Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Создание удивительных комбинаций материалов в дизайне мебели — один из самых влиятельных трендов последних десятилетий. Хилла Шемия (Hilla Shamia), промышленный дизайнер из Тель-Авива, Израиль, воплотила серию столов, скамеек и табуретов из невероятного сочетания дерева и алюминия.
Составные материалы соединены не стандартными болтами и гайками, дерево и металл буквально сплавлены друг с другом. Проект получил название «Деревянное литьё» (Wood casting). Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Брёвна, прошедшие только первичную обработку, заливаются раскалённым алюминием и оказываются вплавленными в каркас будущего предмета интерьера. При этом металл заполняет все имеющиеся трещины и пустоты глубоко в структуре дерева, создавая поразительное ощущение единства столь разнородных материалов. В местах соединения материалов дерево слегка обугливается. Кажущаяся случайность и неравномерность границ перехода от дерева к металлу только добавляет эффекта органичности эстетике смешения природного и искусственного. Старый и новый миры встречаются в своего роде тёплом ламповом промышленном дизайне. Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Естественно, каждое изделие, произведённое методом «деревянного литья», является абсолютно уникальным. Каждый лесоматериал имеет собственную структуру, разный характер трещин, появляющихся при просушке, которые впоследствии заполнит расплавленный металл. Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Впервые проект был представлен Хиллой Шемия на Неделе дизайна в Милане в 2012 году. На настоящий момент неизвестно, продолжает ли дизайнер производство литой мебели, во всяком случае на её сайте для заказа она не доступна, хотя имеется список из двух магазинов в Милане и Яффе, где можно приобрести продукцию Хиллы Шемия.
Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com Деревянное литьё (Wood casting). © Hilla Shamia. Источник фото: thisiscolossal.com
| Партнёры
ООО «Технология» проектирует объекты разной сложности. В портфолио компании присутствуют объекты электроэнергетики, гражданского, промышленного и агропромышленного назначения. Немалая часть трудовой деятельности отводилась инженерным изысканиям и лабораторным исследованиям.
«УралДомСтрой» занимается строительством и реализацией коммерческой и жилой недвижимости. Миссия компании — создавать комфортные, экологичные и безопасные дома в соответствии с установленными нормами и стандартами. 12 лет «УралДомСтрой» работает в Удмуртии, а также реализует крупные девелоперские проекты в Смоленске и Перми.
Проектирование жилых домов, торгово-развлекательных и многофункциональных комплексов, офисных зданий. Компания «Уралэнерго» «Уралэнерго» — один из крупнейших поставщиков электротехнической, кабельно-проводниковой и светотехнической продукции в Приволжском федеральном округе. На сегодняшний день «Уралэнерго» имеет развитую торговую сеть в различных регионах России.
Производитель и официальный партнёр крупнейших поставщиков строительных конструкций: Schuco, Funke Gruppe, AGC. Один из лидеров российского рынка по изготовлению и монтажу светопрозрачных противопожарных конструкций. ООО «АС-Проект» Одна из ведущих проектных компаний Удмуртии и Приволжского федерального округа. АС-Проект выполняет все виды проектных работ и предпроектный анализ участков под застройку.
Поставка, монтаж и сервисное обслуживание автоматических, секционных, откатных, сдвижных и раздвижных ворот в Удмуртии и соседних регионах. Имея собственное производство, компания «Мир Ворот» является официальным дилером компаний Hormann.
Проектирование и реконструкция жилых и общественных зданий и сооружений, интерьеров. Реализованные объекты расположены в Удмуртии, Татарстане, Пермском крае, Ямало-Ненецком АО, Казахстане, Чехии. Бюро основано в 1998 г. Директор — Александр Николаевич Зорин, член Правления Союза архитекторов России.
Производство любых изделий из натурального и искусственного камня. В том числе по эскизам заказчика. |
Конструкции легких самолетов: дерево, алюминий, сталь, композиты и свойства каждого…: khmelikvictor — LiveJournal
Авиационные конструкции в основном однонаправленные. Это означает, что одно измерение, длина, намного больше, чем другие — ширина или высота. Например, размах крыльев и хвостовых лонжеронов намного длиннее их ширины и глубины; нервюры имеют гораздо большую длину хорды, чем высоту и / или ширину; целое крыло имеет размах, превышающий его хорду или толщину; и фюзеляж намного длиннее, чем его ширина или высота. Даже пропеллер имеет диаметр, намного превышающий ширину и толщину лопасти и т. д. По этой простой причине разработчик выбирает использование однонаправленного материала при проектировании для эффективного соотношения прочности к весу конструкции.Однонаправленные материалы в основном состоят из тонких, относительно гибких, длинных волокон, которые очень прочны на растяжение (например: нить, веревка, многожильный стальной трос и т. д.)
Для конструкции самолета также характерна симметричность. Это означает, что нагрузки вверх и вниз почти равны друг другу (или, по крайней мере, соизмеримы). Нагрузка на хвостовое оперение может уменьшаться или увеличиваться в зависимости от того, поднимает ли пилот или опускает нос самолета, потянув или нажав ручку управления самолетом; руль направления может отклоняться вправо и влево (боковые нагрузки на фюзеляж). Порывы воздушного потока на крыло могут быть положительными или отрицательными, вызывая повышающие или понижающие нагрузки, которые испытывают пассажиры, когда их толкают в сиденье или они висят на ремнях.
Из-за этих факторов, разработчик должен использовать конструкционный материал, который может выдерживать как растяжение, так и сжатие. Однонаправленные волокна могут иметь превосходные параметры по растяжению, но из-за их малого поперечного сечения они имеют очень небольшую сопротивляемость сжатию. В качестве иллюстрации: вы не можете загрузить нить, веревку или цепь на сжатие.
Чтобы сделать тонкие волокна прочными на сжатие, их нужно «склеить» какой-то основой (матрицей). Таким образом, мы можем воспользоваться преимуществами их прочности на растяжение и избавляемся от их низкой прочности при сжатии, так как они становятся более устойчивыми к сжатию, помогая друг другу не сгибаться. Основа или матрица обычно представляет собой смолу, удерживающую волокна вместе и позволяющую им выдерживать требуемые нагрузки сжатия. Это очень хороший конструкционный материал.
Дерево
Исторически дерево использовалось в качестве первого однонаправленного конструкционного материала. Природа, в своей мудрости, дала прекрасный однонаправленный материал, заставляя определенные деревья расти в определенных условиях: они должны быть высокими и прямыми, а их древесина должна быть прочной и легкой. Поперечное сечение ствола дерева показывает годовые кольца, чтобы мы могли посчитать возраст дерева. Темные полосы (поздняя древесина) содержат много волокон, тогда как светлые полосы (ранняя древесина) содержат гораздо больше «смолы». Таким образом, чем шире темные полосы, тем сильнее и тяжелее древесина. Если темные полосы очень узкие, а светлые — довольно широкие, дерево светлое, но не очень прочное. Чтобы получить наиболее эффективное соотношение прочности и веса для дерева, нам нужно определенное количество полос на дюйм. Фактически, мы хотим получить хороший баланс «ранней» и «поздней» древесины, или, другими словами, очень особых условий выращивания, то есть географической высоты, где рост дерева зависит от широты и местных климатических условий. Хотя это очень интересная тема, мы не будем вдаваться в такие подробности, кроме как упомянуть, что именно природа снабжает нас очень эффективным материалом из своего растительного царства. Помните, что вопреки строго минеральному миру, безнадежно подверженному гравитации, растягивающей все вокруг, растение имеет в себе силу, которая заставляет его расти против силы тяжести вверх. Если бы мы могли использовать эти жизненные силы в наших машинах, мы могли бы подняться без помощи двигателя. Авиации еще многое предстоит открыть…
Еще одна тема, которую мы не будем касаться — это испытания древесины Есть несколько простых тестов (влажность, динамика, устойчивость), но кажется, что никто их больше не знает.
Некоторые из наших авиационных конструкций двумерные (длина и ширина большие по толщине). Для таких структур часто используется фанера. Несколько тонких листов шпона склеены между собой так, что волокна разных слоев пересекаются под разными углами: обычно под 90 градусов, также можно 30 и 45). Фанера весьма эффективно работает на сдвиг, если конструктор правильно ее использует.
Чтобы завершить эту дискуссию о древесине, давайте прямо заявим, что наша нынешняя цивилизация использует так много бумаги, что мы истощаем планету от деревьев, не пересаживая их правильно. Сегодня хорошую древесину для строительства самолетов очень трудно найти. Вместо того, чтобы использовать одну хорошую доску для лонжерона, мы должны использовать ламинирование, потому что большие куски дерева практически недоступны, и мы больше не можем доверять качеству древесины. Мы должны использовать много слоистых материалов, чтобы получить необходимую прочность без слишком большого перетяжеления. С точки зрения доступности нам просто нужна замена того, что природа снабжала нас до сих пор.
Алюминиевые сплавы
Итак, поскольку дерево может быть не таким доступным, как было раньше, мы смотрим на другой материал, который является прочным, легким и легко доступным по разумной цене: алюминиевые сплавы. Нет смысла обсуждать титан — он просто слишком дорогой. Мы обсудим свойства алюминиевых сплавов, которые используются в конструкции легких самолетов, более подробно позже. Пока мы будем рассматривать алюминий как конструкционный материал.
Экструдированные алюминиевые сплавы: благодаря процессу производства алюминия мы получаем однонаправленный материал, который в продольном направлении немного прочнее, чем в поперечном, при этом прочный и на сжатие. Если характеристики растяжения и сжатия практически одинаковы для алюминиевых сплавов, то дерево, с другой стороны, имеет предел прочности при растяжении, примерно вдвое превышающий его прочность на сжатие; соответственно, необходимо использовать специальные методы анализа напряжений, и для того, чтобы избежать концентрации напряжений, необходимо хорошее понимание работы древесины под нагрузкой!
Алюминиевые сплавы в тонких листах (0,016-0,125 дюйма или 0,4-3,1 мм) представляют собой превосходный двумерный материал, широко работающий на сдвиг, с подкрепляющими элементами и без, а также в качестве элементов растяжения-сжатия, когда они надлежащим образом согнуты.
Стоит помнить, что алюминий — это искусственный металл. Алюминий получают путем электролиза из боксита (оксид алюминия), который затем смешивают с различными добавками, повышающими прочность. В следующей статье мы увидим, какие добавки используются, и почему и как мы можем повысить прочность алюминия путем холодного упрочнения или закалки. Все обычно используемые алюминиевые сплавы, которые доступны на рынке. По запросу при покупке вы можете получить сертификат, который гарантирует химические и физические свойства в соответствии стандартами.
Как правило, алюминий в три раза тяжелее, но и в три раза прочнее дерева. Сталь снова в три раза тяжелее и прочнее алюминия.
Стали
Таким образом, следующим материалом для конструкции самолета будет сталь, которая имеет такую же удельную прочность, как дерево или алюминия.
Мы в основном используем хром-молибденовый сплав под названием 4130.
Распространенным полуфабрикатами являются трубы и листовой материал. Сталь из-за большого удельного веса не используется в качестве обшивки, так как алюминиевые листы или фанера. Если из прочностных соображений, там, где нам понадобится фанера толщиной 0,1 дюйма (2,5 мм), нам потребуется алюминиевый лист 0,032 дюйма (0,8 мм), стальной же лист в этой ситуации должен иметь толщину 0,01 дюйма (0,25 мм), который слишком тонок. Вот почему стальной фюзеляж использует трубы в качестве элементов ферменной конструкции для передачи сжатия или растяжения, и вся конструкция затем покрывается легкой тканью, чтобы придать ей необходимую аэродинамическую форму или желаемый вид. Следует отметить, что этот метод включает в себя два метода: обработка стали и покрытие ткани.
Преимущество стальной конструкции состоит в том, что ее можно легко сваривать. Это особенно относится к Северной Америке, где сварщик не должен быть аттестован, как некоторых других странах. Исторически эта разница в нормативных документах связана с «духом пионеров» и объясняет, почему сварные стальные фюзеляжи так распространены здесь и практически нигде больше.
Мы будем обсуждать трубы и сварные стальные конструкции более подробно позже, а теперь перейдем к «искусственной древесине» или композитным конструкциям.
Композиционные материалы
Разработчик композитного самолета просто использует волокна в нужном направлении именно там, где требуется. Волокна залиты смолой, чтобы удерживать их на месте и обеспечивать необходимую опору для предотвращения коробления. Вместо фанеры или листового металла, который допускает только одну кривизну, композитный конструктор использует ткань, где волокна уложены в двух направлениях, также встроенные в смолу. Это имеет преимущество свободы формы в двойной кривизне, как того требуют оптимальные аэродинамические формы и очень привлекательный внешний вид.
Современные волокна (стеклянные, нейлоновые, кевларовые, углеродные или монокристаллические волокна различного химического состава) очень прочные, поэтому конструкция становится очень легкой. Недостаток — очень маленькая жесткость низкая устойчивость. Конструкция нуждается в подкреплении, которое достигается либо обычными незаметными ребрами жесткости, либо более элегантно с многослойной структурой: два слоя тонких однонаправленных или двунаправленных волокон разделяются легким наполнителем (пенопластом или «сотами»). Это позволяет конструктору достичь необходимой жесткости.
С инженерной точки зрения этот метод очень привлекателен и поддерживается многими органами власти, поскольку он позволяет новые разработки, которые необходимы в случае войны. (США, не имеющие титана или хрома, нуждаются в разработке практических альтернатив.) Но этот метод также имеет свои недостатки для жилищного строительства: необходима форма, и необходим строгий контроль качества для правильного количества волокон и смолы и для хорошей адгезии. между обоими, чтобы предотвратить слишком «сухую» или «мокрую» структуру. Также отверждение смолы довольно чувствительно к температуре, влажности и давлению. Наконец, смолы являются активными химическими веществами, которые будут вызывать не только хорошо известные аллергии, но также химические вещества, которые воздействуют на наш организм (особенно глаза и легкие), и они обладают неблагоприятным свойством кумулятивного повреждения и в результате (в частности, ухудшения глаз) появляется только через несколько лет после первого контакта.
Другим недостатком смол является их ограниченный срок хранения, то есть, если смола не используется в течение указанного промежутка времени после изготовления, результаты могут быть неудовлетворительными и небезопасными.
Наконец, если формы не очень хорошо спроектированы, изготовлены и обслуживаются, внешняя часть конструкции нуждается в сложной и трудоемкой финальной отделке. Также следует проявлять большую осторожность, так как слишком много шлифования может привести к ослаблению силовой конструкции. Исторически сложилось, что композиты достигли своего пика несколько лет назад. Сегодня доказано, что только опытные специалисты могут создать надежную и совершенную конструкцию, при этом рисковать своим здоровьем.
Подведем итоги
• Природа предоставляет сырье, прекрасно подходящее для авиационных конструкций. К сожалению, мы эксплуатируем природу, и сегодня трудно найти запасы древесины и фанеры необходимых размеров и качества.
• Алюминиевые сплавы в экструдированной и ламинированной форме являются привлекательной альтернативой, особенно потому, что их легко поставлять с гарантированными свойствами.
• Стальные трубы по-прежнему очень популярны в Северной Америке, поскольку сварка, кажется, не создает никаких проблем, как это опасается в других частях мира. Трубчатая структура покрыта тканью.
• Композиты можно рассматривать как «искусственное дерево» со структурной точки зрения. Как и все искусственное, оно может быть лучше, чем натуральный продукт, но производитель должен учитывать в процессе производства мудрость, присущую природе, и / или качество, обеспечиваемое другими производителями сырья (алюминий, сталь). Это в дополнение к опасностям для нашего собственного здоровья (и здоровья нашей семьи при строительстве в гараже).
Оригинал статьи на английском языке.
Специальное спасибо переводчику Google, ведь с каждым днем он становится комфортым.
Ну и немного о себя
Так получилось, что период моего обучения на авиационного инженера пришелся на середину и конец восьмидесятых. Это было пиком развития отечественной авиационной промышленности. Дерево, великолепный конструкционный материал, особенно для легких самолетов, использовался исключительно при изготовлении макетов. Наиболее распространенными были алюминиевые сплавы: Д-16Т, В95, АК4-1 и тому подобные: легко обрабатываемые и со стабильными характеристиками. Сталь 30ХГСА применялась в высоконагруженных конструкциях и сварных узлах. Ее отличием и недостатком одновременно, по сравнению с хромолибденовой американской сталю, является обязательная необходимость термообработки (закалки или нормализации), а процесс этот не очень простой технологически. Крис Хайнц обходит стороной титан. У нас же денег никто тогда не считал, вот почему титановые рессоры на легких самолетах были нормой. О композитах хочу сказать отдельно. Тогда, в 80-х было четкое мнение, которое спустя сорок лет прочно сидит в сознании многих не только обывателей, но и инженеров: металлические конструкции (кроме титана и нержавеющей стали, естественно) – неэффективные и устаревшие, а вот композитные – уникальные, высокоэффективные, современные и, позволю себе сказать, модные. Такое мнение поддерживалось везде, на всех уровнях.
Пару лет назад, готовя публикацию о самолете Cessna 400, я обнаружил следующее. Прежде чем прекратить выпуск данной модели самолета в 2018 году из-за низких продаж, собирали его, как и положено в США, а вот производство композитных агрегатов было перенесено в Мексику из-за проблем с экологией и общей вредностью композитного производства.
Если посмотреть с точки зрения материалов на самолеты, которые выпускает компания Zenith Aircraft, то заметны следующие принципы. Основной конструкционный материал – алюминиевые сплавы, сталь в ферменных конструктивных элементах и сложных узлах. Композиты – в несиловых конструкциях сложной формы: капоты и обтекатели шасси. При чем такой здравомыслящий подход заметен в конструкциях многих современных легких самолетов: не это ли «инженерная мудрость»?
Сплавы алюминия: выбор и применение
Сплавы на основе алюминия
Термины и определения
Алюминиевый сплав – сплав на основе алюминия – это алюминий, который [1]:
- содержит один или более легирующих элементов, а также некоторые примеси;
- алюминий преобладает по массе по каждому из других химических элементов;
- содержание алюминия не превышает 99,00 %.
Легирующий элемент – это металлический или неметаллический элемент, который контролируется в определенных верхних и нижних пределах для целей придания алюминиевому сплаву определенных специальных свойств [1].
Примесь – металлический или неметаллический элемент, который присутствует в сплаве, минимальное содержание которого не контролируется. В алюминиевых сплавах, как правило, контролируется максимальная концентрация примеси [1].
Легирование в алюминиевых сплавах
Наиболее важными легирующими элементами, которые применяют для превращения алюминия в сплавы с особыми свойствами – и деформируемые, и литейные (конечно, в разных количествах) – являются:
- кремний (Si),
- магний (Mg),
- марганец (Mn),
- медь (Cu) и
- цинк (Zn).
Влияние, например, содержания меди в алюминиевом сплаве на его механические свойства показано на рисунке 1.
Рисунок 1- Влияние легирования алюминиевого сплава медью на механические свойства [3]
Железо в алюминиевых сплавах
Деформируемые алюминиевые сплавы содержат примерно 0,1 – 0,4 % (по массе) железа (Fe). Железо обычно рассматривается как нежелательная примесь. Его содержание зависит от качества исходной руды (бокситов) и технологии электролитического восстановления. Иногда легирование железом применяют для получения особых свойств материала, например, для изготовления алюминиевой фольги.
Модифицирование сплавов
В комбинации с основными легирующими элементами часто применяют другие легирующие элементы: висмут (Bi), бор (B), хром (Cr), свинец (Pb), никель (Ni), титан (Ti) и цирконий (Zr). Эти элементы обычно применяют в небольших количествах (до 0,1 % по массе, хотя B, Pb и Cr могут составлять до 0,5 %), чтобы придать им особые свойства, модифицировать сплавы для специальных целей, таких как литейные качества, обрабатываемость, теплостойкость, коррозионная стойкость, прочность и т.п.
Классификация алюминиевых сплавов
Классификацию алюминиевых сплавов – сплавов алюминия – производят по различным критериям, в том числе:
- по методу обработки – литейные и деформируемые
по механизму упрочнения – термически упрочняемые и деформационно упрочняемые- по основным легирующим элементам
Две категории: литейные и деформируемые
Две категории алюминиевых сплавов
- литейные
- деформируемые
Литейный алюминиевый сплав – сплав алюминия, который предназначен в первую очередь для производства отливок.
Деформируемый алюминиевый сплав – сплав алюминия, который предназначен в первую очередь для производства алюминиевых изделий горячей и/или холодной обработкой давлением.
Деформируемые сплавы
Деформируемые алюминиевые сплавы сначала разливают в слитки (круглые или прямоугольные), а потом обрабатывают по различным технологиям обработки давлением – горячей и холодной – до придания им нужной формы:
- прокаткой – для получения листов и фольги;
- прессованием – для получения профилей, труб и прутков;
- формовкой – для получения более сложных форм из катанных или прессованных полуфабрикатов;
- ковкой для получения сложных форм с повышенными механическими свойствами,
а также: - волочением, штамповкой, высадкой, вытяжкой, раскаткой, раздачей, гибкой и т. п.
Популярные деформируемые алюминиевые сплавы серии 6ххх, которые применяют для производства прессованных алюминиевых профилей, представлены ниже на рисунке 7.
Рисунок 7 – Основные алюминиевые сплавы серии 6ххх
Литейные сплавы
Литейные алюминиевые сплавы в расплавленном состоянии разливают непосредственно в их конечную форму одним из различных методов, таких как, литье в песчаные формы, литье в кокили или литье под давлением. При литье применяют сложные литейные формы. Эти сплавы часто имеют высокое содержание кремния для улучшения их литейных свойств.
У этих двух категорий алюминиевых сплавов классификация по легирующим сплавам различная: в целом в них добавляются одни и те же легирующие элементы, но в разных количествах.
Прочность и другие механические свойства алюминиевых сплавов, как деформированных, так и литейных, определяются в основном их химическим составом, т. е. содержанием в алюминии легирующих элементов, а также вредных примесей. Однако возможно изменение этих свойств для достижения их оптимального сочетания путем дополнительной обработки сплавов – термической или деформационной, или и той, и другой. В результате этого сплав изменяет свои первоначальные механические свойства и получает свое окончательное состояние, в котором и поставляется заказчику. Упрочняющую термическую обработку применяют как к литейным, так и к деформированным сплавам, Они в этом случае называются сплавами, упрочняемыми термической обработкой.
Два механизма упрочнения
Два класса алюминиевых сплавов:
- термически упрочняемые
- деформационно упрочняемые (нагартовываемые)
Термически упрочняемые сплавы
Термически упрочняемый сплав – сплав, который может быть упрочнен соответствующей термической обработкой (рисунки 2, 3 и 4).
Рисунок 2 – Закалка и упрочнение старением алюминиевых сплавов [2]
Рисунок 3 – Типичное термическое упрочнение старением [4]
Рисунок 4 – Эффект термического упрочнения на механические свойства сплава 7075 [4]
Нагартовываемые сплавы
Деформационно упрочняемый сплав (“термически неупрочняемый”, нагартовываемый) – сплав, который упрочняется только путем деформационной обработки (рисунки 5 и 6), а не термической обработкой.
Рисунок 5 – Влияние холодной пластической обработки – нагартовки – на прочность, твердость и пластичность алюминиевых сплавов [2]
Рисунок 6 – Кривые нагартовки (деформационного упрочнения)
термически неупрочняемых алюминиевых сплавов [4]
Серии и системы легирования
- Все алюминиевые сплавы – и деформируемые , и литейные – подразделяются на серии по главным легирующим элементам.
- Каждая серия алюминиевых сплавов, деформируемых и литейных, включают одну, две или три различных системы легирования.
- Система легирования может включать только главный легирующий элемент (выделены ниже жирным шрифтом) или еще дополнительно один или более легирующих элементов.
Серии деформируемых сплавов
- 2ххх – Al-Cu, Al-Cu-Mg, Al-Cu-Mg-Si, Al-Cu-Li
- 3xxx – Al-Mn
- 4xxx – Al-Si
- 5xxx – Al-Mg
- 6xxx – Al-Mg-Si
- 7xxx – Al-Zn, Al-Zn-Mg, Al-Zn-Mg-Cu
- 8xxx – Al-Fe, Al-Fe-Ni, Al-Li-Cu-Mg
Серии литейных сплавов
- 2xx – Al-Cu, Al-Cu-Ni-Mg, Al-Cu-Si,
- 3xx – Al-Si-Cu, Al-Si-Cu-Mg, Al-Si-Mg
- 4xx – Al-Si
- 5xx – Al-Mg
- 7xx – Al-Zn
- 8xx – Al-Sn
Алюминиевые сплавы в конструкциях
Рейтинг прочности алюминиевых сплавов
Нелегированный алюминий имеет предел прочности на растяжение около 90 МПа. Однако, небольшими добавками легирующих элементов, таких, как медь, магний, марганец, кремний, цинк, не большого количества некоторых других элементов получают алюминиевые сплавы.
Алюминиевые сплавы создают для того, чтобы получить алюминий со специальными свойствами, например, с более высокими механическими свойствами (рисунки 8 и 9).
Рисунок 8 – Рейтинг прочности деформируемых алюминиевых сплавов [2]
Рисунок 9 – Влияние легирующих элементов на прочность при растяжении, твердость, чувствительность к удару и пластичность [5]
Выбор сплава
При выборе алюминиевого сплава в качестве конструкционного материала, главным фактором является обеспечение прочности изготавливаемого из него конструкционного элемента. Однако конструкционную прочность различных типов элементов обеспечивают различные свойства одного и того же конструкционного материала.
Например, прочность «толстой» колонны будет зависеть в основном от предела текучести металла, тогда как прочность «тонкой» колонны будет зависеть главным образом от модуля упругости материала. Поскольку предел текучести алюминиевых сплавов нередко сравним с пределами текучести рядовых конструкционных сталей, то алюминий мог бы вполне потягаться с ними для «толстых» колонн. С другой стороны, поскольку модуль упругости алюминия и его сплавов составляет всего лишь где-то треть от модуля упругости сталей, то алюминий вряд ли может соперничать со сталями в «тонких» колоннах.
Прочность, однако, не является единственной рабочей характеристикой конструкции или изделия. Такие дополнительные факторы, как коррозионная стойкость, легкость обработки (прессуемость или свариваемость), жесткость (модуль упругости), пластическое разрушение (относительное удлинение), вес (плотность), усталостная прочность, а также стоимость, должны в той или иной мере учитываться при выборе нужного конструкционного материала.
Экономика алюминиевой конструкции
Часто стоимость материала является критическим фактором. Однако сравнение алюминиевых сплавов и сталей на основе стоимости единицы массы или объема может ввести в заблуждение, так как они имеют различные прочности, плотности и другие свойства.
Если бы стоимость материала была единственным фактором и углеродистые стали могли применяться без защитного антикоррозионного покрытия, то всегда и везде применялись бы только они. Однако, при выборе материала в рассмотрение принимаются и другие факторы, такие как стоимость эксплуатации и технического обслуживания в течение всего срока службы конструкции. Кроме того, в некоторых специфических условиях «правило» о том, что алюминиевый элемент в два раза легче стального не всегда справедливо. Например, алюминиевый компонент может весить и значительно меньше, если толщину стального элемента нужно увеличивать с учетом ее возможного уменьшения от воздействия слишком агрессивной коррозии в течение всего срока службы.
Если требуются профили со сложными поперечными сечениями, как, например, в ограждающих фасадных конструкциях, то в таких случаях, стоимость стального элемента намного больше, чем стоимость его материала. Дело в том, что для изготовления этого элемента из стальной заготовки ее надо механически обрабатывать, подвергать холодной штамповке или гибке, а, может быть, и применять сварку. В то же время стоимость изготовления алюминиевого профиля составляет только малую долю стоимости «сырого» алюминия.
Из-за высокой стоимости нержавеющих сталей они применяются только, если вес элемента или конструкции не имеет значения, а важны внешний вид и свариваемость. Обычно, когда нержавеющая сталь применяется вместо алюминия, то причина часто только одна – ограничения алюминиевых сплавов по сварке.
Алюминиевые сплавы по Еврокоду 9
Алюминиевые сплавы предлагают инженерам-конструкторам широкий выбор материалов. Каждый сплав имеет свои особенные характеристики, которые служат для обеспечения заданных свойств. Когда коррозионная стойкость, высокое отношение прочности к весу и легкость изготовления являются существенными конструкционными параметрами, тогда алюминиевые сплавы заслуживают серьезного рассмотрения.
В таблицах 1 и 2 представлены деформируемые алюминиевые сплавы, которые Еврокод 9 рекомендует и разрешает для применения в зданиях и сооружениях (см. подробнее здесь).
Таблица 1 – Термически неупрочняемые алюминиевые сплавы по Еврокоду 9
Таблица 2 – Термически неупрочняемые алюминиевые сплавы по Еврокоду 9
1. Guidance GAG Guidance Document 001 Terms and Definitions Edition 2009-01 March 2009
2. The welding of aluminium and its alloys / Gene Mathers – Woodhead Publishing Ltd, 2002
3. Aluminum and Aluminium Alloys / ed. Davis – ASM International, 1996
4. Aluminum and Aluminum Alloys – Subject Guide – ASM International, 2015
5. TALAT 1501
Металлы и сплавы
Металлы и сплавы
- Подробности
- Категория: Металл
Металлы и сплавы
В промышленности металлы применяются в основном в виде сплавов: черных (чугун, сталь) и цветных (бронза, латунь, дюралюминий и др.)
.
Сталь и чугун — это сплавы железа с углеродом. Но в стали содержание углерода немного меньше, чем в чугуне.
В чугуне содержится от 2 до 4% углерода. В состав чугуна входят также кремний, марганец, фосфор и сера. Чугун — хрупкий твердый сплав. Поэтому его используют в тех изделиях, которые не будут подвергаться ударам. Например, из чугуна отливают радиаторы отопления, станины станков и другие изделия.
Сталь, как и чугун, имеет примеси кремния, фосфора, серы и других элементов, но в меньшем количестве.
Сталь не только прочный, но и пластичный металл. Благодаря этому она хорошо поддается механической обработке. Сталь бывает мягкой и твердой.
Более твердая сталь используется для изготовления проволоки, гвоздей, шурупов, заклепок и других изделий.
Из очень твердой стали делают металлические конструкции (конструкционная сталь) и режущие инструменты (инструментальная сталь). Инструментальная сталь имеет большую, чем конструкционная, твердость и прочность.
Добавление в сталь таких элементов, как хром, никель, вольфрам, ванадий, позволяет получить сплавы с особыми физическими свойствами — кислотостойкие, нержавеющие, жаропрочные и т. д.
Чугун выплавляют из железной руды в доменных печах. Руду вместе с коксом (специально обработанным углем, который дает при горении высокую температуру) загружают в доменную печь сверху. Снизу в домну все время вдувают чистый горячий воздух, чтобы кокс лучше горел. Внутри печи образуется высокая температура, руда плавится, и полученный чугун стекает на дно печи. Расплавленный металл вытекает из отверстия домны в ковши. Из смеси чугуна со стальным ломом в мартеновских печах, конверторах и электропечах получают сталь.
Из цветных сплавов наиболее широко применяются бронза, латунь и дюралюминий.
Бронза — желто-красный сплав на основе меди с добавлением олова, алюминия и других элементов. Отличается высокой прочностью, стойкостью против коррозии. Из бронзы отливают художественные изделия, делают сантехническую арматуру, трубопроводы, детали, работающие в условиях трения и повышенной влажности.
Латунь — сплав меди с цинком, желтого цвета. Имеет высокую твердость, пластичность, коррозийную стойкость. Выпускается в виде листов, проволоки, шестигранного проката и применяется чаще всего для изготовления деталей, работающих в условиях повышенной влажности.
Дюралюминий — сплав алюминия с медью, цинком, магнием и другими металлами, серебристого цвета. Обладает высокими антикоррозийными свойствами, хорошо обрабатывается. Дюралюминий широко применяют в авиастроении, машиностроении и строительстве, где требуются легкие и прочные конструкции.
Основные свойства металлов
Вы знаете, что металлы обладают различными свойствами. Одни из них мягкие, вязкие, другие твердые, упругие или хрупкие. Знать свойства металлов необходимо для того, чтобы правильно определить наиболее подходящий для того или иного изделия материал.
Физические свойства.
К этим свойствам относятся: цвет, удельный вес, теплопроводность, электропроводность, температура плавления.
Цвет металла или сплава является одним из признаков, позволяющих судить о его свойствах.
Металлы различаются по цвету. Например, сталь — сероватого цвета, цинк — синевато-белого, медь — розовато-красного.
При нагреве по цвету поверхности металла можно примерно определить, до какой температуры он нагрет, что особо важно для сварщиков. Однако некоторые металлы (алюминий) при нагреве не меняют цвета.
Поверхность окисленного металла имеет иной цвет, чем не окисленного.
Удельный вес — вес одного кубического сантиметра вещества, выраженный в граммах. Например, углеродистая сталь имеет удельный вес, равный 7,8 г/см3. В авто- и авиастроении вес деталей является одной из важнейших характеристик, поскольку конструкции должны быть не только прочными, но и легкими. Чем больше удельный вес металла, тем более тяжелым (при равном объеме) получается изделие.
Теплопроводность — способность металла проводить тепло — измеряется количеством тепла, которое проходит по металлическому стержню сечением в 1 см2 за 1 мин. Чем больше теплопроводность, тем труднее нагреть кромки свариваемой детали до нужной температуры.
Температура плавления — температура, при которой металл переходит из твердого состояния в жидкое. У стали, например, температура плавления гораздо более высокая, чем у олова.
Чистые металлы плавятся при одной постоянной температуре, а сплавы — в интервале температур.
Механические свойства.
К механическим свойствам металлов и сплавов относятся прочность, твердость, упругость, пластичность, вязкость.
Эти свойства обычно являются решающими показателями, по которым судят о пригодности металла к различным условиям работы.
Прочность — способность металла сопротивляться разрушению при действии на него нагрузки.
Твердость — способность металла сопротивляться внедрению в его поверхность другого более твердого тела. Если ударить молотком по кернеру, поставленному на стальную пластинку, образуется небольшая лунка. Если то же самое сделать с пластинкой из меди, лунка будет больше. Это свидетельствует о том, что сталь тверже меди.
Упругость — свойство металла восстанавливать свою форму и размеры после прекращения действия нагрузки. Высокой упругостью должна обладать, например, рессоры и пружины, поэтому они изготовляются из специальных сплавов. Попробуйте одновременно растянуть и отпустить пружины из стальной и медной проволоки. Вы увидите, что первая вновь сожмется, а вторая останется в том же положении. Значит, сталь более упругий материал, чем медь.
Пластичность — способность металла изменять форму и размеры под действием внешней нагрузки и сохранять новую форму и размеры после прекращения действия сил. Пластичность — свойство, обратное упругости. Чем больше пластичность, тем легче металл куется, штампуется, прокатывается.
Вязкость — способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Например, если наносить удары по чугунной плите, она разрушится. Чугун — хрупкий металл. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали вагонов, автомобилей и т. п.).
Сплав железа с алюминием: история открытия, свойства, преимущества
Сплавы железа с алюминием обладают уникальными свойствами, позволяющими применять их для изготовления деталей, подверженных термическим воздействиям, окислению или коррозии. Их использование имеет узкую направленность — они ориентированы на промышленные сферы эксплуатации.
Сплав железа с алюминиемИстория открытия
Первые попытки применения сплавов алюминия и железа были предприняты Фарадеем в 1820 году. Были попытки использовать сплав алюминия в качестве легирующего элемента для получения высокопрочной стали, но они оказались неэффективными.
Тщательные исследования были возобновлены после 1918 года в СССР, Германии, Англии. Было показано, что при добавлении Al возрастают жаропрочные свойства чугуна. Образцы обладают повышенной прочностью, хрупкостью, стойко переносят контакт с кислыми средами, не склонны к образованию окалин.
Было обнаружено, что появление окалин зависит от толщины оксидной плёнки на образцах: чем она толще, однороднее, тем выше защита поверхности. Важно, чтобы окислы не формировали эвтектическую фазу и не подвергались возгонке, а их ионная проводимость была минимальной.
Условием жаростойкости образца являются потери с окалиной в пределах 2-10-3–4-10-3 г/см2/ч.
Множество проведённых исследований сплавов Fe и Al закончились определением их химических и физических свойств. Это связано с проблемами газового насыщения образцов, угаром алюминия, формированием внутренних оксидных плёнок, разрушением образцов при нормальных условиях.
Наиболее перспективными оказались сплавы с содержанием от 16 до 20% Al и 3% углерода, получившие название «чугаль». Именно их начали выплавлять в СССР.
Позже группа изобретателей во главе с З. Эмингером разработала технологию производства качественных отливок железоалюминиевых образцов. Благодаря этому были получены новые данные.
Состав и структура
Структура сплава алюминия с железом представляет собой пересыщенный раствор Al в α-Fe с упорядочением структуры FeAl (тип В2), наличием включений Fe3AlCx. Свойства определяются упорядочением альфа-фазы и пересыщением. Чтобы сформировать однородный состав, необходим отжиг при температуре выше упорядочения состава с последующим регулируемым охлаждением.
При количестве Al 8–14% формируется столбчатая матричная структура. В процессе отжига структура немного упорядочивается: включения длиной до 150 мкм находятся вдоль границы зёрен. Выделение включений происходит при охлаждении из твёрдой фазы.
Метастабильное состояние фазы определяется количеством включений. Отжиг позволяет их сократить до 2%. Чем больше в составе алюминия, тем больше создаётся негомогенных областей, в результате чего понижается микротвёрдость матрицы до 0,4 ГПа и износостойкость образца.
С увеличением скорости отжига при водяном или воздушном охлаждении количество карбидных включений снижается.
14-20% сплав алюминия с железом имеет также матричную структуру, но карбидная фаза обеднена по Al и структура FeAl не упорядочена. При отжиге на воздухе количество карбидных включений возрастает, за счёт чего повышаются свойства износостойкости и прочности. Если проводить охлаждение в воде, то такого эффекта не наблюдается и образец получается хрупким.
При повышенном содержания в сплаве Al от 20 до 30% карбидной фазы становится меньше, при охлаждении образцов данная фаза отсутствует в структуре или не более 3%. За счёт большого количества алюминия образец приобретает высокую прочность и пластичность. Воздушное охлаждение после отжига стимулирует образование твёрдых износостойких фаз.
Увеличение содержания алюминия в расплаве становится причиной формирования интерметаллида Fe4Al13, который не устраняется после отжига, а образец становится непригодным для какого-либо практического применения.
Для улучшения свойств расплава в состав вводятся следующие легирующие элементы:
- 0,1–10% Cr;
- 0,1–0,2% Nb;
- 0,1–2,0% Si;
- 0,1–5% B;
- от 50 до 200 мг/кг Zr.
Содержание углерода — от 100 до 500 мг/кг.
Температура плавленияХарактеристики и свойства
Сплавы железа и алюминия имеют следующие характеристики:
- количество циклов термического нагрева до 240, в зависимости от химического состава;
- предел прочности на растяжение 100 МПа;
- отличные литейные свойства сплава;
- допустимо применение легирующих элементов: Cr, Ni, Ti, Mo, Cu, B, Si, Nb, Zr.
Свойства сплава:
- хорошая свариваемость при условии термообработки выше +7000С;
- высокая химическая стойкость;
- необходимость формирования стабильной фазы расплава при температуре до 9000С;
- коррозионная стойкость.
Изготовление
Сплав создаётся из отходов дюрали, алюминия и железа путём алитирования. В жаростойкую ёмкость (электродуговую печь) засыпают, очищенные от окалин и грязи, куски стали (степень очистки 99%), 49% смесь Al или алюминиевого сплава, содержащего 2% хлористого аммония, а затем спекают в атмосфере аргона. Температура термообработки может составлять от +9000С до +15000С.
Нагрев ёмкости осуществляют подачей тока на нагревательные элементы или через саму конструкцию, при условии её высокого омического сопротивления.
После нагрева выбирают оптимальный способ отжига, в зависимости от состава компонент, с последующим естественным охлаждением.
Где применяют?
Железоалюминиевые расплавы применяются при производстве деталей и агрегатов, которые подвержены следующим воздействиям:
- термическому;
- механическому;
- окислительному.
Также сплавы заменяют никелевые сверхпрочные сплавы и специальные стали.
Изделия из сплаваДостоинства и недостатки
Преимущество сплава железа с алюминием — механические характеристики, которые сравнимы с некоторыми титановыми и никелевыми суперсплавами. Предел прочности при растяжении составляет до 100 МПа.
Другим достоинством является стойкость к окислению и коррозии при температурах до +7000С. При более высоких температурах допустимо применение таких конструкций, но без значительных механических нагрузок.
К недостаткам относят:
- хрупкость, проявляемую при определённых условиях эксплуатации и зависящую от температуры и нагрузок;
- при концентрации алюминия менее 12% сплав подвержен окислению, коррозии снижению пластичности;
- сложность получения стабильной фазы с заданными характеристиками;
- низкая прочность на растяжение.
Сплав легко расплавляется, что позволяет снизить расходы на его производство. Допустимо использование вторсырья, которое прошло соответствующие этапы очистки от примесей.
Разница между стальной и алюминиевой системой
Предисловие…
Начну, пожалуй, с того, что чистый алюминий в автомобилестроении встречается крайне редко, чаще всего это сплавы с добавлением различных добавок, позволяющих улучшить свойства этого металла. Например, алюминиевый кузов автомобиля или отдельные его части производят из алюминия, в который добавлен магний, кремний или марганец. Такие добавки позволяют получить более прочный, но при этом такой же легкий и пластичный металл.
Алюминиевые детали производятся различными способами, в зависимости от ее назначения. Наиболее распространенные способы производства: ковка, литье, штамповка, а также экструзия. Самый популярный вид изготовления алюминиевых деталей — это конечно же, литье. При помощи этого метода отливают детали двигателя, различные корпусы, а также некоторые детали подвески.
Первопроходцем в «алюминиевом направлении» стала компания «Ауди», которая в 1994 году запустила серийное производство Audi A8, у которого кузов был полностью изготовлен из алюминия. В те времена это решение было революционным и хорошенько всколыхнуло мир автомобилестроения. Вес алюминиевого A8 составлял всего 231 кг. Впечатляет, не так ли?
Что дороже алюминий или нержавейка Справочник металлиста
Вот и закончился с горем пополам отопительный сезон, после которого вопрос о смене батарей встал на первый план. Прохудившиеся древние чугунные радиаторы пора отправлять на заслуженный отдых, поставив вместо них что-нибудь более современное.
Частные застройщики, при монтаже отопления, тоже зачастую не могут определиться с видом радиаторов. Наслушавшись продавцов в магазинах, расхваливающих самые популярные модели, несведущий покупатель бывает в растерянности.
И какие радиаторы лучше — алюминиевые или биметаллические, он так и не представляет. Быть может, взглянем на этот вопрос объективно?
Ребра, расположенные с внутренней стороны, позволяют значительно увеличить площадь отдачи тепла до 0,5 метров квадратных. Изготавливают радиаторы двумя методами.
Экструзионный метод дает дешевые и легкие изделия не самого высокого качества (в Европе таким методом не пользуются). Дороже, но долговечнее будут радиаторы, сделанные методом литья.
Один из видов алюминиевых радиаторов.
2. Биметаллические радиаторы делаются из двух различных металлов. Корпус, оснащенный ребрами, изготавливается из алюминиевого сплава. Внутри этого корпуса имеется сердечник из труб, по которым протекает теплоноситель (горячая вода из системы отопления). Эти трубы производятся либо из стали, либо из меди (причем последние у нас практически не встречаются). Диаметр их меньше, чем у алюминиевых моделей, поэтому больше вероятность засорения.
Внешний вид биметаллического радиатора весьма эстетичен, а дизайн удовлетворяет самые изысканные запросы. Все стальные его компоненты спрятаны внутри.
Алюминий и алюминиевые сплавы
К алюминиевой продукции относят изделия и полуфабрикаты из нелегированного алюминия и алюминиевых сплавов, деформируемых и литейных, а также исходные материалы для их производства – первичный и вторичный алюминий в виде жидкого алюминия, слитков, заготовок и т. п.
Нелегированный алюминий – алюминий без легирующих элементов, в котором содержание алюминия составляет не менее 99,00 %.
Алюминиевый сплав – алюминий, который содержит легирующие элементы, причем содержание алюминия больше по массе любого из других элементов в сплаве, а содержание алюминия составляет не менее 99,00 %.
Легирующий элемент – металлический или неметаллический элемент, который контролируется внутри верхнего и нижнего пределов с целью придания алюминиевому сплаву некоторых специальных свойств.
Примесь – присутствующий в металле металлический или неметаллический элемент, минимальное содержание которого не контролируется.
Лучшие ответы
Dm:
Технология. Алюминий в чистом виде в природе не встречается. Только в минералах. Выделяют с помощью электролиза. «Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.Для производства 1 т алюминия требуется 1,9 т глинозёма и 18 тыс. кВт·ч электроэнергии. «Раньше алюминий в чистом виде считался драгоценным металлом.
Алексей Олегович Павленко:
На него спрос больше.Цветной метал, однако!
Анна Киселёва:
может потому что плавится все же лучше, температура плавнения не такая большая, да и удобный он и легче все же
Romа:
железо это черный метал а алюминий цветной метал
Старик Моченкин дед Иван:
Потому что в чистом виде не встречается.
молот гаврилов:
электро-проводимость
Роман Карпин:
Аллюминий относится к цветным металам, поэтому и дороже. Еще он легче плавиться, и более мягкий
александр радченко:
Технология добычи очень трудоемкая. Получение алюминия из глинозема просесс гораздо сложнее чем плавка стали из руды.
Валёк Тёмный:
Помимо более высоких энерго- и ресурсозатрат на получение алюминия, он еще обладает очень востребованными свойствами во всех отраслях — легкость, устойчивость к коррозии, пластичность, тепло и электропроводность, экологичность и пр.Когда он был открыт применялся в ювелирном деле и оценивался дороже золота.
Кирилл Грибков:
почему бензин самое дорогое топливо?ответ как раз подходит для тебя
Рома )))Elektrik((( Циркунов:
Затраты на выплавку тонны алюминия больше, чем железа!
