Сваи стойки и сваи висячие – Висячие сваи и сваи стойки

Содержание

72. Определение несущей способности свай-стоек и висячих свай.

Сваи-стойки. Поскольку потеря несущей способности сваей-стойкой может произойти либо в результате разрушения грунта под ее нижним концом, либо в результате разрушения самой сваи, ее расчет на вертикальную нагрузку проводится по двум условиям: по условию прочности материала ствола сваи и по условию прочности грунта под нижним концом сваи. За несущую способность сваи в проекте принимается меньшая величина.

По прочности материала сваи рассчитываются как центрально

сжатые стержни. При низком ростверке расчет ведется без учета продольного изгиба сваи, за исключением случаев залегания с пове­рхности мощных слоев очень слабых грунтов (торф, ил), а при высоком ростверке — с учетом продольного изгиба на участке сваи, не окруженном грунтом.

Несущая способность по материалу Fdm наиболее широко приме­няемых в строительстве железобетонных призматических свай рас­считывается по формуле:

где φ=1 — коэффициент продольного изгиба, обычно принимаемый; ус — коэффициент условий работы, принимаемый равным 0,85 для свай сечением менее 0,3×0,3 м и γс=1 —для свай боль­шего сечения; γm — коэффициент условий работы бетона, принима­емый γm = 1 для всех видов свай, кроме буронабивных. Rb — расчетное со­противление бетона осевому сжатию, зависящее от его класса, кПа; А — площадь поперечного сечения сваи, м2; γа — коэффициент условий работы арматуры, принимаемый γа=1, RS — расчетное сопротивление сжатию арматуры, кПа; Аа — площадь сечения арматуры, м2.

По прочности грунта под нижним концом сваи несущая способность Fd сваи-стойки определяется по формуле:

Fd =γCRА, где γC=1 — коэффициент условий работы сваи в грунте; R — рас­четное сопротивление грунта под нижним концом сваи, кПа; А — площадь опирания сваи на грунт, м

2. Расчетное сопротивление грунта R для всех видов забивных свай принимается равным 20 МПа, а для свай, заделанных в невыветрелую скальную породу(без слабых прослоек) на глуби­ну не менее 0,5 м,— по формуле

Висячие сваи. Расчет несущей способности вертикально нагру­женных висячих свай производится, как правило, только по прочно­сти грунта, так как по прочности материала сваи она всегда заведо­мо выше.

где ус — коэффициент условий работы сваи в грунте; γCR, γCF— коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта;

R — расчетное сопротивление под нижним концом сваи, кПа; A — площадь поперечного сечения сваи, м2; и — периметр поперечного сечения сваи, м; fI — расчетное со­противление I-го слоя грунта основания по боковой поверхности сваи, кПа2 hI —толщина I-го слоя грун­та, соприкасающегося с боковой поверхностью сваи, м.

Расчетная схема к определению несущей способности висячей сваи практическим методом.

R = (Rcn/ γg) (ld/df+1,5 ), где Rcn— нормативное временное сопротивление скального грунта сжатию в водонасыщенном состоянии; γg=1,4 — коэффициент надежности по грунту; ld— расчетная глубина заделки сваи в грунт; df— наружный диаметр сваи, заделанной в грунт.

Вычисленная по формулам несущая способность свай в некоторых случаях может существенно отличаться от их несущей способности в реальных условиях строительной площадки, поэтому непосредственно на строительной площадке несущую способность свай проверяют по данным испытаний динамической нагрузкой, статическим зондированием или статической нагрузкой

71. Статич. испытания свай.

Несущую способность Fd кН (тc), свай по результатам их испытаний вдавливающей, выдергивающей и горизонтальной статическими нагрузками и по результатам их динамических испытаний следует определять по формуле (16)

где c,— коэффициент условий работы; в случае вдавливающих или горизонтальных нагрузок

c = 1; в случае выдергивающих нагрузок принимается по указаниям п. 4.5;

Fu,p нормативное значение предельного сопротивления сваи, кН (тc), определяемое в соответствии с указаниями пп. 5.4 — 5.7;

g,— коэффициент надежности по грунту, принимаемый по указаниям п. 5.4.

Примечание. Результаты статических испытаний свай на горизонтальные нагрузки могут быть использованы для непосредственного определения расчетной нагрузки, допускаемой на сваю, если условия испытаний соответствуют действительным условиям работы сваи в фундаменте здания или сооружения.

В случае, если число свай, испытанных в одинаковых грунтовых условиях, составляет менее шести, нормативное значение предельного сопротивления сваи в формуле (16) следует принимать равным наименьшему предельному сопротивлению, полученному из результатов испытаний, т.е.

Fu,p = Fu,min, а коэффициент надежности по. грунту g = 1.

В случае, если число свай, испытанных в одинаковых условиях, составляет шесть и более, Fu,p и g следует определять на основании результатов статистической обработки частных значений предельных сопротивлений свай Fu, полученных по данным испытаний, руководствуясь требованиями ГОСТ 20522-75 применительно к методике, приведенной в нем для определения временного сопротивления. При этом для определения частных значений предельных сопротивлений следует руководствоваться требованиями п. 5.5 при вдавливающих, п. 5.6 — при выдергивающих и горизонтальных нагрузках и п. 5.7 — при динамических испытаниях.

Если нагрузка при статическом испытании свай на вдавливание доведена до нагрузки, вызывающей непрерывное возрастание их осадки s без увеличения нагрузки (при s 20 мм), то эта нагрузка принимается за частное значение предельного сопротивления Fu испытываемой сваи.

Во всех остальных случаях для фундаментов здании и сооружений (кроме мостов и гидротехнических сооружений) за частное значение предельного сопротивления сваи Fu вдавливающей нагрузке следует принимать нагрузку, под воздействием которой испытываемая свая получит осадку, равную s и определяемую по формуле

s = su,mt, (17)

где su,mt предельное значение средней осадки фундамента проектируемого здания или сооружения, устанавливаемое по указаниям СНиП 2.02.01-83;

 — коэффициент перехода от предельного значения средней осадки фундамента здания или сооружения su,mt к осадке сваи, полученной при статических испытаниях с условной стабилизацией (затуханием) осадки.

Значение коэффициента следует принимать равным 0,2 в случаях, когда испытание свай производится при условной стабилизации, равной 0,1 мм за 1 ч, если под их нижними концами залегают песчаные или пылевато-глинистые грунты с консистенцией от твердой до тугопластичной, а также за 2 ч, если под их нижними концами залегают пылевато-глинистые грунты от мягкопластичной до текучей консистенции. Значение коэффициента допускается уточнять по результатам наблюдений за осадками зданий, построенных на свайных фундаментах в аналогичных грунтовых условиях.

Если осадка, определенная по формуле (17), окажется более 40 мм, то за частное значение предельного сопротивления сваи Fu следует принимать нагрузку, соответствующую s = 40 мм.

Ступени загружения при испытаниях свай статической вдавливающей нагрузкой должны назначаться равными 1/10 — 1/15 предполагаемого предельного сопротивления сваи Fu.

При испытании свай статической выдергивающей или горизонтальной нагрузкой за частное значение предельного сопротивления Fu по графикам зависимости перемещений от нагрузок принимается нагрузка на одну ступень менее нагрузки, без увеличения которой перемещения сваи непрерывно возрастают.

Для определения несущей способности свай по результатам полевых исследований для каждого здания или сооружения должно быть проведено не менее:

статических испытании сваи и свай-штампов …………………….. 2

studfile.net

как определить условные размеры фундамента

Схематическое изображение висячего фундаментаСхематическое изображение висячего фундамента

Одна из самых больших проблем, с которыми сталкиваются строители — это слабый грунт. На такой почве довольно трудно заложить надёжное основание даже для небольшого одноэтажного дома, не говоря уже о массивных многоэтажках. Наиболее эффективным выходом из данной ситуации является свайный фундамент. В зависимости от типа опирания на грунт, данная технология подразделяется на две разновидности: сваи стойки и висячие сваи.

Два вида свайной технологии

Каждый из двух подтипов свайной технологии имеет свои плюсы и свои недостатки. Общим для обоих методов является то, что и в том, и в другом случае постройка опирается своим весом на сваи, заглублённые в грунт. Однако, способы заглубления в обоих случаях абсолютно разные, как и принципы работы стоечной и висячей опорной конструкции.

Свая-стойка

Сваи стойки представляют собой опору, которая проходит сквозь слабые слои почвы и углубляется в твёрдый грунт. Степень заглубления в прочные слои зависит от массивности строящегося здания, и не должна быть меньше 0,5 м. Принцип действия опоры в данном случае такой: свая, подобно жёсткому стержню, воспринимает на себя вес постройки, и передаёт его плотным слоям почвы. В этом случае основную работу по перераспределению массы производит нижняя часть сваи, опирающаяся на прочный несжимаемый грунт.

Подобный метод отлично подходит для тех случаев, когда слабый слой почвы не слишком большой, и не превышает в глубину нескольких метров. При более глубоком залегании несжимаемых грунтов финансовые расходы на установку свай-стоек резко возрастают. Прежде всего, это связано с необходимостью соблюдать минимальное соотношение длины стойки и её сечения, для сохранения её жёсткости и прочности, что значительно увеличивает размеры каждой опоры.

Принцип работы сваи-стойки (слева) и висячей опорыПринцип работы сваи-стойки (слева) и висячей опоры

Висячие сваи

Висячие сваи, в отличие от свай-стоек, «работают» по совершенно другому принципу. Опирание в данном случае происходит на слабый просадочный грунт, а не на прочные несжимаемые породы. Опоры находятся в полуподвешенном состоянии, но, тем не менее, способны нести на себе значительные нагрузки. Происходит это за счёт силы трения боковых поверхностей опор об окружающий её слабый грунт.

При этом до 70% всего веса постройки передаётся почве через боковые стенки сваи, в результате силы трения. И лишь около 30% — непосредственно через нижнюю торцевую часть. Для свай-стоек данная пропорция обратная: практически 90% нагрузки передаётся прочным породам через остриё опоры.

Виды опор

В качестве материала для свайных опор могут выступать дерево прочных пород (лиственница, дуб, сосна), металлические трубы, железобетонные конструкции. Согласно нормативам ГОСТ, все виды железобетонных опор, как стоечного, так и висячего типа, подразделяются на несколько классов, в зависимости от:

  • