использования в более сложных условиях эксплуатации, существует также особая классификация по типу напрягаемой арматуры, которая применяется в изготовлении конструкции. Также иногда маркируется и бетонный раствор.

Любой дом из блоков имеет стеновые перегородки, узнать о таковых из стеновых блоков можно здесь из статьи.

Основные виды бетона:

  • Легкий бетон — «Л».
  • Жаростойкий — «Ж».
  • Силикатный — «С».
  • Ячеистый — «Я».
  • Мелкозернистый — «М». 

Также классифицируют бетон по стойкости к воздействию агрессивной среды. Этот показатель обычно используется для обозначения проницаемости готового бетонного слоя. Используется в специальном строительстве, а для возведения индивидуальных домов достаточно применения бетона с нормальной проницаемостью.

По ссылке описаны плиты перекрытия пк гост, и где их применять

Классификация бетонной поверхности:

  • Бетон нормальной проницаемости — «Н».
  • Бетон пониженной проницаемости — «П».
  • Бетон особой проницаемости — «О».

Если бетонные конструкции разработаны с учетом сейсмоопасной местности и способны выдерживать до 7 балов колебаний, в маркировке присутствует отметка «С».

Таким образом, можно получить основную информацию о железобетонных изделиях просто по их маркировке. Использование стандартов при производстве существенно облегчает выбор подходящей конструкции и расчет максимально возможной нагрузки. Преимуществами железобетонных балок перекрытий станут относительно доступная стоимость и простота монтажа. В зависимости от типа зданий выбирают монолитные или пустотелые плиты, каждая их которых имеет свои преимущества и недостатки. Для индивидуального строительства сортимент стандартных плит перекрытия предоставляет широкий выбор по самым разнообразным размерам и показателям.

В статье раскрывается информация про многопустотные плиты перекрытия и область их применения.

Габаритные размеры изделий

Для обеспечения большей унификации конструкций в названии указываются также и типоразмеры. Это могут быть конструкционные или координационные размеры. В случае с плитами перекрытия принято использовать следующую систему: если марка плиты ПК 20-10.8, это означает габаритные размеры 1980×990×220. В данном случае несоответствие указывает на необходимы при монтаже допуска. Толщина стандартных плит обычно 220 мм, для облегчения возведения зданий под любые размеры.

Информация для тех, кто будет делать ремонт в квартире, где потолки изготовлены из плит перекрытия. Для того, что бы приклеить какой-либо отделочный материал к потолку нужно подобрать правильный клей, например клей для плитки из пенопласта. Более подробно можно прочитать здесь.

Основные габаритные размеры пустотных плит перекрытия:

п/п: Марка плиты: Длина изделия, мм: Ширина изделия, мм: Вес, т: Объем, м³:
1. ПК 17-10.8 1680 990 0,49 0,36
2. ПК 17-12.8 1680 1190 0,61 0,44
3. ПК 17-15.8 1680 1490 0,65 0,55
4. ПК 18-10.8 1780 990 0,38 0,38
5. ПК 18-12.8 1780 1190 0,65 0,46
6. ПК 18-15.8 1780 1490 0,86 0,58
7. ПК 19-10.8 1880 990 0,55 0,4
8. ПК 19-12.8 1880 1190 0,69 0,49
9. ПК 19-15.8 1880 1490 0,9 0,62
10. ПК 20-10.8 1980 990 0,61 0,44
11. ПК 20-12.8 1980 1190 0,76 0,54
12. ПК 20-15.8 1980 1490 1,0 0,68
13. ПК 21-10.8 2080 990 0,65 0,475
14. ПК 21-12.8 2080 1190 0,8 0,571
15. ПК 21-15.8 2080 1490 0,97 0,71
16. ПК 22-10.8 2180 990 0,725 0,497
17. ПК 22-12.8 2180 1190 0,85 0,6
18. ПК 22-15.8 2180 1490 1,15 0,751
19. ПК 23-10.8 2280 990 0,785 0,52
20. ПК 23-12.8 2280 1190 0,95 0,62
21. ПК 23-15.8 2280 1490 1,179 0,78
22. ПК 24-10.8 2380 990 0,745 0,56
23. ПК 24-12.8 2380 1190 0,905 0,68
24. ПК 24-15.8 2380 1490 1,25 0,78
25. ПК 26-10.8 2580 990 0,825 0,56
26. ПК 26-12.8 2580 1190 0,975 0,68
27. ПК 26-15.8 2580 1490 1,325 0,84
28. ПК 27-10.8 2680 990 0,83 0,58
29. ПК 27-12.8 2680 1190 1,01 0,7
30. ПК 27-15.8 2680 1490 1,395 0,87
31. ПК 28-10.8 2780 990 0,875 0,61
32. ПК 28-12.8 2780 1190 1,05 0,73
33. ПК 28-15.8 2780 1490 1,425 0,91
34. ПК 30-10.8 2980 990 0,915 0,65
35. ПК 30-12.8 2980 1190 1,11 0,78
36. ПК 30-15.8 2980 1490 1,425 0,98
37. ПК 32-10.8 3180 990 0,975 0,69
38. ПК 32-12.8 3180 1190 1,2 0,83
39. ПК 32-15.8 3180 1490 1,6 1,04
40. ПК 33-10.8 3280 990 1,0 0,71
41. ПК 33-12.8 3280 1190 1,3 0,86
42. ПК 33-15.8 3280 1490 1,625 1,08
43. ПК 34-10.8 3380 990 1,05 0,74
44. ПК 34-12.8 3380 1190 1,24 0,88
45. ПК 34-15.8 3380 1490 1,675 1,11
46. ПК 36-10.8 3580 990 1,075 0,78
47. ПК 36-12.8 3580 1190 1,32 0,94
48. ПК 36-15.8 3580 1490 1,75 1,17
49. ПК 38-10.8 3780 990 1,15 0,82
50. ПК 38-12.8 3780 1190 1,39 0,99
51. ПК 38-15.8 3780 1490 1,75 1,24
52. ПК 39-10.8 3880 990 1,2 0,85
53. ПК 39-12.8 3880 1190 1,43 1,02
54. ПК 39-15.8 3880 1490 1,8 1,27
55. ПК 40-10.8 3980 990 1,2 0,87
56. ПК 40-12.8 3980 1190 1,475 1,04
57. ПК 40-15.8 3980 1490 1,92 1,3
58. ПК 42-10.8 4180 990 1,26 0,91
59. ПК 42-12.8 4180 1190 1,525 1,09
60. ПК 42-15.8 4180 1490 1,97 1,37
61. ПК 43-10.8 4280 990 1,26 0,93
62. ПК 43-12.8 4280 1190 1,57 1,12
63. ПК 43-15.8 4280 1490 2,0 1,4
64. ПК 44-10.8 4380 990 1,29 0,95
65. ПК 44-12.8 4380 1190 1,61 1,15
66. ПК 44-15.8 4380 1490 2,06 1,44
67. ПК 45-10.8 4480 990 1,33 0,98
68. ПК 45-12.8 4480 1190 1,62 1,17
69. ПК 45-15.8 4480 1490 2,11 1,47
70. ПК 48-10.8 4780 990 1,425 1,04
71. ПК 48-12.8 4780 1190 1,725 1,25
72. ПК 48-18.8 4780 1490 2,25 1,57
73. ПК 51-10.8 5080 990 1,475 1,11
74. ПК 51-12.8 5080 1190 1,825 1,33
75. ПК 51-15.8 5080 1490 2,475 1,67
76. ПК 52-10.8 5180 990 1,53 1,13
77. ПК 52-12.8 5180 1190 1,9 1,36
78. ПК 52-15.8 5180 1490 2,42 1,7
79. ПК 53-10.8 5280 990 1,6 1,13
80. ПК 53-12.8 5280 1190 1,91 1,38
81. ПК 53-15.8 5280 1490 2,46 1,73
82. ПК 54-10.8 5380 990 1,6 1,17
83. ПК 54-12.8 5380 1190 1,95 1,41
84. ПК 54-15.8 5380 1490 2,525 1,76
85. ПК 56-10.8 5580 990 1,65 1,22
86. ПК 56-12.8 5580 1190 2,01 1,46
87. ПК 56-15.8 5580 1490 2,6 1,85
88. ПК 57-10.8 5680 990 1,675 1,24
89. ПК 57-12.8 5680 1190 2,05 1,49
90. ПК 57-15.8 5680 1490 2,75 1,86
91. ПК 58-10.8 5780 990 1,71 1,24
92. ПК 58-12.8 5780 1190 2,07 1,51
93. ПК 58-15.8 5780 1490 2,73 1,89
94. ПК 59-10.8 5880 990 1,775 1,26
95. ПК 59-12.8 5880 1190 2,11 1,54
96. ПК 59-15.8 5880 1490 2,825 1,93
97. ПК 60-10.8 5980 990 1,775 1,3
98. ПК 60-12.8 5980 1190 2,15 1,57
99. ПК 60-15.8 5980 1490 2,8 1,96
100. ПК 62-10.8 6180 990 1,83 1,35
101. ПК 62-12.8 6180 1190 2,21 1,62
102. ПК 62-15.8 6180 1490 2,91 2,03
103. ПК 63-10.8 6280 990 1,86 1,37
104. ПК 63-12.8 6280 1190 2,25 1,65
105. ПК 63-15.8 6280 1490 3,0 2,09
106. ПК 64-10.8 6380 990 1,88 1,39
107. ПК 64-12.8 6380 1190 2,26 1,67
108. ПК 64-15.8 6380 1490 3,0 2,09
109. ПК 65-10.8 6480 990 1,9 1,41
110. ПК 65-12.8 6480 1190 2,29 1,7
111. ПК 65-15.8 6480 1490 3,02 2,12
112. ПК 66-10.8 6580 990 1,94 1,43
113. ПК 66-12.8 6580 1190 2,32 1,72
114. ПК 66-15.8 6580 1490 3,1 2,16
115. ПК 67-10.8 6680 990 1,96 1,45
116. ПК 67-12.8 6680 1190 2,44 1,75
117. ПК 67-15.8 6680 1490 3,23 2,19
118. ПК 68-10.8 6780 990 2,01 1,48
119. ПК 68-12.8 6780 1190 2,5 1,79
120. ПК 68-15.8 6780 1490 3,3 2,25
121. ПК 69-12.8 6880 1190 2,54 1,78
122. ПК 69-15.8 6880 1490 3,16 2,22
123. ПК 70-10.8 6980 990 2,06 1,52
124. ПК 70-12.8 6980 1190 2,46 1,83
125. ПК 70-15.8 6980 1490 3,27 2,29
126. ПК 72-10.8 7180 990 2,12 1,56
127. ПК 72-12.8 7180 1190 2,53 1,88
128. ПК 72-15.8 7180 1490 3,36 2,35
129. ПК 73-12.8 7280 1190 2,64 1,91
130. ПК 73-15.8 7280 1490 3,41 2,39
131. ПК 74-12.8 7380 1190 2,67 1,93
132. ПК 74-15.8 7380 1490 3,45 2,42
133. ПК 75-12.8 7480 1190 2,8 1,96
134. ПК 75-15.8 7480 1490 3,49 2,45
135. ПК 76-12.8 7580 1190 2,74 1,98
136. ПК 76-15.8 7580 1490 3,53 2,48
137. ПК 77-12.8 7680 1190 2,78 2,01
138. ПК 77-15.8 7680 1490 3,59 2,52
139. ПК 78-12.8 7780 1190 2,82 2,04
140. ПК 78-15.8 7780 1490 3,83 2,55
141. ПК 79-12.8 7880 1190 2,85 2,06
142. ПК 79-15.8 7880 1490 3,68 2,58
143. ПК 80-12.8 7980 1190 3,063 2,09
144. ПК 80-15.8 7980 1490 3,73 2,62
145. ПК 81-12.8 8080 1190 3,1 2,12
146. ПК 81-15.8 8080 1490 3,78 2,65
147. ПК 82-12.8 8180 1190 2,95 2,14
148. ПК 82-15.8 8180 1490 3,82 2,68
149. ПК 83-12.8 8280 1190 2,99 2,17
150. ПК 83-15.8 8280 1490 3,86 2,71
151. ПК 84-12.8 8380 1190 3,02 2,19
152. ПК 84-15.8 8380 1490 3,92 2,75
153. ПК 85-12.8 8480 1190 3,06 2,22
154. ПК 85-15.8 8480 1490 3,96 2,78
155. ПК 86-12.8 8580 1190 3,3 2,25
156. ПК 86-15.8 8580 1490 4,0 2,81
157. ПК 87-12.8 8680 1190 3,13 2,27
158. ПК 87-15.8 8680 1490 4,06 2,85
159. ПК 88-12.8 8780 1190 3,16 2,3
160. ПК 88-15.8 8780 1490 4,1 2,88
161. ПК 89-12.8 8880 1190 3,17 2,32
162. ПК 89-15.8 8880 1490 4,15 2,91
163. ПК 90-12.8 8980 1190 3,2 2,35
164. ПК 90-15.8 8980 1490 4,2 2,94

Последнее обозначение цифра «8» в конце маркировки обозначает расчетную нагрузку, которая составляет стандартные для жилых зданий 800 кгс/м².

описание, характеристики, размеры и цены

Плиты перекрытия — железобетонные изделия, которые используют в частном и профессиональном строительстве для разделения этажей подземных или надземных коробов жилых зданий, общественных, производственных построек с фундаментом, обладающим высокой несущей способностью. Их изготавливают из высокопрочного бетона и качественной обычной или предварительно напряженной стальной арматуры.

Оглавление:

  1. Технические параметры
  2. Особенности маркировки
  3. Разновидности ЖБИ
  4. Стандартные габариты
  5. Стоимость и от чего она зависит

Пустотные плиты — это элементы прямоугольной формы, внутри них расположены сквозные круглые воздушные камеры. За счет такого устройства имеют сравнительно небольшой вес, что помогает снизить общую нагрузку на фундамент и стены. Для перемещения с помощью техники на одной из сторон находятся стальные монтажные петли.

Характеристики плит

Достоинства:

  • прочность, долговечность;
  • водостойкость;
  • огнестойкость до 180 мин;
  • простой быстрый монтаж;
  • возможность применения в качестве несущих стен;
  • допустимая нагрузка до 1,5 т на кв. м по отношению к вертикально направленным нагрузкам.

Преимущества пустотелых ЖБИ по сравнению с полнотелыми:

  • повышенные звуко- и теплоизоляционные характеристики за счет воздуха внутри;
  • сквозь пустоты проще проводить коммуникации, это помогает сократить стоимость отделочных работ;
  • применение в сейсмоопасных зонах;
  • высокая несущая способность;
  • проще транспортировка, монтаж;
  • увеличенный полезный объем помещений;
  • возможность нагружать перекрытие сразу после установки, не стягивая бетоном;
  • сравнительно низкая цена, расход бетона на производство пустотелой плиты на 50% ниже, арматуры требуется на 30% меньше.

При покупке необходимо внимательно осмотреть изделие. Дефекты, при наличии которых оно непригодно для применения:

  • трещины шириной более 0,3 мм;
  • имеются участки с обнаженной арматурой;
  • не соответствует размер;
  • уклон поверхности более 8 мм;
  • раковины и размывы диаметром более 15 мм;
  • сколы на ребрах глубиной от 1 см и длиной от 5 см;
  • недостаточная толщина слоя бетона между стержнями и стенками.

Вес пустотных плит перекрытия — не менее 700 кг. Для транспортировки их укладывают штабелями высотой до 2,5 м, прокладывая между ними деревянные бруски. Перевозить можно в горизонтальном, вертикальном и наклонном положении при условии надежной фиксации. Для выгрузки потребуется кран. Если есть необходимость продолжительного хранения, то элементы складывают стопками высотой не более 2,5 м, снова помещая деревянные прокладки. Сверху каждую стопку накрыть гидроизолирующим материалом — проще всего обычной полиэтиленовой пленкой.

Маркировка

На торце находятся:

  • маркировка;
  • дата изготовления;
  • масса;
  • штамп ОТК.

Стандартная состоит из нескольких букв, обозначающих серию, и трех групп цифр, по которым определяют размеры и несущую способность. Первая и вторая группа представлены двумя цифрами, обозначающими длину и ширину в дециметрах с округлением до целого числа в большую сторону. Последняя группа состоит из одной цифры, которая указывает на расчетную равномерно распределенную нагрузку в кПа, тоже с округлением. Пример: ПК 23-5-8 — плита с круглыми пустотами длиной 2280, шириной 490 мм, несущей способностью 7,85 кПа (800кгс/м3).

Обозначение некоторых изделий в конце дополняет код из латинских букв и цифр, обозначающий тип прутьев. Пример: ПК 80-15-12,5АтV — каркас выполнен из предварительно напряженной арматуры класса АтV.

Дополнительно могут быть указаны: вид бетона (т — тяжелый), обозначено наличие уплотняющих вкладышей у отверстий (а), способ производства (э — экструзионный метод формовки). Пример: ПК 26-15-12,5та.

Виды и маркировка

Разновидности (серии):

  • ПК — стандартная толщиной 22 см со сквозными полостями цилиндрической формы, изготовленные из железобетона класса не ниже В15;
  • ПБ — изделие, полученное безопалубочным методом в конвейерных формах, с особым способом армирования, за счет которого возможна его резка вдоль и поперек без потери прочности, поверхность более ровная, упрощающая отделку полов или потолков;
  • ПНО — облегченная плита, изготовленная безопалубочным способом, отличается от ПБ меньшей толщиной — 16 см;
  • НВ — настил внутренний из железобетона класса В40 с однорядным предварительно напряженным армированием;
  • НВК — класса В40 с двурядным предварительно напряженным армированием, толщина — 265 мм;
  • НВКУ — то же, что и НВК, но из железобетона В45;
  • 4НВК — с четырехрядным армированием, толщина — 400 мм.

Напрягаемая (предварительно напряженная) арматура при производстве ЖБИ до заливки бетона подвергается сжимающему напряжению в точках, где каркас будет предположительно испытывать наибольшее растяжение. После такой обработки повышаются прочность, устойчивость к появлению трещин, снижается расход стали. В характеристиках указывают: «предварительно напряженная плита» или «с напрягаемой арматурой».

Стандартные размеры

Длина плит толщиной 22 см (серии ПК, ПБ, НВ) и 16 (серия ПНО): от 980 до 8980 мм (в маркировке указывают соответственно от 10 до 90). Шаг между соседними габаритами составляет 10-20 см. Ширина полноразмерных изделий может быть 990 (10), 1190 (12), 1490 (15) мм. Для того, чтобы избежать необходимости резки, используют доборные элементы. Их ширина: 500 (5), 600 (6), 800 (8), 900 (9), 940 (9) мм.

ПБ могут иметь длину до 12 м. Если этот параметр более 9 м, то либо толщина должна быть больше 22 см, либо несущая способность будет ниже. Серии НВК, НВКУ, 4НВК могут иметь длину и ширину, не входящую в стандартную сетку.

При необходимости применения конструкций нестандартного габарита можно заказать их по индивидуальным чертежам. Но это существенно повышает стоимость ЖБИ.

Стоимость

Чем больше изделие, тем выше его цена. Технические характеристики, влияющие на расценки:

  • способ производства;
  • тип армирования;
  • количество арматурных прутьев в каркасе — минимальное, среднее, максимальное;
  • класс прочности бетона;
  • масса бетонного раствора.

Цены на железобетонные перекрытия ПК (выборочно):

Марка Цена за штуку, рубли
24-10-8 2400
24-12-8 2800
24-15-8 3400
25-10-8 2600
25-12-8 3100
25-15-8 3600
35-10-8 3600
35-12-8 4300
35-15-8 5100
50-10-8 4900
50-12-8 5900
50-15-8 7400
70-10-8 8800
70-12-8 9700
70-15-8 11700
90-10-8 17400
90-12-8 17400
90-15-8 20700

Примерная цена на ПБ, ПНО:

Марка, длина Цена за штуку, рубли
ПБ (1,6 — 8,4 м) 1800 — 11700
ПНО (1,6 — 6,3 м) 1950 — 8500

Стоимость пустотных плит НВ, НВК, НВКУ, 4НВК шириной 1190 мм:

Марка Армирование Цена за пог.м
НВ минимальное 1600
среднее 1800
максимальное 1900
НВК минимальное 1750
среднее 1850
максимальное 1950
НВКУ минимальное 2150
среднее 2250
максимальное 2500
4НВК минимальное 2650
среднее 2800
максимальное 2900

Многие производители делают скидки до 20% на крупные партии. Пустотные плиты перекрытия используют для частного или промышленного многоэтажного строительства. Этот вид ЖБИ обладает сравнительно небольшим весом при высокой несущей способности. Существует несколько их разновидностей. Они отличаются способом изготовления, типом, количеством рядов армирования, прочими характеристиками. Большой выбор стандартных размеров дает возможность подобрать нужное изделие для любых строений. При необходимости производители выпускают ЖБИ нестандартных габаритов с наценкой. Ограничения — соблюдение требований к минимальной величине допустимой расчетной нагрузки.

Пустотные плиты перекрытия: размеры, технические характеристики, ГОСТы


Пустотные плиты перекрытия применяются при возведении жилых многоэтажных домов и административных зданий.

Их конструкция намного легче полнотелых плит, но из-за этого показатель прочности и надежности не снижается. На несущие свойства плиты не влияет количество пустот и их расположение.

Наоборот, наличие воздушных полостей в бетонном изделии повышает его тепло- и звукоизоляционные характеристики.

 

Размеры и классы пустотных панелей

Все основные требования по изготовлению пустотных изделий для перекрытия, учитывая их прочностные способности и последующее назначение, описаны в ГОСТ 9561-91 и прочей нормативной документации.

При индивидуальном потребительском заказе панели перекрытия могут быть произведены с размерами, отклоненными от нормативов ГОСТ 9561-91, но с условием выполнения основных стандартных требований.

Прежде всего, ГОСТ стандарты описывают размеры изделий, где учитывается толщина и диаметр воздушных полостей, а также количество опорных сторон.

Основные параметры и размеры пустотных изделий для перекрытия, которые указаны в ГОСТ документации, позволяют подразделить их на типы.

Маркировка изделий состоит из букв и цифр, например: ПК 63.15-8, где ПК – круглопустотная плита; 63 – длина, дм; 15 – ширина, дм; 8 – допустимое механическое давление на плиту, не учитывая ее собственный вес – 800 кгс на м2.

В пункте ГОСТ 1.2.1.

1Пк – толщ. 220 mm; дм пустот – 159 mm; две опорных части; 1ПКТ – 3 опорных части; 1ПКК – 4 опоры.

2ПК – толщ. 220 mm; дм пустотных отверстий – 140 mm; две опорных части; 2ПКТ – 3 опоры; 2ПКК – 4 опорных части.

3ПК – толщ. 220 mm; дм пустот – 127 mm; двустороннее опирание; 3ПКТ – 3 опоры; 3ПКК – 4 стороны.

4ПК – толщ. 260 mm; дм пустот – 159 mm; имеет сверху по контуру пазы и 2 опорных стороны.

5ПК – толщ. плиты 260 mm; дм отверстий 180 mm; двустороннее опирание.

6ПК – толщ. 300 mm; дм отверстий 203 mm; двустороннее опирание.

7ПК – толщ. 160 мм; дм пустот 114 мм; двустороннее опирание.

ПГ – толщ. 260 мм, пустоты – форма грушевидная; плита с двумя опорами.

ПБ – 220 мм, производится по технологии беспрерывной формировки; две опорных стороны.

Армирование пустотелых плит перекрытия необходимо, чтобы выполнить усиление конструкции, и позволяет разделить изделия также на классы.

Документация ГОСТ 91 описывает производство панелей с 2-3 опорными сторонами с применением напряженной арматуры.

Усиление конструкции позволит оценить приведенная ниже схема.

Отдельно для застройщиков стоит указать на то, что нельзя в пустотных изделиях проделывать дополнительные отверстия под прокладку коммуникационных сетей, лучше с этой целью купить плиты, армирование которых было проведено ненапрягаемой арматурой.

В противном случае их несущая способность будет снижена. Плиты, усиление которых было нарушено, не смогут выдерживать большую нагрузку.

В пункте ГОСТ 9561-91 указаны исключения: в процессе изготовления определенных типов пустотных панелей перекрытия используется схема, где разрешается не применять армирование напряженной арматурой.

Такие панели имеют следующие размеры:

  • толщ. 220 mm; при длине 4780 мм, диаметр отверстий от 140 до 159 мм;
  • толщ. 260 mm; при длине до 5680 мм;
  • толщ. 220 mm; разная длина; диаметр отверстий 127 мм.

Указанные конструкции с ненапрягаемой арматурой соответствуют стандартам СНИП и ГОСТ 91. Такие железобетонные изделия можно купить и использовать для перекрытия под большую нагрузку.

Особенности производства и использования пустотных плит перекрытия

При производстве пустотелых панелей перекрытия применяют разные технологии, в результате, отличия можно заметить по структуре их лицевой стороны.

Маркировка изделий вида ПК и ПГ говорит о том, что конструкция была отлита с помощью опалубки.

Железобетонные материалы ПБ – для их изготовления используется беспрерывная схема действий с применением конвейерной линии.

Видео:

В отличие от опалубочных изделий, технические характеристики ПБ более усовершенствованы.

Они обладают гладкой и ровной поверхностью, могут при производстве получать различную длину, что очень удобно для застройщиков желающих купить «доборные» плиты.

Чертеж по раскладке ПК может включать несколько участков, на которых не могут разместиться панели, имеющие стандартные размеры.

Как правило, рабочие заполняют такие просветы монолитной стяжкой из бетона, чтобы выполнить усиление, применяют армирование арматурными прутьями.

Несущая способность самодельной конструкции уступает своим показателем заводскому изделию по причине отсутствия виброуплотнения и пропаривания железобетона.

Поэтому лучше купить «доборные» плиты с необходимыми параметрами.

Преимущество использования опалубочных плит заключается в возможности применять их в местах, где планируется проведение коммуникационных сетей.

Плиты ПГ и ПК стоит купить, если чертеж перекрытий здания включает дополнительные отверстия, которые необходимо проделать, не снизив усиление всей конструкции.

При этом пустотные ПГ и ПК имеют минимальный диаметр отверстий в 114 мм, при котором можно не пробивать отверстия, а воспользоваться существующими.

В них свободно пройдет труба с диаметром 80-100 мм.

Если же купить железобетонные панели для перекрытия с маркировкой ПБ, то диаметр их отверстий (60 мм) не позволит пропустить через себя канализационный стояк.

Если с этой целью перерубать ребро жесткости конструкции, ее несущая способность сойдет на «нет», а технические характеристики изделия больше не будут отвечать нормативным требованиям СНИП.

Объяснение маркировки пустотных плит перекрытия

Научившись, как правильно расшифровывается маркировка пустотных панелей, застройщик может купить стройматериалы, не вникая в технологию их изготовления.

Маркировка, сделанная производителем, позволит понять:

  • какую нагрузку выдерживает та или иная панель;
  • какую несущую способность имеет изделие;
  • подробности о типе и размерах.

Маркирование изделий выполняется в соответствии с ГОСТ стандартом 23009.

Обозначение включает в себя три группы из букв, цифр и дефисов:

  1. Первая группа: показатель вида плиты перекрытия — в дециметрах указывается ширина и длина;
  2. Вторая группа: несущая способность изделия (расч. нагрузка) в кгс/м2 или кПа/м2.
    Усиление панелей напряженной арматурой обозначают классом, применяемой при производстве арматурной стали. Вид бетонного состава обозначают буквами: Л – легкий; С – силикатный;
  3. Третья группа: расскажет о дополнительных характеристиках пустотных изделий, включая использование конструкций в экстремальных условиях (воздействие химического и сейсмического характера). Может указывать на конструктивные дополнения плит.

На примере маркировки 1ПК63.15-6АтVЛ рассмотрим расшифровку имеющихся обозначений.

Опытный мастер, просматривая чертеж по перекрытию объекта, при необходимости прочитает указанную маркировку следующим образом: пустотная плита имеет длину 6280 мм, ширину – 1490 мм; выдерживает нагрузку в 6 кПа. При ее изготовлении был использован легкий бетон, усиление конструкции выполнено с применением напряженной арматуры класса Aт-V.

Рассматриваемая маркировка 1ПК63.15-6АтVЛ состоит из двух групп, третья группа появляется, когда для плиты перекрытия были разработаны особые конструктивные свойства.

Например, если к имеющимся цифрам и буквам в конце добавить обозначение С7 – 1ПК63.15-6АтV- С7 — это будет говорить о возможности использования пустотной плиты при строительстве объектов в сейсмоопасных зонах с сейсмичностью до 7 баллов.

Отсутствие буквы Л, указывающей вес бетона, значит, что при изготовлении был использован тяжелый бетон. Тяжелые бетоны не имеют обозначения в маркировке.

Вышеуказанные характеристики пустотных панелей перекрытия позволяют определить их функциональное назначение.

Поэтому чертеж пустотной панели включает в себя расчет, сделанный исходя из стандартной нагрузки на общее перекрытие 150 кг на м2 (включен вес мебели, жильцов и оборудования).

Несущая способность пустотной плиты стандартного вида находится в интервале от 600 до 1000 кг на м2.

Видео:

Сопоставляя норму 150 кг на м2 с имеющейся фактической прочностью плит, можно заметить, что их усиление имеет высокий запас прочности.

Если купить такие плиты, их можно будет использовать для сооружения любых видов зданий.

Особенности монтажа пустотелых панелей

Основным правилом надежного устройства плит перекрытия, которое должен содержать чертеж, считается точное соблюдение параметров опоры на стены.

При недостаточной площади опирания возможна деформация стен, при излишней площади – повышается их теплопроводность.

Установку плит перекрытия необходимо выполнять, учитывая допустимую минимальную глубину опирания:

  • для кирпичного сооружения – 9 см;
  • для газобетона и пенобетона – 15 см;
  • для стальных конструкций – 7,5 см.

При этом максимальное углубление заделки панелей в стены, что также вноситься в строительный чертеж, не должно превышать 16 см для легких блоков и кирпичных сооружений; 12 см – для железобетонных и бетонных конструкций.

Перед установкой плит края их пустот заделывают легкой бетонной смесью в глубину на 12 см.

Видео:

Монтировать плиты без раствора запрещается, поэтому на рабочую поверхность укладывают слой раствора не менее чем 2 мм, что позволит плитам равномерно передать нагрузку на стены.

Кроме того, при обустройстве плит на хрупкие стены (пенобетон, газоблоки) выполняют армирование смеси, что позволит исключить выгибание блоков.

При этом с целью снизить теплопроводность перекрытия, проводят наружное утепление конструкции.

Плиты для перекрытий. Выбор плиты для перекрытия. (пустотные, шатровые, ребристые) Размер масса и грузоподъемность плит

 При строительстве зданий и сооружений применение типовых конструкций позволяет значительно уменьшить сроки монтажа, возведения объекта, уменьшить трудоемкость и в некоторых случаях еще и сэкономить. Так, плиты перекрытия уже давно зарекомендовали себя как незаменимый элемент при строительстве. В этой статье мы хотели привести сведения о  целесообразности к применению плит для сооружения межэтажных перекрытий в жилых помещениях. Кроме того, в статье вы найдете информацию о размерах плит и их массе.

Применение плит перекрытия в жилых и не жилых помещения

 Прежде всего, если вы будете использовать плиту для жилых помещений,  стоит обратить внимание на пустотные плиты перекрытий. Такие плиты имеют одинаковую ровную поверхность с двух сторон, обеспечивают хорошую тепло и шумо- изоляцию, также относительно своего объема небольшой вес. Кроме того, их достоинствами является возможность перерубить их, то есть подогнать под размер. При чем такие плиты могут быть перерублены как по вдоль, так и поперек.  Для нежилых помещений возможно применение шатровых плит,  с усилением в виде отлива по периметру и ребристых, с отливами по сторонам. При их использовании будут видны опорные отливы. Такие плиты обладают худшей тепло и шумоизоляцией, но их основное достоинство в том, что они имеют длину до 15 метров, что может быть важно для нежилых сооружений.  Также, такие плиты дешевле пустотных.  Применение монолитных плит в качестве перекрытия не целесообразно, из-за высокой стоимости и низкому сопротивлению на изгиб, по сравнению со всеми выше перечисленными видами плит. Также монолитные плиты  слишком тяжелые, по сравнению с другими видами плит.

Пустотные плиты перекрытия (классификация размеры, масса, несущая нагрузка)

Пустотные плиты перекрытия классифицируется по форме пустот в их сечении. Пустоты в плитах бывают разной формы овальные и неправильной формы:  

Толщина плит перекрытия всех марок равна 220 мм. Остальные размеры можно узнать из обозначения плиты. Например, ПК34-10 — это плита перекрытия длиной 3400 мм, шириной 990 мм, то есть 10 это 1000 мм, но с учетом допуска для укладки соседней плиты надо вычесть 10 мм. Это правило действуют для каждой из приведенных плит в таблице. 

Марка плиты

Объем, м3

Вес, т

ПК21-12

0,550

0,73

ПК22-10

0,479

0,64

ПК24-12

0,628

0,843

ПК24-10

0,523

0,698

ПК26-15

0,858

1,24

ПК27-10

0,588

0,784

ПК27-12

0,707

0,949

ПК27-15

0,885

1,279

ПК28-10

0,610

0,814

ПК28-12

0,733

0,984

ПК28-15

0,918

1,326

ПК30-10

0,653

0,872

ПК30-12

0,780

1,047

ПК32-10

0,970

1,402

ПК32-12

0,697

0,903

ПК32-15

0,838

1,125

ПК33-10

1,049

1,516

ПК33-12

0,719

0,96

ПК33-15

0,864

1,293

ПК34-10

0,741

0,990

ПК34-12

0,890

1,195

ПК34-15

1,115

1,611

ПК35-10

0,762

1,017

ПК35-12

0,916

1,229

ПК35-15

1,147

1,657

ПК36-10

0,784

1,046

ПК36-12

0,942

1,265

ПК36-15

1,174

1,695

ПК37-15

1,212

1,75

ПК52-10

1,156

1,512

ПК52-12

1,361

1,827

ПК52-15

1,705

2,464

ПК60-10

1,320

1,762

ПК60-12

1,560

2,094

ПК60-15

1,950

2,817

ПК72-10

1,564

3,369

ПК72-12

1,88

4,05

ПК72-15

2,322

5,044

 Нагрузка которую способны выдержать пустотные плиты перекрытия составляет до 800 кг на метр квадратный.

Шатровые, ребристые, монолитные плиты

 Об остальных видах плит мы не будем рассказывать так подробно, как о пустотных. Скажем лишь, что они имеют возможные длины 5970 мм 11960 мм 17940 мм и ширину 2980 мм и 1480 мм. Они не столь интересны большинству, поскольку применяются в основном для не жилых помещений, о чем мы уже говорили ранее.

Часто задаваемые вопросы о Hollowcore

Как и все сборные железобетонные изделия, пустотные плиты обладают отличной огнестойкостью. В зависимости от толщины и покрытия пряди может быть достигнут срок службы до 4 часов. Класс огнестойкости зависит от эквивалентной толщины теплопередачи, покрытия предварительно напряженной пряди для прочности в условиях высоких температур и ограничения торца. Underwriters Laboratory (UL) публикует рейтинги пожарной безопасности для различных сборок. При определении толщины плиты, которая будет использоваться в предварительном проектировании, следует учитывать показатели огнестойкости.

Обычная пустотная доска толщиной 8 дюймов имеет 2-часовой предел огнестойкости. Для более высокого рейтинга (3 или 4 часа), как правило, следует нанести покрытие на бетонной (или гипсовой) основе или на нижнюю сторону доски можно добавить огнестойкий напыляемый материал. Это также отображается в каталоге UL.

Коды моделей

, такие как IBC, имеют предписывающую пожарную безопасность. Это лучший способ указать способы достижения заданных показателей пожарной безопасности, и он должен быть первым выбором. Списки UL — это еще один способ указать, как достичь указанных показателей огнестойкости.Код не требует предоставления списков UL. Эти списки являются результатом собственных испытаний конкретных сборных железобетонных изделий, произведенных и испытанных конкретными компаниями. Если требуются метки или номера UL, то в Справочнике UL указаны точные данные и только то, что будет соответствовать этому требованию.

Руководство PCI «Проектирование огнестойкости предварительно напряженного железобетона» иллюстрирует принятую в кодексе практику рационального пожарного расчета для сборных и предварительно напряженных железобетонных изделий.В случае пустотелого сердечника эквивалентная толщина рассчитывается на основе свойств поперечного сечения пустотелого сердечника каждой марки. Рациональное противопожарное проектирование используется в ситуациях, не предусмотренных кодексом.

Официальный инженер решит, можно ли считать плиты перекрытия удерживаемыми или свободными. Таблицы в ASTM E119 обсуждают условия ограничения, а также показаны в Руководстве по проектированию полых сердечников PCI. Требуемые огнестойкость должны быть четко указаны в контрактных документах.

Что такое пустотные плиты или Corefloor

Журнал «
Home Ideas» — июнь 2014 г.

Пустотные плиты, также известные как полы с сердцевиной, за последние несколько лет приобрели популярность в местном жилищном строительстве. Пустотные плиты, пользующиеся национальной популярностью с конца 1990-х годов как недорогой способ создания дополнительных складских площадей под гаражом, представляют собой сборные железобетонные конструкционные перекрытия и кровельные системы с небольшой глубиной, что снижает вес при сохранении прочности конструкции.

В жилищном строительстве пустотные плиты можно использовать для создания дополнительных гаражных киосков, складских помещений и комнат для разнорабочих. За счет установки водонепроницаемой мембраны между перекрытием и пустотными плитами возможности расширяются и даже включают недавнюю тенденцию превращения пространства в персональный домашний кинотеатр. Некоторые домовладельцы используют это пространство для создания безопасных комнат, раздевалок для открытого бассейна, тиров и даже баскетбольной площадки. Гибкость использования позволяет домовладельцам максимально увеличить полезную площадь дома.

После того, как пустотные плиты будут размещены, стыки досок необходимо заполнить цементной смесью. Готовая поверхность пола обычно требует толщины не менее 2 дюймов и рассчитана на покрытие в среднем 4 дюйма, что позволяет полу иметь уклон для дренажа.

Пустотные плиты перекрытия могут обеспечивать внутренние пространства без колонн, хотя есть некоторые ограничения по пролету, которые следует учитывать в зависимости от размера. 8-дюймовые пустотные плиты могут перекрывать до 28 футов при типичной нагрузке на пол гаража, а 12-дюймовые пустотные плиты могут перекрывать до 40 футов.Строители жилья должны свериться с местными строительными нормами и правилами относительно инженерных требований для их конкретной области. Не только для нового строительства, решение для создания пространства доступно в качестве опции для реконструкции или дополнения, если существующие фундаменты сначала проверяются инженером, чтобы убедиться, что они могут выдержать дополнительную нагрузку.

Домовладельцы могут создать дополнительные квадратные метры для своего дома, не увеличивая площадь здания, и могут использовать то, что было бы потрачено впустую.Это решение может даже сэкономить деньги домовладельца в определенных ситуациях, устраняя необходимость в обратной засыпке. С помощью простых инструкций, предоставленных производителем, любой застройщик может предложить пустотные плиты в качестве решения для своих клиентов. Обычно установка занимает менее одного дня. Установка пустотных плит не должна добавлять дополнительное время в график строительства, если необходимое планирование осуществляется за 4-6 недель до желаемой даты поставки пустотных плит.

Прочность на сдвиг толстых сборных железобетонных многопустотных плит, изготовленных методом экструзии | Международный журнал бетонных конструкций и материалов

Образцы и испытательная установка

В этом исследовании испытания на сдвиг были проведены на 10 образцах для испытаний PHCS, толщина которых составляла 200, 265, 400 и 500 мм. Все образцы PHCS, испытанные в этом исследовании, были изготовлены методом экструзии на сборном железобетонном слое длинной линии. В таблице 1 показано соотношение компонентов бетона, использованного в данном исследовании.Водоцементное соотношение (в / ц) составляло 36,2%, осадка бетона была почти нулевой, а максимальный размер заполнителя составлял 13,0 мм. Расчетная прочность бетона составила 40,0 МПа, а прочность бетона на сжатие (\ (f_ {c} ‘\)) была измерена при 60,5 МПа. В этом исследовании использовались семипроводные арматуры с низкой релаксацией диаметром 9,5 или 12,7 мм, а их предел прочности на разрыв (\ (f_ {pu} \)) составлял приблизительно 1860 МПа.

Таблица 1 Конструкция бетонной смеси, используемой для испытаний образцов.

На рис. 4 показаны размеры образцов для испытаний.Серии S2 и S2.65 имели глубину 200 мм и 265 мм соответственно, и в зоне сжатия полого профиля были предусмотрены два натяжных стержня диаметром 9,5 мм, а в зоне сжатия — четыре стержня предварительного напряжения диаметром 12,7 мм. помещается в зону растяжения. Серия S4 имела толщину 400 мм, и в зоне сжатия и зоны растяжения были предусмотрены два 9,5 мм и восемь 12,7 мм натяжных стержней соответственно. Серия S5 имела глубину 500 мм, а две 9,5 мм и десять 12.Предварительно напряженные стержни диаметром 7 мм были помещены в зону сжатия и зону растяжения соответственно. Верхнее и нижнее сухожилия были предварительно натянуты одновременно, а величина эффективного предварительного напряжения (\ (\, f_ {se} \)) была примерно \ (0,65f_ {pu} \). Как показано в таблице 2, величины сжимающих напряжений в центре тяжести бетонного сечения (\ (f_ {pc} \)) находились в диапазоне от 4,0 до 5,0 МПа. Соотношение площадей между полыми ядрами и бетонным сечением без пустотелых элементов составляло 49 и 52% в S2 и S2.65 серий соответственно, а серии S4 и S5 — 54 и 55% соответственно. Серии S2 и S2.65 делятся на образцы E и F. Как показано на рис. 5а, образцы S2-E и S2.65-E были испытаны в концевых областях в пределах длины передачи, где эффективное предварительное напряжение не было полностью развито. Как показано на рис. 5b, образцы S2-F и S2.65-F поддерживались на 80-кратном диаметре (\ (\, d_ {b} \)) предварительно напряженного сухожилия с одного конца элементов, где Предполагалось, что эффективное предварительное напряжение будет полностью развито.Отношение глубины пролета сдвига (\ (a / d \)) серии S2 и S2.65 было 3,0, и одна точка нагрузки была приложена к верхней части образцов. Серии S4 и S5 также были испытаны в пределах переносимой длины с отношением размаха сдвига ( a / d ) 2,8, как это было сделано в образцах S2-E и S2.65-E, как показано на рис. 5a.

Рис. 4

Размеры образцов для испытаний. a серия S2, b S2.65 серия, c S4 серия, d S5 серия (единицы измерения: мм).

Таблица 2 Материал и размерные свойства образцов для испытаний. Рис. 5

Испытательная установка. a Speicmens S2-E, S2.65-E, S4 и S5, b Speicmens S2-F и S2.65-F (единицы измерения: мм).

Во время испытаний были измерены вертикальные прогибы в точке нагружения, как показано на рис. 5, но тензодатчики не были установлены в предварительно напряженных стержнях, потому что все образцы были изготовлены методом экструзии на заводе по производству сборного железобетона, имеющего плотное производство. расписание.

Результаты экспериментов

Все образцы PHCS, испытанные в этом исследовании, не выдержали сдвига, как показано на рис. 6 и 7, имея критические диагональные трещины от растяжения, образовавшиеся в бетонной стенке между точкой нагрузки и точкой опоры. На рисунке 8 показано поведение нагрузки-прогиб образцов серии S2. Как показано на рис. 8а, образцы S2-E и S2-F толщиной 200 мм имели почти одинаковую жесткость вплоть до диагонального растрескивания, а силы сопротивления сдвигу были уменьшены сразу после диагонального растрескивания.Образец S2-F, испытанный в области, где было полностью развито эффективное предварительное напряжение (\ (f_ {se} \)), показал примерно в два раза более высокую сдвигающую способность, чем образец S2-E, испытанный в пределах длины переноса. В образце S2-F около 10% максимальной нагрузки уменьшилось сразу после возникновения трещин сдвига, а в образце S2-E около 25% максимальной нагрузки было уменьшено сразу после растрескивания сдвига.

Рис. 6

Виды разрушения и характер трещин на образцах серий S2 и S2.65. a Образец S2-E, b образец S2-F, c образец S2.65-E, d образец S2.65-F.

Рис. 7

Виды разрушения и характер трещин на образцах серий S4 и S5. a Образец S4-1, b образец S4-2, c образец S4-3, d образец S5-1, e образец S5-2, f образец S5-3.

Рис. 8

Отклонения от нагрузки и перемещения образцов серий S2 и S2.65. а Образцы серии S2, b образцы серии S2.65.

На рис. 8b показано сравнение поведения прогиба и нагрузки между образцами S2.65-E и S2.65-F толщиной 265 мм. Образец S2.65-F с полным эффективным предварительным напряжением (\ (\, f_ {se} \)), который был испытан на внешней стороне переходной длины, показал немного более высокую жесткость по сравнению с образцом S2.65-E, и его способность к сдвигу была также примерно в 1,8 раза выше, чем у образца S2.65-E. Кроме того, S2.Образец 65-F показал более стабильные постпиковые ответы по сравнению с образцом S2.65-E.

Все образцы серии S4, т. Е. Образцы S4-1, S4-2 и S4-3, показали совершенно линейный отклик от нагрузки-прогиба до тех пор, пока не возникли трещины сдвига в стенке, как показано на рис. 9a, и они были не выдержал сдвига при 279,2, 261,3 и 294,0 кН, соответственно, из-за значительных трещин диагонального растяжения, образовавшихся в бетонной стенке с громкими шумами. Среднее значение сдвиговой способности трех испытательных образцов (\ (\, V_ {n, ave} \)) было 278.1 кН с отклонением менее 10%, а их средняя прочность на сдвиг (\ (\, v_ {n} = V_ {n, ave} / b_ {w} d_ {p} \)) составляла 2,80 МПа. В отличие от образцов серий S2 и S2.65, образцы серии S4 показали гораздо более хрупкие режимы разрушения сразу после достижения максимальных нагрузок без какой-либо постпиковой реакции. Их способность к сдвигу была значительно больше, чем способность полотна к сдвигу, оцененная по модели кода ACI318-05, однако это означает, что снижение прочности на сдвиг из-за размерного эффекта не наблюдалось для этих образцов с глубиной 400 мм.Как показано на рис. 9b, образцы серии S5, то есть образцы S5-1, S5-2 и S5-3, также продемонстрировали почти линейную реакцию на прогиб от нагрузки до диагонального растрескивания, которые были очень похожи на образцы S4. серийные экземпляры. Образцы серии S5 также показали хрупкое разрушение стенки при сдвиге при 427,2, 454,4 и 369,8 кН соответственно. Средняя нагрузка на сдвиг составила 417,1 кН, что почти идентично оценке по уравнению сдвига ACI318-05. Средняя прочность на сдвиг образцов (\ (\, v_ {n} \)) составляла 3.06 МПа, что примерно на 10% выше, чем у образцов серии S4. Таким образом, снижение прочности на сдвиг из-за размерного эффекта не наблюдалось в образцах серии S5, а также в образце S4.

Рис. 9

Реакции на смещение образцов серий S4 и S5. a Образцы серии S4, b образцы серии S5.

(PDF) Численный анализ железобетонных пустотных плит

ТОМ.11, № 15, АВГУСТ 2016 ISSN 1819-6608

ARPN Журнал инженерных и прикладных наук

© Азиатская исследовательская издательская сеть (ARPN), 2006-2016. Все права защищены.

www.arpnjournals.com

9285

ОБЗОР ЛИТЕРАТУРЫ

Helén Broo, Karin Lundgren (2002), [2]

Представленный метод расчета сдвига и скручивания в

пустотных плитах

добавляет

напряжений. без учета деформаций и совместимости, размягчение трещин в бетоне

или ограничение на границах

и поэтому, скорее всего, является консервативным.

Анализ методом конечных элементов был проведен для отдельных блоков

с полым сердечником, подвергшихся различным комбинациям сдвига и кручения

. Предварительно напряженные пустотные блоки двух

толщины, 200 мм и 400 мм, были испытаны как с

, так и без эксцентрической нагрузки. Анализ был выполнен

с различным уровнем детализации с использованием программы конечных элементов

DIANA 7.2. Плита была смоделирована с балкой

элементов, а бетон был смоделирован с использованием нелинейной механики разрушения

в модели размытой вращающейся трещины

P.C.J. Hoogenboom (2005), [3] представил процедуру

для анализа методом конечных элементов многопустотных перекрытий

, который может потребоваться в случае открытия большого перекрытия

. Эта процедура была запланирована для разработки компьютерной программы

для этого анализа в качестве инструмента проектирования.

Приведены формулы для гомогенизации свойств пола

. Обсуждается конечно-элементное моделирование.

Формулы для расчета восстановления напряжений представлены

моментами сечения и усилиями сечения в критических точках

перекрытия.Эти напряжения сравниваются с прочностью материала

в критических местах пола. Был сделан вывод

, что большие проемы в перекрытиях из пустотных плит могут быть

возможны без дополнительных балок или колонн.

Чанг и др. (2008), [4] представили простой вычислительный метод

, который будет использоваться при проектировании и моделировании

структурного поведения пустотных бетонных плит при пожарах

.Предложенная модель состояла из системы ростверка

с использованием балочных элементов для учета теплового расширения в

в обоих направлениях и для моделирования вертикального растрескивания во фланцах

, с бетонным покрытием, смоделированным с использованием элементов оболочки

. Новая модель может хорошо прогнозировать огнестойкость

пустотных плит при условии отсутствия сдвига

разрушения или значительных сдвиговых смещений

Азил Сабах Махди (2011) [5] провел

нелинейный анализ железобетонные пустотные плиты

методом конечных элементов с использованием пластинчатых изгибаемых элементов и

балочных элементов

для моделирования конструкции.Основная идея

заключалась в том, чтобы разделить пустотную плиту на два основных компонента

. Полые пластины, представляющие собой верхнюю полку

и нижнюю полку

, и балки жесткости, представляющие собой вертикальные стенки

между пустотами. Компьютерная программа

будет модифицирована для анализа различных армированных и напряженных бетонных пустотных плит до

, а решения конечных элементов

были сопоставлены с имеющимися экспериментальными результатами

, чтобы продемонстрировать потенциал вычислительной нелинейной модели

.

Лара Каваи и др., (2014) [6] выполнили

теоретических и численных исследований вызванных человеком колебаний

в пустотных плитах. Первоначально был представлен обзор динамических нагрузок

, вызванных людьми при такой деятельности, как ходьба

, а также критерии приемлемости для комфорта человека

. Затем было проведено параметрическое исследование вибрационной чувствительности

типичных структурных конфигураций пустотных сердечников

плит с сердечником посредством численного моделирования

с использованием метода конечных элементов.

Различные методы, которые были специально разработаны для анализа ячеистых или пустотных плит

,

вместе с существующими общими методами, которые также могут быть использованы для анализа этих элементов

[7]:

a) Ортотропный Теория пластин

b) Метод многослойных пластин

c) Метод рамы и ростверка

d) Метод складчатых пластин

e) Метод дискретных балок

f) Метод конечных элементов (FEM)

ЧИСЛЕННЫЙ АНАЛИЗ ПЛИТ

Метод конечных элементов — это числовая процедура

, которая может применяться для получения решений

разнообразных инженерных задач, в которых любая конструкция может быть заменена

конечным числом элементов, соединенных между собой

в конечном числе узловых точек.

ANSYS (ANalysis SYStem) — это комплексная универсальная компьютерная программа для конечных элементов

, которая содержит более 100 000 строк кода и более 180

различных элементов. Он способен выполнять статический,

динамический анализ, анализ теплопередачи, потока жидкости и электромагнетизма

. Его можно использовать во многих областях техники,

, включая конструкции, аэрокосмическую, электронику и ядерные

проблемы [8].

Нелинейный анализ методом конечных элементов был проведен

для анализа сплошных и пустотных плит с

исследования некоторых параметров. Анализ проводился с помощью

с использованием компьютерной программы ANSYS release (15.0) с помощью подпрограммы

ANSYS Parametric Design Language

(APDL) для задач структурного анализа.

Типичный анализ ANSYS состоит из четырех основных этапов:

a) Определение свойств используемого материала и

элементов.

б) Настройте модель.

c) Применение нагрузок и граничных условий до

решения.

г) Просмотр результатов.

Детали плит

Все плиты имеют длину (2050 мм), ширину (600 мм)

и толщину (250 мм). Длина пролета составляет

(1750 мм) и опирается на простые опоры на концах.

Фактические размеры с геометрией плиты и детали нагружения

представлены на рисунках 2–4.

Создание параметрических и фиксированных профилей (для пустотных плит)

Общие

Общая проблема моделирования пустотных плит заключается в том, что они легко создаются со слишком высокой точностью, что приводит к ненужной утечке памяти. Слишком высокая точность обычно не вызывала бы проблем, если бы в модели было всего несколько пустотных плит, но, поскольку это обычно не так, способ создания пустотных плит имеет большое значение.

Поскольку сами полые сердечники имеют более или менее круглую структуру, слишком много внимания уделяется точному изображению круглой структуры, из-за чего они напрасно тратят ресурсы.Такой способ моделирования приводит к чрезмерному количеству точек для одного пустотного сердечника, и умножение этого количества на количество пустотелых стержней в одной плите — умноженное на количество плит в модели — создает астрономическое количество точек, определяющих форму, большинство из которых не нужны.

В этом руководстве показаны два способа создания пустотных плит с низкими эксплуатационными характеристиками: один, с помощью которого можно создать параметрический профиль , а также другой, с помощью которого можно создать фиксированный профиль .

Параметрические профили — это профили, которые можно изменить, просто изменив их размерные значения, тогда как фиксированные профили имеют фиксированные размеры, которые нельзя (легко) изменить.


Оба продемонстрированных метода используют специально созданное поперечное сечение вместе с четырехточечным снятием фаски для полых сердечников. Каждая полая сердцевина имеет не более четырех точек, определяющих их форму; акцент делается на качестве баллов, а не на количестве.

1. Параметрический профиль

2.Фиксированный профиль

1. Параметрический профиль

Параметрические профили имеют регулируемые размеры, которые можно изменять.

Существует два способа создания параметрических профилей: как файл .clb или с помощью редактора эскизов . В этой статье используется Sketch Editor. Обратите внимание, что, начиная с Tekla Structures 2019i, Sketch Editor предоставляется как отдельная загрузка в Tekla Warehouse (ссылка). Чтобы следовать этим инструкциям, необходимо установить инструмент.

Инструкции по созданию параметрических профилей с помощью.Файлы clb можно найти здесь: Создание параметрических профилей с использованием файлов .clb.

1.1 Создание параметрического профиля

Чтобы начать создание параметрического настраиваемого поперечного сечения, откройте редактор эскиза из Моделирование> Профили> Определить поперечное сечение в редакторе эскизов

Редактор эскиза открывается вместе с обозревателем эскизов и Окно переменных .

Рисунок 1.1 Редактор эскиза

Построение поперечного сечения

1.Щелкните значок полилинии эскиза.

2. Нарисуйте образец пустотной плиты в некоторой степени по линиям, показанным на рисунке 1.2, и закончите рисование, щелкнув средней кнопкой мыши. Аналогичным образом набросаны все внутренние квадраты.

Желтые кружки представляют точки фаски в редакторе эскизов. Это поможет нам позже определить круглые полые сердечники внутри плиты.

Рис. 1.2 Эскиз поперечного сечения полого сердечника

Поперечное сечение еще не обязательно должно быть точным.Здесь будет более чем достаточно общей схемы.


1. Щелкните значок Добавить ограничение совпадения.

2. Укажите концы линий один за другим, чтобы соединить их и создать точки фаски.

Рисунок 1.3 Ограничение совпадения

3. Добавьте также ограничения совпадения во внутренние прямоугольники.

Форсировать горизонтальные и вертикальные линии

Теперь мы заставим особые линии следовать более разумному, ортогональному представлению.

1.Щелкните значок Добавить ограничение по горизонтали.

2. Щелкните все линии, которые вы хотите сделать горизонтальными, сделав их горизонтальными.

3. Щелкните значок Добавить вертикальное ограничение.

4. Щелкните все линии, которые должны быть вертикальными.

Конечный результат должен выглядеть примерно так, как в примере, показанном ниже на рисунке 1.4.

Рисунок 1.4 Добавлены горизонтальные и вертикальные ограничения

Эскизы внутри эскизных профилей создают отверстия.В пользовательском профиле можно создать отверстия любого количества и формы с помощью редактора эскизов .
Примечание: максимальное количество точек, которое может быть создано, составляет 99.

Добавление ограничений вертикального размера

Теперь мы определим параметры размеров для поперечного сечения. Размеры могут быть определяемыми пользователем, привязанными к определяемым пользователем параметрам или заданными размерами, которые нельзя изменить.

1. Щелкните значок вертикального расстояния эскиза .

2.Выберите две точки (показаны красным) и укажите положение размерной линии. Добавляется измерение, и в окно переменных добавляется изменяемая переменная.


Рисунок 1.5 Добавление размеров

3. Добавьте размеры для вертикального расстояния между полыми сердечниками, как показано на рисунке 1.6. ПРИМЕЧАНИЕ ! Свяжите все этих размеров с той же точкой фаски , в данном случае с верхним левым углом плиты и каждым отверстием!


Рисунок 1.6 Вертикальные точки измерения

4.Измените формулу параметров h4-h7 на = h3 в окне Переменные . Это позволит выровнять полые сердечники по вертикали и создать однородную вертикальную толщину бетона.


Рис. 1.7 Добавленная стоимость

5. Добавьте вертикальные размеры полым сердечникам, чтобы определить их высоту.


Рисунок 1.8 Высота полого сердечника

6. Установите формулу параметров h9-h23 на = h8 , чтобы полые сердечники имели одинаковую высоту.


Рис. 1.9 Единица высоты

Будьте осторожны, чтобы не добавлять слишком много размеров к профилю, иначе ограничения будут работать друг против друга.

Добавление ограничений горизонтального размера

Теперь, когда вертикальные ограничения добавлены, мы продолжим добавлять горизонтальные ограничения.

1. Щелкните значок горизонтального расстояния эскиза.

2. Добавьте размер по ширине.


Рисунок 1.10 Ширина

3.Добавьте размеры, чтобы определить расстояние между полыми сердечниками, как показано на рисунке 1.11.


Рисунок 1.11 Расстояние между полыми сердечниками

4. Установите формулу параметров b2-b7 на = h3 в окне Переменные . Толщина бетона теперь будет соответствовать значению h3 и позже будет равномерной со всех сторон, а также между полыми ядрами.


Рисунок 2.12 Добавленная стоимость

5. Добавьте размеры, чтобы определить ширину полого сердечника.


Рисунок 1.13 Ширина полого сердечника

6. Измените формулу параметров b8 на b13 на = h8 . Это масштабирует ширину полых сердечников в соответствии с параметром h8 , делая их идеально квадратными.


Рис. 1.14 Параметризация ширины полого сердечника

При создании круглых полых сердечников с использованием фаски важно, чтобы полые сердечники без фаски были идеально квадратными — в противном случае фаска не приведет к созданию идеальных кругов.

Создание определяемых пользователем и связанных параметров

Теперь, когда для пустотной плиты определены параметры размеров, мы можем начать изменять их, чтобы использовать более приемлемые размеры.

Мы хотим изменить плиту, чтобы она имела высоту 200 мм, ширину 1100 мм и стандартную толщину 20 мм, что означает, что диаметр сердечника будет 160 мм. Мы также хотим иметь возможность позже изменять ширину и толщину, чтобы высота и диаметр пустотелого ядра соответствовали требованиям и сохраняли однородность плиты.


Рисунок 1.15 Пример результата

1. Установите для F ormula o f b1 значение 1100 и установите его Visibility to Show . Это позволяет нам позже вручную изменить значение ширины. (см. рисунок 1.10)

2. Установите для Formula of h3 значение 20 и установите для его Visibility to Show . Введите Толщина бетона в поле Label диалогового окна .


Рисунок 1.16 Маркировка толщины

3. h8 определяет длину сторон прямоугольников с полым сердечником. Измените формулу h8 на = (b1-7 * h3) / 6 . Это длина одной стороны полого сердечника по отношению к ширине всей плиты. Все полые сердечники изменят свою высоту и ширину соответственно.


Рисунок 1.17 Переменные h8, h3 и b1

Обратите внимание, что (b1-7 * h3) / 6 = 160 мм, наш предпочтительный диаметр полого сердечника.

Значения измерений, относящиеся к другим измерениям, не всегда могут обновляться автоматически.В этом случае переписав формулу для измерения или щелкнув ячейку, где записана формула, вы решите проблему.


4. Измените формулу h2 на = h8 + 2 * h3 . Высота плиты теперь будет рассчитана в соответствии с заданной толщиной бетона и диаметрами пустотного стержня.

Конечный результат должен быть похож на рисунок 1.18.



Рис. 1.18 Нанесение размеров конечных результатов

Снятие фаски

Снятие фаски с прямоугольных стержней в редакторе эскизов — один из наиболее эффективных способов создания круглых стержней в пустотных плитах.Поскольку круглое ядро ​​определяется не более чем четырьмя точками — четырьмя точками прямоугольника — ядро ​​не требует почти такой же вычислительной мощности, как другие методы, требующие еще нескольких точек.

1. Дважды щелкните на угловой точке фаски сердечника. Откроется окно Свойства фаски .


Рисунок 1.19 Свойства фаски

2. Измените свойства на те, которые показаны на рисунке 1.19, и нажмите Изменить .

3. Измените остальные угловые точки сердечника.


Значение фаски должно составлять половину длины одной стороны квадрата, чтобы получился идеальный круг. Высота и ширина также должны быть одинаковыми, чтобы правильно определить диаметр круга.


Рисунок 1.20 Конечный результат снятия фаски

В настоящее время фаски не привязаны к какому-либо размеру: даже если пустотелые стержни сами будут реагировать на любые изменения размеров плиты, размер фаски останется прежним.Поэтому фаски должны быть связаны таким же образом, как и размеры, чтобы иметь возможность изменять свои размеры и оставаться в виде идеальных окружностей.

1. Откройте Component Objects через браузер эскизов .


Рис. 1.21. Обозреватель эскизов

2. Выберите основное ограничение Фаска в обозревателе эскизов , как показано на рис. 1.22. Обратите внимание, что выбранное ограничение фаски выделяется в редакторе эскизов , что упрощает поиск правильного.


Рисунок 1.22 Местоположение ограничения фаски

3. Щелкните правой кнопкой мыши параметр Фаска X и выберите Добавить уравнение .

4. Добавьте уравнение = h8 / 2 , так как это равно половине диаметра сердечника. Размер фаски теперь будет меняться в соответствии с изменениями диаметра сердечника и оставаться в виде идеального круга.


Рисунок 1.23 Параметрирование фаски по оси X

5. Выполните шаги 2–4, чтобы соответствующим образом связать значения х фаски всех других точек фаски сердечника.

6. Щелкните значок Сохранить эскиз , чтобы назвать и сохранить профиль.

7. Щелкните значок Закрыть эскиз , чтобы закрыть редактор эскиза.

1.2 Использование параметрического профиля

Проверка существования пользовательского профиля

Эскизный профиль автоматически добавляется в основной каталог профилей после того, как он был создан или импортирован в модель. Чтобы проверить доступ и существование эскиза профиля, перейдите в Моделирование> Профили> Каталог профилей.

Пользовательские профили включены в раздел Другие Каталога профилей.


Рисунок 1.24 Каталог профилей

1.3 Использование профиля в модели

Пользовательский профиль пустотной плиты фактически не может быть нарисован с помощью функции бетонной плиты , поскольку невозможно определить конкретную форму профиля для плиты. только определенной толщины.

1. Дважды щелкните значок Создать бетонную балку .

2. Нажмите кнопку Select… рядом с полем Shape , чтобы открыть каталог профилей .


Рисунок 1.25. Выбор пользовательского профиля

3. Выберите свой собственный профиль в поле O thers s ection.

4. Измените Ширина и Толщина бетона , если необходимо.


Рисунок 1.26 Размеры пользовательского компонента

Обратите внимание, что это те же поля, для которых Видимость была установлена ​​на Показать в редакторе эскиза. Описания, добавленные в редакторе эскизов, также видны, как и текущие измерения для определяемых пользователем параметров.

5. После внесения всех необходимых изменений нажмите Применить и ОК .


Рис. 1.27. Применить.

6. В окне «Свойства бетонной балки» нажмите «Применить». При рисовании балки теперь создается пустотная плита в соответствии с вашим индивидуальным поперечным сечением.

1.4 Экспорт и импорт параметрических профилей

Может возникнуть необходимость использовать настраиваемый профиль в нескольких разных проектах, или вы можете захотеть поделиться своим настраиваемым профилем с другой стороной.Можно экспортировать пользовательские профили из одной модели или среды в другую.

В отличие от пользовательских профилей, созданных другими методами, эскизные профили нельзя удобно экспортировать и импортировать через P rofile Catalog . Вместо этого они экспортируются и импортируются через каталог компонентов .

Экспорт эскизного профиля

1. Откройте каталог компонентов с по Детализация> Компонент> Каталог компонентов…, , нажав Ctrl + F или щелкнув значок на панели инструментов.

2. В раскрывающемся списке профиля выберите Sketched Profiles , чтобы найти недавно созданный профиль HCS.

3. Щелкните правой кнопкой мыши на эскизе профиля и выберите Экспорт.


Рисунок 1.29 Экспорт эскизного профиля

4. Выберите расположение файла для экспорта и назовите файл экспорта.

5. Щелкните ОК .

Импорт эскиза профиля в другую модель или среду

1. Откройте другую модель / среду.

2. Откройте каталог компонентов .

3. Щелкните правой кнопкой мыши в любом месте фона каталога компонентов и выберите Импорт….

4. В компоненте Import C w indow найдите местоположение файла экспортированного профиля.

5. Выберите профиль и нажмите ОК .

Нарисованный профиль теперь можно найти с помощью фильтра Нарисованные профили в Каталоге компонентов.

2.Фиксированный профиль

2.1 Создание фиксированного профиля

Создание фиксированного пользовательского профиля — это несколько иной рабочий процесс по сравнению с созданием параметрического пользовательского профиля.

Фиксированные поперечные сечения можно задать либо с помощью многоугольника , либо с помощью контурной пластины . Для удобства работы мы будем создавать профиль пустотной плиты фиксированного размера с контурной пластиной .

Снятие фаски с квадратных пустотных стержней на круглые является одним из наименее требовательных методов создания пустотных плит с точки зрения производительности системы.Таким образом, мы сначала создадим фиксированный профиль с квадратными полыми сердечниками, которые позже мы изменим и сделаем фаски круглыми сердечниками.

Создание необходимых линий построения

Создание подходящей пустотной плиты с использованием контурной пластины требует точных размеров. Для единообразия мы создадим профиль пустотной плиты с теми же размерами, что и параметрический профиль: профиль будет иметь высоту 200 мм , ширину 1100 мм и стандартную толщину 20 мм. мм, с шестью полыми сердечниками, каждая с диаметром и шириной 160 мм .Без фаски контурная пластина в конечном итоге будет выглядеть так, как показано ниже.
Рисунок 2.1 Пример профиля контурной пластины

1. Сначала нажмите Ctrl + P . Работа в 2D-виде значительно снижает вероятность неправильной привязки.

2. Щелкните Моделирование> Добавить вспомогательную линию или щелкните значок вспомогательной линии на панели инструментов.

3. Создайте вспомогательные линии, как показано на рисунке 2.2, в соответствии с указанными выше размерами.


Рис. 2.2 Вспомогательные линии со справочными размерами

Создание контурной пластины

Нам нужно создать одну большую контурную пластину вдоль внешних вспомогательных линий. Эта контурная пластина служит фактическим шаблоном профиля. После того, как контурная пластина будет создана, мы будем использовать внутренние вспомогательные линии, чтобы облегчить вырезание полых стержней.

1. Сначала щелкните значок Создать контурную пластину .

2. Начиная с левого верхнего угла, создайте контурную пластину, указав угловые точки в указанном порядке.


Рисунок 2.3 Порядок угловых точек

Вырезание полых полигонов сердцевины

Полые сердечники вырезаются с помощью команды Вырезать деталь с помощью команды многоугольника . Это позволяет использовать простые квадратные полые сердечники фиксированного размера, которые позже мы можем снять фаску на круглые полые сердечники, что требует минимальных системных ресурсов.

Важно помнить, что, как и при создании параметризованных профилей, максимальное количество точек, которые можно использовать для создания профиля с фиксированным размером, составляет 99.


1. Щелкните значок Вырезать деталь с многоугольником .

2. Вырежьте полые сердечники, используя внутренние вспомогательные линии, следя за углами многоугольника в порядке, показанном на рисунке 2.4.

Размер пустотелых стержней 160 мм на 160 мм.


Рисунок 2.4 Порядок подбора углов срезаемых многоугольников.

Сохранение порядка, в котором контурная пластина и углы среза многоугольника постоянны, очень полезно позже, когда будут созданы необходимые угловые фаски.


3. Выполняя резку, убедитесь, что стержни вырезаны равномерно, чтобы упростить внесение изменений в правильные угловые точки.
Рисунок 2.5 Вырезание полых стержней

Теперь контурная пластина должна выглядеть так, как показано ранее.


Рис. 2.6 Готовая контурная пластина

Превращение контурной пластины в фиксированный профиль

Теперь, когда контурная пластина готова, мы можем легко превратить ее в поперечное сечение профиля.

1. Перейдите в Моделирование> Профили и нажмите Определить сечения с помощью пластин …

2. Перейдите на вкладку Параметры и введите Имя раздела и Имя профиля . Задайте остальные пустые поля в соответствии с рисунком, показанным ниже, и в системе координат от до Используйте глобальную плоскость xy .


Рисунок 2.7 Параметры

3. Щелкните A pply.

4. Выберите контурную пластину.Появится пример балки, использующей только что созданный профиль. Что еще более важно, новый профиль теперь добавлен в каталог Profile в разделе Others как определяемый пользователем профиль с фиксированными измерениями.

Добавление фасок к профилю

Как и в случае с параметрическими профилями, созданными с помощью редактора эскизов , наиболее экономичный способ создания круглых полых сердечников в пустотных плитах — это сначала создать квадратные полые сердечники, после чего эти квадратные сердечники снимают фаски .Таким образом, для каждого полого круглого сердечника требуется не более четырех точек отсчета и, следовательно, очень мало вычислений от системы.

1. Перейдите в Modeling> Profiles> Edit Polygon Cross Section …

2. Выберите ваше поперечное сечение в списке доступных профилей в окне Modify Cross Section .


Рисунок 2.8 Изменить сечение

Обратите внимание на раскрывающийся список рядом с заголовком Число :. Цифры представляют собой порядок создания всех угловых точек в профиле.


Рисунок 2.9 Номера угловых точек

Основные числа (в данном случае 1, 2, 3 и 4) обозначают внешние углы профиля, тогда как большие числа (* 00 *) обозначают углы вырезов полого сердечника. Поскольку они пронумерованы в порядке создания, обычно важно поддерживать единообразие порядка создания на всем протяжении для личной ясности и простоты работы.

3. Выберите номер угла 1001 . Измените значение x : на 80 (так как это половина диаметра полого сердечника) и тип Chamfer: на показанный ниже.Нажмите Обновить .

Значение фаски должно составлять половину длины одной стороны квадрата, чтобы получился идеальный круг. Высота и ширина также должны быть одинаковыми, чтобы правильно определить диаметр окружности. Таким образом, поскольку высота и ширина равны 160 мм, значение фаски установлено на 80 мм


Рисунок 2.10 Снятие фаски на углах

4. Перебирая остальные четырехзначные числа, измените свойства всех углов полого сердечника в соответствии с рисунком 2.10.

5. После того, как вы пройдете все необходимые угловые точки, нажмите OK .

6. При появлении запроса нажмите OK, чтобы сохранить изменения в папке модели.

Пустотный профиль перекрытия готов и готов к использованию.

2.2 Использование фиксированного профиля в модели

Как и в случае с параметрическим профилем, фиксированный профиль пустотной плиты не может быть фактически нарисован с помощью опции Бетонная плита (поскольку плиты фактически не используют профили), а вместо этого должны быть созданы как бетонная балка.

7. Дважды щелкните значок Создать бетонную балку .

8. Нажмите кнопку Select… рядом с полем Shape , чтобы открыть каталог профилей .


Рисунок 2.11 Выбор настраиваемого профиля с фиксированным размером

9. Выберите свой настраиваемый профиль в разделе «Другие».


Рисунок 2.12 Каталог профилей

10. Нажмите Применить и ОК

11. В окне Свойства бетонной балки при необходимости измените тип материала Материал и нажмите Применить.При рисовании балки теперь создается пустотная плита в соответствии с вашим индивидуальным поперечным сечением.

На этом этапе вы можете заметить, что некоторые углы остались без фаски.

В этом случае просто вернитесь в Моделирование> Профили> Редактировать поперечное сечение многоугольника … и измените настройки снятия фаски для соответствующей угловой точки.

2.3 Экспорт и импорт фиксированных профилей

Как и параметрические профили, фиксированные профили можно экспортировать и импортировать в другие модели и среды.Экспорт отдельных настраиваемых профилей избавляет от необходимости создавать их снова и снова.

1. Откройте каталог профилей P от до Моделирование> Профили> Каталог профилей…

2. Щелкните правой кнопкой мыши свой настраиваемый профиль и выберите Экспорт профиля.


Рисунок 2.14 Профиль экспорта

3. Выберите расположение файла для экспорта и назовите профиль экспорта.

4. Щелкните ОК .

5. Профиль теперь находится в указанном месте файла в виде файла.lis-файл, который можно импортировать в другие модели / среды.

Импорт фиксированных профилей в другую модель или среду

1. Откройте другую модель / среду.

2. Откройте каталог профилей .

3. Нажмите кнопку Импорт… в нижнем левом углу.


Рисунок 2.15 Импорт…

4. В Каталоге профилей импорта w indow найдите местоположение файла экспортированного профиля, сохраненного как файл .lis.

5.Выберите профиль и нажмите ОК .

Фиксированный профиль теперь появится в той же ветви профиля, что и в исходной модели, и теперь его можно будет использовать.

Добавление или изменение бетонного сборного пустотелого перекрытия

Это диалоговое окно можно использовать для:

  1. определяет и добавляет в проект сборку «бетонный пол с пустотелым полом», или
  2. : изменение или просмотр сборки «бетонный сборный пол с пустотелым полом», добавленной в проект.
  3. определяет конверт для этой сборки.
Описание / Допущения / Ограничения Необходимые входы

Бетонная, сборная пустотная плита

  • Толщина сборки обычно составляет от 200 до 350 мм, а расчетный диапазон — от 9 до 17 м. 50 мм бетонного покрытия толщиной 25 МПа или 3000 фунтов на квадратный дюйм добавляется автоматически.
  • Прочность бетона обычно выше, чем у других систем бетонных плит перекрытия (45 МПа и выше), и обычно избегают более высоких уровней объемной летучей золы, поскольку эти конструкционные смеси имеют тенденцию замедлять отверждение и, следовательно, периодическую обработку пустотных плит перекрытия.
  • Число отсеков должно быть больше нуля.
  • Размер отсека должен быть больше нуля.
  • Расчетный диапазон пролета: 9,0–17,04 м для всех нагрузок.
  • Диапазон должен быть больше нуля для всех нагрузок. Если введенный пролет меньше минимального значения, для расчета потребности в материалах используется минимальный пролет 9,0 м. Потребности в материалах затем учитываются путем умножения количества требуемых материалов на введенный интервал, деленный на минимальный интервал.
  • Имя
  • Кол-во пролетов
  • Размер пролета (м)
  • Пролет (м)
  • Динамическая нагрузка (2,4, 3,6, 4,8 кПа)

Сейсмическое примечание:

Для этой сборки нет сейсмических поправок.

Описание полей:

Имя:
Введите имя для этой сборки. Все сборки в проекте должны иметь уникальные имена в каждой группе сборок.Имена могут быть буквенно-цифровыми (например, этаж 1).

Количество отсеков:
Введите общее количество отсеков в виде числа в сетке. (например, сетка, состоящая из 3 заливов в ширину и 3 заливов в длину, будет равняться в общей сложности 9 заливам).

Размер отсека:
Введите размер повторяющейся ячейки (основной пролет) в одном направлении в метрах или футах.

Диапазон:
Введите повторяющийся пролет в направлении, противоположном размеру отсека, в метрах или футах.

* См. Примечание по терминологии ниже относительно записей для пролета и размера ячейки.

Поле динамической нагрузки:
Щелкните переключатель, чтобы выбрать динамическую нагрузку, которую должна нести эта система сборки колонн и балок.
  • 2,4 кПа (50 фунтов на квадратный фут) представляет собой типичную нагрузку на крышу для типичных условий занятости офиса / жилого помещения (выше первого этажа)
  • 3,6 кПа (75 фунтов на кв. Дюйм) представляет собой типичную нагрузку в механическом / сервисном помещении
  • 4.8 кПа (100 фунтов на квадратный фут) будет свидетельствовать о более высоких нагрузках на пол, таких как места для сборки, балконы / антресоли, коридоры, вестибюли / выходы и складские помещения.

Единицы:
Здесь вы можете установить единицы измерения как «СИ» или «Имперские». Изменение единиц измерения по умолчанию здесь влияет только на текущую сборку, но не переопределяет единицы измерения по умолчанию или настройки единиц измерения для открытых проектов или любых других сборок в открытых проектах.

Площадь пола (м2 или кв. Фут) Примечание:
Для удобства пользователя в нижнем левом углу диалогового окна отображается общая площадь помещения, рассчитанная приложением (в соответствии с вводом пользователя).

Кнопка дублирования
Нажмите кнопку «Дублировать», чтобы создать точную копию текущей сборки. Дубликат сборки будет добавлен в текущий проект. Эта кнопка доступна только при редактировании или просмотре сборки, которая уже была сохранена в текущем проекте.

Кнопка удаления
Нажмите кнопку «Удалить», чтобы удалить текущую сборку из текущего проекта. Эта кнопка доступна только при редактировании или просмотре сборки, которая уже была сохранена в текущем проекте.

Кнопка справки:
Нажмите кнопку «Справка», чтобы открыть всплывающее окно справки.

Кнопка ОК
Нажмите кнопку «ОК», чтобы принять и сохранить текущие настройки сборки и закрыть это диалоговое окно.

Кнопка отмены
Нажмите кнопку «Отмена», чтобы отменить текущие настройки сборки и закрыть это диалоговое окно.

Терминология:

Иногда возникает путаница в отношении разной терминологии для разных структурных элементов. В этом программном обеспечении размер отсека определяется как длина балки, поддерживаемой двумя колоннами, а пролет — как расстояние между соседними параллельными балками (см. Рисунок ниже).

Размер и ширина пролета определяют площадь одного пролета.На рисунке ниже показаны два ряда отсеков, каждый из которых состоит из трех отсеков в длину. Общая площадь пола в приведенном ниже примере равна (Размер пролета x Пролет) x Количество отсеков (Размер пролета x Пролет x 6).

Преимущества и применение полых сердечников

A) Преимущества системы с полым сердечником:

Экономичная и эффективная система полов и кровли: Пустотные плиты перекрытия обеспечивают экономичную и эффективную систему пола и крыши по разным причинам;

  1. Плиты с пустотелым сердечником весят до 50% меньше, чем обычные монолитные плиты того же размера, что приводит к значительной экономии затрат на строительство.
  2. Контролируемая производственная линия производит продукцию точно в срок, что снижает загруженность объекта и снижает эксплуатационные расходы.
  3. Плита с полым сердечником
  4. обеспечивает эффективность предварительно напряженного элемента в отношении грузоподъемности, диапазона пролета и контроля прогиба.
  5. Нижняя поверхность Hollow Core гладкая, ее можно сразу красить и использовать в качестве готового потолка.
  6. После заливки пустотелые плиты можно использовать в качестве диафрагмы и передавать внутренние нагрузки.

Приспособляемость к опорным конструкциям: Пустотные плиты перекрытия могут поддерживаться практически на всех типах структурных систем, включая монолитные или сборные бетонные балки, несущие стены, стальные балки с широким или узким фланцем.

Экономит время: Практически исключаются трудоемкие операции на стройплощадке, такие как погрузка и разгрузка сырья, подпирание и опалубка мокрого бетона, что положительно сказывается на строительном проекте.

Тепло- и звукоизоляция: Пустотные плиты обладают низкими тепло- и звукоизоляционными свойствами, что позволяет сэкономить дополнительные усилия и затраты на изоляцию.

Огнестойкость: Пустотные плиты являются огнестойкими конструктивными элементами. Огневые испытания и исследования продемонстрировали высокие эксплуатационные характеристики пустотных плит.Двухчасовой рейтинг огнестойкости можно легко достичь без дополнительной добавки.

Гибкость конструкции (длинные пролеты и высокая грузоподъемность): Banu Mukhtar предлагает пустотные плиты, которые могут быть спроектированы так, чтобы соответствовать широкому спектру зданий и соответствовать большинству критериев проекта. Он предлагает многочисленные преимущества инженерам и архитекторам благодаря очень хорошему соотношению пролета / глубины, высокой прочности и быстрой скорости строительства.

Производство в условиях контролируемого качества: Пустотные плиты отливаются и выдерживаются в условиях контролируемого качества, что устраняет необходимость в хранении на месте.Это означает, что он исключительно устойчив к ударам, коррозии, атмосферным воздействиям и истиранию, что делает его практически необслуживаемым. Сборный железобетон предлагает все преимущества бетона, устраняя при этом многие трудности, связанные с заливкой на месте, такие как погодные условия и увеличенная продолжительность периода строительства.

Добавить комментарий

Ваш адрес email не будет опубликован.