Среди плюсов алюминиевого кузова можно выделить следующие моменты
1. Прекрасное соотношение массы и прочности. Алюминий на 60% легче стали при равных размерах и объемах. Благодаря этому, кузовные детали получаются более легкие, отсюда меньшая масса и существенная экономия топлива, ну и естественно меньше вредных выбросов в атмосферу.
2. Алюминий не подвержен коррозии. Это свойство очень положительно сказывается на длительности «жизни» кузова и самого автомобиля. Однако не стоит полагать, что алюминий вовсе не стареет и не гниет, при определенных обстоятельствах и условиях алюминий также способен окисляться и разрушаться.
3. Алюминиевые детали прекрасно поддаются вторичной переработке. Легкость переплавки делает этот металл очень выгодным для автопроизводителей, поскольку позволяет использовать его по нескольку раз, а сам производственный процесс существенно упрощается.
4. Энергопоглощение. По сравнению со сталью, алюминий намного лучше поглощает и гасит вибрации, это также касается сильных ударов, которые алюминиевые детали поглощают на 50% лучше, не позволяя ей распространяться дальше. Этот фактор весьма важен для тех, кто ценит собственную безопасность, а также безопасность своих пассажиров.
5. Прочность и сопротивление торсионным нагрузкам. Алюминиевый кузов, как бы странно это не звучало, получается более жестким в плане скручивания, это придает автомобилю устойчивости, а также позволяет выполнять более «острые» маневры.
6. Низкая нагрузка на ходовую часть и неподрессоренные массы. Как не крути, а разница в весе положительно сказывается на износе шин, деталей ходовой части, а также придает автомобилю плавности во время движения.
7. Расход топлива. Как я уже говорил, меньшая масса предмета — это всегда меньше усилия для того, чтобы сдвинуть его с места. Поэтому алюминиевый кузов может стать причиной аномально низкого расхода топлива.
Казалось бы, «плюсов» столько ,что «минусов» просто нет… А — нет, как говорится, у медали всегда две стороны.
Вторичный алюминий
Новый (технологический) и старый (бывший в употреблении) алюминиевый лом является исходной шихтой для производства вторичного алюминия. Так называемые «вторичные плавильщики» смешивают старый лом или технологический алюминиевый лом и получают так называемые вторичные алюминиевые сплавы. Эти сплавы поставляются на литейные предприятия в виде слитков для переплавки или как жидкий металл. Эти литейные предприятия производят алюминиевую продукцию в виде отливок, которые находят широкое применение, например, в автомобилестроении. Вторичный алюминий идет также на изготовление чушек, прутков и гранул для раскисления стали.
Отсортированный алюминиевый лом, который состоит из деформируемых сплавов, снова можно применять на предприятиях по производству “полуготовой” алюминиевой продукции – полуфабрикатов. Примером этого является алюминиевые банки для пива и прохладительных напитков, которые очень широко перерабатываются во всем мире.
Лом алюминиевых банок
Алюминированная сталь ru.knowledgr.com
Алюминированная сталь — сталь, которая была горячим падением, покрытым с обеих сторон кремниевым алюминием сплавом. Этот процесс гарантирует, что трудная металлургическая связь между стальным листом и его алюминиевым покрытием, производя материал с уникальной комбинацией свойств не обладала ни сталью, ни одним только алюминием.
Алюминированная сталь показывает лучшее поведение против коррозии и держит свойства основной материальной стали для температуры ниже, чем.
Например, это обычно используется для теплообменников в жилых печах, коммерческая крыша единицы HVAC, автомобильные кашне, духовки, кухонные диапазоны, водонагреватели, камины, горелки барбекю и формы для пирога.
Особенности определены точными металлами, используемыми, а также используемый процесс.
Типы
Тип 1: горячее падение, покрытое тонким слоем алюминия / кремниевый сплав, содержащий 5% к 11%-му кремнию, чтобы продвинуть лучшую приверженность. Это предназначено преимущественно для тепловых приложений сопротивления и также для использования, где устойчивость к коррозии и высокая температура включены.
Возможное использование конца — кашне, печи, духовки, диапазоны, нагреватели, водонагреватели, камины и формы для пирога. Алюминированная сталь не может противостоять с почти никаким изменением в основном материале. Но из-за кремниевого содержания это развивает гиблое место.
Алюминированная сталь медленно начинала преобразовывать подносы пекарни, которые были ранее сделаны гальванизированной или galvalume сталью, поскольку это не содержит свинца, который ядовит. Тип 1 также обычно находится в промышленных изделиях.
Тип 2: горячее падение покрыто коммерчески чистым алюминием. Это предназначено преимущественно для заявлений, требующих атмосферной устойчивости к коррозии. Тип 2 может в конечном счете быть произведен в рифленую кровлю и запасной путь, мусорные ведра зерна, суша духовки и конденсатор кондиционера housings.
Свойства
Базовая структура алюминированной стали — тонкий алюминиевый слой окиси снаружи, затем межметаллический слой, который является соединением алюминия, кремния, и стали, и наконец стального ядра.
И Тип 1 и Тип 2 показывают превосходные высокие reflectivity особенности. При температурах до алюминированная сталь отражает до 80% высокой температуры, спроектированной на него. У алюминированной стали есть способность поддержать ее силу при температурах до. Хотя нержавеющая сталь — более сильные из этих двух, алюминированная сталь имеет большую электростатическую поверхность и может поэтому отразить высокую температуру лучше.
Алюминированная сталь очень стойкая к коррозии из-за тонких слоев алюминия и кремния, которые препятствуют основной стали окисляться.
Однако несмотря на хорошую устойчивость к коррозии алюминированной стали, если алюминиевый слой разрушен и сталь выставлена, то сталь может окислиться, и коррозия может произойти.
Потребление
В Северной Америке почти 700 000 тонн алюминированной стали ежегодно потребляются. Некоторые общие продукты, сделанные из алюминированной стали, включают водонагреватели, диапазоны, печи, отопительные приборы и грили.
Обработка
Алюминированная сталь может быть сделана, используя множество процессов, оболочки, горячего погружения, гальванического покрытия, металлизирования и алитирования, но самый эффективный процесс — горячее погружение. Процесс горячих запусков погружения, чистя сталь, затем помещая сталь в ванну Аль-11%си при температуре 988K и встряхиваемый, затем вытащенный и воздух высох.
Алюминий распространяется в сталь, создавая межметаллический слой выше стального базового слоя, но ниже внешнего алюминиевого покрытия. Алюминиевое покрытие окислено, чтобы помочь защитить внутреннюю сталь от коррозии и дальнейшего алюминиевого распространения. Кремний добавлен к алюминиевой ванне, чтобы создать более тонкий слой алюминия на стали.
Горячий процесс погружения более дешевый и более эффективный, чтобы произвести алюминированную сталь, чем какой-либо другой процесс.
Использование
Алюминированная сталь была развита для обеспечения большей структурной длительности и силы высокой выработки в очень коррозийной окружающей среде.
Алюминированная сталь поддерживает силу высокой легированной стали, но в доле расходов.
Алюминированная сталь более дешевая, чтобы произвести, чем высокие легированные стали и таким образом является предпочтительным материалом для производственных систем выхлопного газа автомобиля и мотоцикла.
Из минусов можно выделить следующее
1. Сложность производства. Алюминиевые детали требуют технологически сложных способов крепления (клепка, лазерная сварка, болтовые соединения), кроме того все они предусматривают наличие дорогостоящего оборудования и материалов.
2. Дорогостоящий и проблематичный ремонт. Сварка алюминиевых деталей предусматривает наличие либо лазера, либо аргонной сварки. Сам сварщик должен обладать огромным опытом сварки, поскольку именно от этого зависит исход всего ремонта и возможности или невозможности дальнейшего использования алюминиевой детали. Кроме прочих неприятностей, такие работы будут стоить в разы дороже по сравнению с аналогичными работами, но с использованием обычной сварки и стали.
3. Цена. Высокая стоимость алюминия по сравнению с обычной сталью так или иначе сказывается на конечной стоимости изделия. Авто с полностью алюминиевым кузовом может стоить в полтора-два раза дороже, чем аналогичное авто с полностью металлическим каркасом.
4. Конфигурация и формы деталей. Изготовление полностью алюминиевого кузова накладывает на производителя определенные обязанности. Например, для придания деталям прочности их приходится усиливать дополнительными ребрами жесткости или делать более объемными, в итоге конструкция может получиться не такой компактной и привлекательной как этого хотелось бы
В качестве примера и доказательства предлагаю обратить внимание на два велосипеда — полностью алюминиевый и полностью стальной. Рамы будут отличаться не только весом, но и диаметром трубок, использованных в их производстве
5. Хорошая проводимость шума. В данном случае слово «хорошая» является недостатком, я думаю вы понимаете о чем я? Чем лучше металл проводит шум, тем больше его будет в салоне алюминиевого авто, думаю так понятнее? Такая особенность требует дополнительных слоев шумоизоляции, которая увеличивает вес автомобиля, а также стоит немалых денег. В итоге, такой автомобиль либо на конвейере получит хорошую «шумку» и вместе с тем получится более дорогим, либо будет поставляться «как есть», а все затраты на шумоизоляцию лягут на ваши плечи, и признаться потянут не мало денежных средств.
6. Ремонтопригодность. Алюминиевый кузов сложно ремонтировать, а желающих или проще сказать способных его выполнить не так уж и много, причина — алюминиевый кузов сложно ремонтировать! После удара или деформации алюминиевые детали и конструкции очень сложно восстановить, поскольку происходит нарушение структуры металла. По этой причине ремонт таких деталей или конструкций нередко просто невозможен или просто нерентабелен, и заканчивается полной заменой.
Как видите, такой, на первый взгляд, идеальный и безупречный материал имеет немало недостатков, о которых простые обыватели даже не подозревают. Наверное, именно по этой причине большинство из них так рьяно отстаивают свою точку зрения, доказывая, что алюминиевый кузов — это сущее добро и сплошной «плюс». Ну что ж, как говорится, каждому свое, надеюсь вы после прочтения данного материала не будете одним из таких «знатоков» и перед тем как купить автомобиль с алюминиевым кузовом, взвесите все положительные и отрицательные стороны этого непростого материала.
Текст: АвтоПульсар.
Как выбрать автомобильный глушитель
Автомобильным глушителем называют либо всю выхлопную систему в целом, либо только заднюю ее часть. Эта статья посвящена именно задней детали выхлопной системы. Конечно, есть автомобили, где основной глушитель находится в центре выпускного тракта, но эти случаи мы оговорим отдельно.
Глушитель – часть выпускной системы автомобиля поглощающей автомобильные шумы. Чем качественней эта деталь, тем ниже звук. Сразу возникает вопрос, какой глушитель качественнее, а какой нет? Хотите узнать ответ – читайте дальше.
В чем отличие глушителей для автомобиля
На российском рынке автозапчастей представлены десятки видов глушителей. Европейские, Российские, Китайские, Турецкие – как потребителю выбрать автомобильный глушитель высокого качества. Одни дороже, другие дешевле. Одни окрашенные, другие нет. Марка одних известна всем, а название других ни о чем не говорит. Мы не собираемся рекламировать определенный бренд, мы просто поможем вам сделать правильный выбор.
Главный критерий качества выпускной системы – это металл, из которого она изготовлена.
Автомобильные глушители производятся из следующих материалов:
— обычная сталь;
— нержавеющая сталь;
— алюминизированная сталь.
Большая часть глушителей для иномарок сделана из алюминизированной стали. Этот материал более стойкий к коррозии, чем обычная сталь, хотя стоимость алюминизированного глушителя не намного выше стального. Именно по этой причине Европа полостью прекратила выпуск обычных стальных глушителей. В России глушители из черной стали выпускаются по сей день.
Детали из обычной стали служат не более года, тогда как качественные алюминизированные глушители могут эксплуатироваться от 4 до 6 лет. Заметьте именно «качественные». К сожалению, есть и не качественные. Срок их службы не превышает одного года.
Проблема в том, что оценить качество алюминизированного глушителя на глаз невозможно. А вот от глушителя из «черной» стали можно отличить без труда. Детали из черной стали обычно окрашивают серебристой краской, а неокрашенные имеют черный цвет. Красят глушители лишь для того, чтобы они не заржавели до продажи. На этом полезные свойства покраски заканчиваются.
Детали выхлопной системы из нержавеющей стали в свободной продаже встречаются редко. Как правило, это оригинальные запчасти известных производителей.
Связано это с тем, что цена нержавейки существенно выше, и автолюбители не хотят платить эту разницу в деньгах. Некоторые автовладельцы не планируют ездить на своем авто более 2-3 лет, другие предпочтут заменить глушитель через те же 3 года.
Именно по этим причинам глушители из нержавейки не выпускается в больших количествах.
Еще одним важным аспектом качества глушителя является его внутренняя начинка. Это только на вид глушители разных производителей внешне похожи. Поглощение звука выхлопа зависит от нескольких факторов:
— наличие двухслойного корпуса;
— качество внутренних перфорированных труб;
— объема внутренней полости глушителя;
— термостойкость звукопоглощающей набивки и ее устойчивость к выдуванию.
Стоимость глушителя прямо пропорциональна его объемам. Один из вариантов снижения цены – упрощение конструкции. Многие недобросовестные производители выбирают этот путь, что отрицательно сказывается на способностях глушителя перерабатывать поток выхлопных газов.
Уменьшение объема банки и упрощение внутреннего устройства, приводит к более громкому звуку выхлопа. А использование низкокачественного акустического наполнителя, ведет к быстрой потере его звукопоглощающих свойств. Как следствие, появляется эффект «барабана».
Что прочнее — алюминий или сталь, какую раму выбрать для велосипеда?
На чтение 5 мин. Просмотров 858
Рама для велосипеда является опорной частью, так как к ней прикреплены все главные составляющие. 70 % нагрузки приходится на раму, именно поэтому конструкция должны выполняться из качественных материалов.
Для многих владельцев главным критерием является вес изделия, чем он меньше, тем удобнее управлять средством. Масса напрямую зависит от материала, поэтому выбирать байк следует исходя из этого критерия, учитывая плюсы и минусы каждого.
Что прочнее — алюминий или сталь?
Сталь намного прочнее алюминия, из-за этого стальные детали больше по весу.
Алюминиевые рамы изготавливают не из чистого металла, а с добавлением различных элементов. Зачастую сплав включает примеси хрома, цинка, титана, марганца, железа, что улучшает характеристики деталей. Чаще всего при изготовлении велосипедных рам, применяют сплавы из алюминия таких марок: 7005 и 6061.
При выборе стальных конструкций следует обращать внимание на маркировку. Стали обычного качества имеют низкие свойства и не способны дать длительную жизнь механизмам.
Какую раму выбрать на велосипед?
Стальная рама, плюсы и минусы
Для выполнения стальных рам используют такие виды:
- Сталь обыкновенная.
- Углеродистая сталь.
- Сталь, легированная хромом и молибденом.
Сталь обыкновенного качества. Имеет самые низкие свойства, поэтому велосипеды невысокой стоимости. Такой материал быстро портится, рама ржавеет,и велосипед теряет пригодность.
Рамы из углеродистых сталей имеют хорошие прочностные свойства, а также стойки к коррозии. Они достаточно гибкие, поэтому на дороге сглаживают все неровности. Такие конструкции идеально подходят для обычной езды, а также для выполнения трюков. Углеродистая сталь выдерживает большие нагрузки, вплоть до 150 кг.
Легированные стали позволяют сделать конструкцию более надежной, прочной и легкой. Чаще всего стали для выполнения рам легированы молибденом и хромом. Молибден влияет на структуру стали, делая её мелкозернистой, за счет этого повышается прочность. Хром придает коррозионную стойкость.
Цена на такую раму начинается от 400$. Высокая стоимость самый существенный недостаток, именно поэтому такие велосипеды не пользуются спросом.
Преимущества рам из стали:
- высокие показатели прочности, жесткости;
- долговечны;
- выдерживают удары;
- просты в обслуживании;
- в отличие от алюминиевых рам, стальные не накапливают усталость. Это свойство позволяет не ломаться элементу в один момент, поэтому велосипедист может вовремя заметить трещину и заменить поврежденную деталь;
- ремонтировать стальные конструкции достаточно легко, для этого необходима лишь сварка;
- велосипеды имеют небольшую стоимость;
- физические свойства позволяют гасить вибрации при движении.
Недостатки стальной рамы:
- ощутимый вес конструкции;
- конструкции из обычной стали быстро подвергаются коррозии;
- из-за появления ржавчин, необходимо тщательно ухаживать за велосипедом: окрашивать поверхность, не оставлять под дождем и снегом, и регулярно смазывать.
Алюминиевая рама, плюсы и минусы
Чаще всего для изготовления рам используют алюминиевые сплавы. Такой материал делает конструкцию более легкой и отзывчивой к недостаткам дороги, а также стоек к коррозии. Алюминиевые сплавы превосходят сталь по жесткости, но они имеют меньшую плотность.
Преимущества рамы из алюминия:
- маленький вес рамы. Низкосортные конструкции весят около 2 кг, а качественные до 1,5 кг;
- хорошие характеристики стоят наряду с небольшой стоимостью;
- велосипед разгоняется быстро на любой местности;
- не подвергаются коррозии;
- выдерживают большой вес.
Недостатки этой рамы прямо противоположны достоинствам рамы из стали:
- Несмотря на быстрый разгон, они также стремительно теряют инерцию.
- Некоторые модели не поглощают вибрации от дороги, поэтому езда может стать мучительной.
- Накапливают усталость, поэтому поломка может произойти в любой момент.
- Большинство поломок практически невозможно починить.
Отзывы велосипедистов
Качество рамы в первую очередь зависит от материала. У меня велосипед из алюминиевых составляющих. Катаюсь на протяжении 5 лет, до сих пор нет ни трещин, ни ржавчины. А стальные конструкции из дешевых материалов сильно подвержены поломкам и коррозии.Оценка:
Владислав
Для обычной езды подойдет велосипед из обычной стали или алюминия. Желательно ухаживать за байком, перекрашивать его, если появляются потертости. Если планируете ездить на неровных поверхностях, то лучше брать байк из высоколегированных сталей. Недостаток лишь в большом весе, а так, детали легко можно починить в случае поломки.Оценка:
Сергей
Гонял на велосипедах с различными рамами. Не заметил особых отличий между сталью и алюминием, кроме веса. На рынке предлагается множество моделей, поэтому следует ориентироваться на то, для чего берется байк и в каких условиях будет использоваться.Оценка:
Дмитрий
Для горных велосипедов лучше брать алюминиевые рамы, так как они прочные и имеют небольшой вес. Для дальних туристических поездок подходят стальные конструкции, так как они надежнее в эксплуатации. Очень редко стальные детали резко выходят из строя. Для трюков и экстремальных видов спорта, выбирают стальные рамы. Таким байкам важна прочность и надежность.Оценка:
Роман
Рекомендую стальную раму с добавлением хрома и молибдена. Эти компоненты делают сталь не сильно жесткой, по сравнению с алюминием. Благодаря этому все вибрации поглощаются, и неровности на дороге ощущаются не так сильно. Единственный минус в том, что такие рамы сейчас найти очень сложно.Оценка:
Евгений
Не каждый велосипедист может с первого раза правильно подобрать раму. Необходимо иметь достаточно опыта, для того чтобы ориентироваться в материалах.
Современный рынок предлагает широкий спектр компонентов, из которых выполняют те, или иные составляющие байка. Рама является одной из самых нагруженных и ответственных частей, поэтому к её выбору следует отнестись максимально ответственно.
Химический состав и свойства алюминиевых сплавов
ОБОЗНАЧЕНИЯ ДЕФОРМАЦИОННО-ЗАЩИТНЫХ ТЕМПЕРАТУР –H
Первая цифра
Существует три различных метода, используемых для достижения окончательного состояния деформационно-упрочненного материала.
— h2 Только деформационная закалка: Применяется к изделиям, подвергнутым деформационной закалке для получения желаемого уровня прочности без какой-либо последующей термической обработки.
— h3 Деформационное упрочнение и частичный отжиг: Применяется к изделиям, подвергнутым деформационному упрочнению до более высокого уровня прочности, чем желаемый, с последующим частичным отжигом (или «обратным отжигом»), который снижает прочность до желаемого уровня.
— h4 Деформационное упрочнение и стабилизация: Это обозначение применяется только к магнийсодержащим сплавам, которые постепенно размягчаются при старении при комнатной температуре после деформационного упрочнения. Применяется низкотемпературный отжиг, стабилизирующий свойства.
Вторая цифра
Величина деформационного упрочнения и, следовательно, уровень прочности указывается второй цифрой.
-Hx2 | Четверть хард |
-Hx4 | Полутвердый |
-Hx6 | Три четверти |
-Hx8 | Полный хард |
-Hx9 | Очень твердый (минимальная прочность на разрыв превышает прочность на разрыв Hx8 на 2 тысячи фунтов / кв. Дюйм или более) |
Hx1, Hx3, Hx5 и Hx7 имеют промежуточное значение между параметрами, определенными выше.
Пределы механических свойств, соответствующие каждому обозначению состояния, можно найти, обратившись к соответствующему алюминиевому стандарту, например Стандартам и данным алюминиевой ассоциации или ASTM B 209.
Третья цифра
Третья цифра иногда используется для обозначения вариации основного двузначного характера.
.Завод по производству алюминиевого сплава, изготовленная на заказ OEM / ODM производственная компания из алюминиевого сплава
Всего найдено более 2000 заводов и компаний по производству древесины из алюминиевого сплава с более чем 6000 товаров. Закажите высококачественную древесину из алюминиевого сплава на нашем большом количестве надежных заводов по производству древесины из алюминиевого сплава. Бриллиантовый членТип бизнеса: | Торговая компания |
Основные продукты: | Детали оборудования, пластмассовые детали, формы, электронные компоненты |
Mgmt.Сертификация: | ISO 9001, ISO 14001, ISO 14000, IATF16949, ISO 22000 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | OEM, ODM, собственный бренд |
Расположение: | Шэньчжэнь, Гуандун |
Тип бизнеса: | Производитель / Factory , Торговая компания |
Основные продукты: | Кромкооблицовочный станок, Панельная пила, Деревообрабатывающий инструмент, Сверлильный станок, Сверлильный станок по дереву Сверлильный станок |
Mgmt.Сертификация: | ISO 9001, ISO 9000, ISO 14064 |
Собственность завода: | Частный собственник |
Объем НИОКР: | OEM, ODM, собственный бренд |
Расположение: | Шэньчжэнь, Гуандун |
Тип бизнеса: | Производитель / Factory , Торговая компания |
Основные продукты: | Алюминий Профиль |
Mgmt.Сертификация: | ISO 9001, ISO 14001, OHSAS / OHSMS 18001 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | ODM, OEM |
Расположение: | Хучжоу, Чжэцзян |
Тип бизнеса: | Торговая компания |
Основные продукты: | Станок для лазерной маркировки, Станок для лазерной резки, Станок с ЧПУ |
Mgmt.Сертификация: | QC 080000 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | OEM, собственный бренд |
Расположение: | Ляочэн, Шаньдун |
Тип бизнеса: | Производитель / Factory , Торговая компания |
Основные продукты: | Алюминий Композитная панель, Плитка ACP, Алюминий Композитная панель с сердечником, Доска CEP, Стеновая панель из ПВХ |
Mgmt.Сертификация: | ISO9001: 2015, ISO14001: 2015 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | Собственный бренд, ODM, OEM |
Расположение: | Гуанчжоу, Гуандун |
Тип бизнеса: | Производитель / Factory |
Основные продукты: | Станок для лазерной резки, Машина для лазерной сварки, Машина для лазерной маркировки, Машина для лазерной очистки |
Mgmt.Сертификация: | ISO9001: 2015 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | Собственный бренд, ODM, OEM |
Расположение: | Шэньчжэнь, Гуандун |
Тип бизнеса: | Торговая компания |
Основные продукты: | Фанера, МДФ, Фанера фасонная |
Mgmt.Сертификация: | ISO 9000 |
Собственность завода: | Общество с ограниченной ответственностью |
Расположение: | Вэйфан, Шаньдун |
Основные рынки: | Юго-Восточная Азия / Ближний Восток , Африка |
Модуль Юнга — предел текучести и растяжения для обычных материалов
Модуль упругости — или модуль Юнга alt. Модуль упругости — это показатель жесткости эластичного материала. Он используется для описания упругих свойств таких объектов, как проволока, стержни или колонны, когда они растягиваются или сжимаются.
Модуль упругости при растяжении определяется как
«отношение напряжения (силы на единицу площади) вдоль оси к деформации (отношение деформации к начальной длине) вдоль этой оси»
Его можно использовать для прогнозирования удлинения или сжатие объекта до тех пор, пока напряжение меньше предела текучести материала.Подробнее об определениях под таблицей.
АБС-пластик | 1,4 — 3,1 | 40 | |
A53 Стандартная сварная и бесшовная стальная труба — марка A | 331 | 207 | |
A53 Бесшовная и сварная стандартная сталь Труба — класс B | 414 | 241 | |
A106 Бесшовная труба из углеродистой стали — марка A | 400 | 248 | |
A106 Бесшовная труба из углеродистой стали — марка B | 483 | 345 | |
Бесшовная труба из углеродистой стали A106 — класс C | 483 | 276 | |
Стальная труба A252 для сваи — сорт 1 | 345 | 207 | |
Стальная труба A252 свай — сорт 2 | 414 | 241 | |
A252 Стальная труба для забивки свай — Gr ade 3 | 455 | 310 | |
Конструкционные трубы из углеродистой стали A501, класс A | 400 | 248 | |
A501 Конструкционные трубы из горячеформованной углеродистой стали — класс B | 483 | 345 | |
A523 Стальные трубопроводы для кабельных цепей — класс A | 331 | 207 | |
A523 Стальные трубопроводы для кабельных цепей — класс B | 414 | 241 | |
A618 горячеформованные высокопрочные Низколегированные конструкционные трубы — классы Ia и Ib | 483 | 345 | |
A618 Горячеформованные высокопрочные низколегированные конструкционные трубы — класс II | 414 | 345 | |
A618 Hot- Формованные высокопрочные низколегированные конструкционные трубы — класс III | 448 | 345 | |
Линейная труба API 5L | 310 — 1145 | 175 — 1048 | |
Ацетали | 2.8 | 65 | |
Акрил | 3,2 | 70 | |
Алюминий бронза | 120 | ||
Алюминий | 69 | 110 | 95 |
Алюминиевые сплавы | 70 | ||
Сурьма | 78 | ||
Арамид | 70-112 | ||
Бериллий (Be) | 287 | ||
Бериллий Медь | 124 | ||
Висмут | 32 | ||
Кость компактная | 18 | 170 (компрессионная) | |
Кость губчатая | 76 | ||
Bo ron | 3100 | ||
Латунь | 102-125 | 250 | |
Латунь, морской | 100 | ||
Бронза | 96-120 | ||
CAB | 0.8 | ||
Кадмий | 32 | ||
Пластик, армированный углеродным волокном | 150 | ||
Углеродная нанотрубка, одностенная | 1000 | ||
Чугун 4.5 % C, ASTM A-48 | 170 | ||
Целлюлоза, хлопок, древесная масса и регенерированная | 80-240 | ||
Ацетат целлюлозы, формованный | 12-58 | ||
Ацетат целлюлозы, лист | 30-52 | ||
Нитрат целлюлозы, целлулоид | 50 | ||
Хлорированный полиэфир | 1.1 | 39 | |
Хлорированный ПВХ (ХПВХ) | 2,9 | ||
Хром | 248 | ||
Кобальт | 207 | ||
Бетон 17 | |||
Бетон, высокая прочность (сжатие) | 30 | 40 (сжатие) | |
Медь | 117 | 220 | 70 |
Алмаз (C) | 1220 | ||
Древесина пихты Дугласа | 13 | 50 (сжатие) | |
Эпоксидные смолы | 3-2 | 26-85 | |
Древесноволокнистая плита средней плотности | 4 | ||
Льняное волокно | 900 18 58|||
Стекло | 50-90 | 50 (сжатие) | |
Стеклоармированная полиэфирная матрица | 17 | ||
Золото | 74 | ||
Гранит | 52 | ||
Графен | 1000 | ||
Серый чугун | 130 | ||
Конопляное волокно | 35 | ||
Инконель | 214 | ||
Иридий | 517 | ||
Железо | 210 | ||
Свинец | 13.8 | ||
Магний металлический (Mg) | 45 | ||
Марганец | 159 | ||
Мрамор | 15 | ||
МДФ — средней плотности ДВП | 4 | ||
Ртуть | |||
Молибден (Мо) | 329 | ||
Монель Металл | 179 | ||
Никель | 170|||
Никель-серебро | 128 | ||
Никелевая сталь | 200 | ||
Ниобий (колумбий) | 103 | ||
2-4 | 45-90 | 45 | |
Нейлон-66 | 60-80 | ||
Дуб (вдоль волокон) | 11 | ||
Осмий (Os) | 550 | ||
Фенольные литые смолы | 33-59 | ||
Формовочные смеси фенолформальдегида | 45-52 | ||
Фосфорная бронза | 116 | ||
Сосновая древесина (вдоль волокон) | 9 | 40 | |
Платина | 147 | ||
Плутоний | 97 | ||
Полиакрилонитрил, волокна | 200 | ||
Полибенз оксазол | 3.5 | ||
Поликарбонаты | 2,6 | 52-62 | |
Полиэтилен HDPE (высокая плотность) | 0,8 | 15 | |
Полиэтилентерефталат, ПЭТ | 2 — 2,7 | 55 | |
Полиамид | 2,5 | 85 | |
Полиизопрен, твердая резина | 39 | ||
Полиметилметакрилат (ПММА) | 2.4 — 3,4 | ||
Полиимидные ароматические углеводороды | 3,1 | 68 | |
Полипропилен, PP | 1,5 — 2 | 28-36 | |
Полистирол, PS | 3 — 3,5 | 30-100 | |
Полиэтилен, LDPE (низкая плотность) | 0,11 — 0,45 | ||
Политетрафторэтилен (PTFE) | 0,4 | ||
Жидкий полиуретановый литой | 10-20 | ||
Полиуретановый эластомер | 29-55 | ||
Поливинилхлорид (ПВХ) | 2.4 — 4,1 | ||
Калий | |||
Родий | 290 | ||
Резина, малая деформация | 0,01 — 0,1 | ||
Сапфир | 435 | ||
Селен | 58 | ||
Кремний | 130-185 | ||
Карбид кремния | 450 | 3440 | |
Серебро | 72 | ||
Натрий | |||
Сталь, высокопрочный сплав ASTM A-514 | 760 | 690 | |
Сталь нержавеющая AISI 302 | 180 | 860 | 502 |
Сталь, конструкционная ASTM-A36 | 200 | 400 | 250 |
Тантал | 186 | ||
Торий | 59 | ||
Олово | 47 | ||
Титан | |||
Титановый сплав | 105-120 | 900 | 730 |
Эмаль для зуба | 83 | ||
Вольфрам (Вт) | 400-410 | ||
Карбид вольфрама (WC) | 450-650 | ||
Уран | 170 | ||
Ванадий | 131 | 900 18 | |
Кованое железо | 190-210 | ||
Дерево | |||
Цинк | 83 |
- 1 Па (Н / м 2 ) = 1×10 -6 Н / мм 2 = 1.4504×10 -4 psi
- 1 МПа = 10 6 Па (Н / м 2 ) = 0,145×10 3 psi (фунт f / дюйм 2 ) = 0,145 тыс. фунтов на квадратный дюйм
- 1 ГПа = 10 9 Н / м 2 = 10 6 Н / см 2 = 10 3 2 Н / мм 0,145×10 6 фунтов на кв. Дюйм (фунт на / дюйм 2 )
- 1 МПа = 10 6 фунтов на квадратный дюйм = 10 3 тысяч фунтов на квадратный дюйм
47 фунтов на квадратный дюйм 1 2 ) = 0.001 тыс. Фунтов / кв. Дюйм = 144 фунт / кв. Дюйм (фунт на / фут 2 ) = 6 894,8 Па (Н / м 2 ) = 6,895 x 10 -3 Н / мм 2
Примечание! — этот онлайн-преобразователь давления может использоваться для преобразования единиц модуля упругости при растяжении.
Деформация — ε
Деформация — это «деформация твердого тела под действием напряжения» — изменение размера, деленное на исходное значение размера — и может быть выражено как
ε = dL / L (1)
где
ε = деформация (м / м, дюйм / дюйм)
дл = удлинение или сжатие (смещение) объекта (м , дюйм)
L = длина объекта (м, дюйм)
Напряжение — σ
Напряжение — это сила на единицу площади и может быть выражена как
σ = F / A (2)
где
σ = напряжение (Н / м 2 , фунт / дюйм 2 , psi)
F = приложенная сила (Н, фунт)
A = площадь напряжения объекта (м 2 , в 2 )
- растягивающее напряжение — напряжение, стремящееся к растяжение или удлинение материала — действует нормально по отношению к напряженной области
- сжимаемое напряжение — напряжение, которое имеет тенденцию сжимать или укорачивать материал — действует нормально по отношению к напряженной области
- напряжение сдвига — напряжение, которое имеет тенденцию к сдвигу материала — действует в плоскости напряженной области под прямым углом к сжимаемому или растягивающему напряжению
Модуль Юнга — Модуль упругости при растяжении, Модуль упругости — E
Модуль Юнга может быть выражен как
E = напряжение / деформация
= σ / ε
= (F / A) / (dL / L) (3)
, где
E = Модуль упругости Юнга (Па, Н / м 2 , фунт / дюйм 2 , фунт / дюйм2)
- , названный в честь 18-го века Английский врач и физик Томас Янг
Эластичность
Эластичность — это свойство объекта или материала, указывающее, как он восстановит его первоначальную форму после искажения.
Пружина — это пример упругого объекта: при растяжении она создает восстанавливающую силу, которая стремится вернуть его к исходной длине. Эта восстанавливающая сила в целом пропорциональна растяжению, описанному законом Гука.
Закон Гука
Чтобы растянуть пружину вдвое дальше, требуется примерно вдвое больше силы. Эта линейная зависимость смещения от силы растяжения называется законом Гука и может быть выражена как
F s = -k dL (4)
, где
F s = усилие в пружине (Н)
k = жесткость пружины (Н / м)
dL = удлинение пружины (м)
Обратите внимание, что закон Гука также может применяться к материалам, испытывающим трехмерное напряжение (трехосное нагружение).
Предел текучести — σ y
Предел текучести в инженерии определяется как величина напряжения (предел текучести), которому может подвергаться материал перед переходом от упругой деформации к пластической деформации.
- Предел текучести — материал постоянно деформируется
Предел текучести для низко- или среднеуглеродистой стали представляет собой напряжение, при котором происходит заметное увеличение деформации без увеличения нагрузки. В других сталях и цветных металлах этого явления не наблюдается.
Предел прочности на разрыв — σ u
Предел прочности при растяжении — UTS — материала — это предельное напряжение, при котором материал фактически разрывается с внезапным высвобождением накопленной упругой энергии.
.Алюминий, одетый деревом Старой моды Алюминий & деревянные окна наклона и поворота
Описание продукта
Алюминиевые, деревянные, старинные алюминиевые и деревянные наклонно-поворотные окна
- Интегрированная конструкция окна с защитой от кражи, защита от краж, облегчает циркуляцию воздуха;
- Высокая прочность, высокая прочность марли King kong, коррозионно-стойкая, легко моется;
- Глубина рамы 90 мм, запатентованная структура профиля «симбиотик алюминия и дерева», обеспечивающая высокую устойчивость, большую устойчивость к давлению ветра и безопасность;
- Внутренняя твердая древесина — стандартный импортный дуб из Соединенных Штатов, с двухкомпонентной краской на водной основе для защиты окружающей среды, естественной красотой, экологическим здоровьем.Наружный сплошной цвет из алюминиевого сплава, атмосферостойкость и красивый, многоцветный вариант; не выцветает
- Гибкий с полым закаленным, полым в многофункциональных стеклянных проектах, сублимирует стиль спальни, расширяет индивидуальные черты
- Закрытая конструкция с тройным уплотнением, обеспечивающая герметичность, водонепроницаемость, теплоизоляцию и звукоизоляцию более прочный, полный комплект из ленты METEOR, Германия, профессиональный и надежный
старинные алюминиевые и деревянные поворотно-откидные окна:
Симбиотические окна и двери из алюминия и дерева Старомодные алюминиевые и деревянные поворотно-откидные окна | |
Натуральное | Внутреннее деревянное дерево: Близость к природе, повышение качества, хорошее зрение |
Окружающая среда ntal | Через теплоизоляцию системы, уменьшая потребление энергии, в то же время уменьшая излучение кондиционера и отопления |
Энергосберегающее | Зимой оконная рама с изоляционной полосой может уменьшить 1/3 тепла потери через окно. Летом оконная рама с изолированной полосой может снизить потери энергии в кондиционировании воздуха. |
Здоровое | Через регулировку температуры в помещении не менее 12–13 градусов. Это лучшая комфортная среда |
Снижение шума | Использование полого стекла разной толщины и термоизоляция алюминиевых профилей с полостью, уменьшение резонанса звуковой волны, предотвращение передачи звука и т. Д. чем 30дБ. |
Предотвращение конденсации | С изолированной полосой профиля на внутренней поверхности температура близка к температуре внутри помещения, снижает возможность конденсации воды внутри помещения. |
Коэффициент теплопроводности | При использовании теплоизоляционных профилей с термическим разделением коэффициент теплопроводности на 1,8–3,5 Вт / м2 · К меньше, чем у обычного алюминиевого профиля на 140–170 Вт / м2 · К; Использование полого стекла — 2.0-3.59W / м2 · К меньше, чем обычный алюминиевый профиль 6.69-6.84W / м 2 · К. Уменьшение теплопроводности через окно |
Цветной | Анодирование, порошковое покрытие и электрофорез позволяют производить алюминиевые профили разного цвета. Благодаря комбинации роликов, он может производить разные цвета внутри и снаружи |
КОНФИГУРАЦИЯ
0 Описание03 Профиль 03 | Сплав : термический разрыв, без термического разрушения | |
Обработка поверхности : индивидуальная (порошковое покрытие / электрофорез / анодирование и т. Д.) | ||
Толщина : 1 ,4 мм ~ 2,0 мм или индивидуально | ||
Ширина : 40 мм / 50 мм / 55 мм / 70 мм / 80 мм / 90 мм / 100 мм / 125 мм или индивидуально | ||
Дерево | Профиль: импортный дуб или каштан из Южной Азии / американский дуб / американский черный орех / тик / красное дерево / бубинга / красный сандал… | |
Цвет : см. цветовую карту | ||
Стекло | Тип : Прозрачный / ламинированный / LOW-E / полый / закаленный / плавающий и т. Д. | |
Одинарное остекление : 4/5/6/8/10/12/15 / 19мм и т. Д. | ||
Двойное остекление : 5мм + 9A + 5мм / 5мм + 12A + 5мм / 6 мм + 12A + 6 мм / 5 мм + 0,76PVB + 5 мм / 6 мм + 1,14PVC + 6 мм + 16A и т. Д. | ||
Тройной : 5 мм + 9A + 5 мм + 9A + 5 мм | ||
Крепеж | Оригинальный немецкий бренд : ROTO / HOPPE / SIEGENIA… | |
Гибко открываемый и прочно приклепанный | ||
Принадлежности | 03 | Замок высшего качества Антивозрастной резиновый герметик EPDM|
Размер | индивидуальный | |
Цвет | Белый / Шампанское / Серый / Древесное зерно / Серебро и т. Д. | |
Открытый тип | Крепление / Раздвигание / Подвешивание / Складывание и т. Д. | |
Профессиональное обслуживание | 1.Конкурентная цена | |
2.Профессиональный Группа разработчиков | ||
3. Опытный рабочий | ||
4. Оперативная быстрая доставка и удовлетворительное послепродажное обслуживание |
Параметры производительности
03
Характеристики ветрового давления | ≥5.0 кПа | GB / T 7106-2008 / 9 КЛАСС |
Воздухопроницаемость (м3 / мч) | ≤0,5 м 3 (hm) | GB / T 7107-2008 / 8 КЛАСС |
Водопроницаемость | ≥700 кПа | GB / T 7108-2008 / 6 КЛАСС |
Звукоизоляция | ≥35 дБ | Т 8485-2008 / 6 КЛАСС |
Показатели сохранения тепла (Вт / м2.k) | ≤1.0w (m2.k) | GB / T 8484-2008 / 10 КЛАСС |
Затенение SC | ≤0.2 | GB / T 2680-2008 / 7 КЛАСС |
Внутренние жалюзи (2 типа):
- Eletric жалюзи: 110 В или 220-230 В, с дистанционным управлением * 1, переключатель * 1. Остекление: 5 мм + 27A + 5 мм
- Ручные жалюзи: может управлять жалюзи влево-вправо, вверх-вниз, управление жалюзи, прочное, Остекление: 5 мм + 19A + 5 мм
Дизайн внутренних оконных жалюзи, защита вашей конфиденциальности и регулировать яркость комнаты.
Информация о компании
Почему выбирают нас?
Компания насчитывает более 30 высококвалифицированных профессиональных инженерных кадров, а также 158 профессиональных технических специалистов и профессиональных строителей. Он также оснащен большим количеством крупной производственной техники и оборудования.
Преимущества бренда |
МАСШТАБ Новые заводы площадью более 10 000 квадратных метров с общей площадью более 8 000 квадратных метров, наш годовой объем производства дверей и окон достигает 300 000 квадратных метров. |
ДИЗАЙН Мы сотрудничаем с ведущими мировыми дизайнерскими учреждениями, чтобы производить изделия с искусством и практичностью. |
ОБЪЕКТ Качество нашей продукции обеспечивается хорошей стабильностью и точностью высокотехнологичного профессионального оборудования, такого как автомат для пробивки отверстий, станок для плазменной резки с ЧПУ, вырубной станок с ЧПУ, автоматический сварочный аппарат, концевой фрезерный станок с ЧПУ и автоматическая обжимка углов машина. |
МАТЕРИАЛЫ Используя известный алюминиевый профиль и драгоценную древесину из высококлассных районов Америки и Африки, а также аксессуары всемирно известных компаний (например, Германии), Tahenge создает прочные качественные двери и окна из лучших материалов. , |
УПРАВЛЕНИЕ Как компания, которая первой внедрила современные методы управления, мы представили профессиональную управляющую компанию и строго соблюдаем систему менеджмента качества ISO9001. |
СЕРВИС С огромным энтузиазмом и честностью мы предлагаем превосходные услуги, сочетающиеся с высоким качеством продукции Tahenge. |
НАСТРОЙКА Продукция Tahenge полностью адаптирована к потребностям конкретных групп благодаря приятному и практичному дизайну и высокому стандарту изготовления. |
Фокус на high-end
1. Новейшая симбиотическая система алюминия и дерева:
плотное соединение из массива дерева с алюминиевым экструзионным профилем вместо облицовки.
2. Уникальная технология обработки древесины:
специальный стабилизатор древесины и технология микробаланса, дополняют различные экологически чистые формулы. Отлично улучшить поведение от плесени, моли, влаги, воды, огня, деформации, трещин.Выберите симбиотическое окно из алюминия и дерева, вы можете получить более плотное, твердое, устойчивое к раскалыванию, эластичное дерево, сохраняя при этом его естественные характеристики.
3. Интеграция с экранным окном:
Меньше значит больше, безопасность без опций.
4. Выдающееся собрание:
- Оборудование: ROTO, известный производитель оборудования высшего класса в мире
- Прокладка: METEOR, профессиональный производитель прокладок высшего качества (поставщик EPDM для Daimler-Benz, BMW)
- Краска: WAGNER, поставщик высококачественных материалов для распыления в Германии, основанный более 60 лет назад.
Оборудование и помещения
Наши услуги
фокус в течение 10 лет
- OEM-сервис.
- Возможен бесплатный дизайн по желанию заказчика.
- 10 лет профессионального опыта в исследованиях, производстве и маркетинге.
- Наш современный центр глубокой обработки может выполнять такие операции, как резка, пробивка, сверление, нарезание резьбы и т. Д.
Запрос —-> Чертеж —-> Подтверждение формы —-> Подтверждение образца —-> Размещение заказа —-> Доставка
Наши профессиональная команда производителей и монтажников может гарантировать высокое качество продукции. Мы надеемся на ваше искреннее сотрудничество с нашими продуктами самого высокого качества, современным оборудованием и оборудованием, современными системами управления и наиболее удовлетворительным обслуживанием.
Сертификаты
Пример проекта
FAQ
Q1: | Какой у вас основной продукт? |
A: | Мы можем поставить алюминиевую полную систему (включая профиль, стекло, фурнитуру, аксессуары), а также алюминиевые и деревянные окна и дверную симбиотическую систему |
Q2: | Какая у вас цена? |
A: | Цена основана на конкретных требованиях покупателя, поэтому, пожалуйста, предоставьте информацию ниже, чтобы мы могли указать вам точную цену. 3) Тип стекла (одинарное или двойное, ламинированное или другое) / толщина стекла (5 мм или 6 мм или другое, если вы не знаете, мы можем рекомендовать в зависимости от размера окна) / цвет стекла (прозрачное, тонированное, отражающее , Low-E или другие, с аргоном или без) |
Q3 | Каков стандартный размер ваших окон и дверей? |
A: | Наш продукт СДЕЛАН КЛИЕНТОМ.Мы всегда изготавливаем окна и двери по габаритам покупателя. |
4 квартал | Каковы ваши сроки доставки? |
A: | По вашему заказу |
Q5 | Каковы ваши условия оплаты? |
A: | По T / T или L / C |
Q6 | Какие услуги вы будете предоставлять? |
A: | Мы можем предоставить услуги по проектированию, а также надзор за установкой наших окон и дверей, а также навесных стен. |
Если у вас возникнут какие-либо вопросы, сообщите нам, мы сделаем все возможное, чтобы их решить! |
Sapphire Feng
Guangxi Nanning Tahenge Building Materials Co., LTD
Телефон: 0086 771-5322718
Факс: 0086 771-5322718
WhatsApp12: 0096 : //en.gxthjc.com/main.html http://gxtide.en.alibaba.com/
Добавить: № 11-1, Wenquan Road, Santang Town, Nanning, Guangxi
…
,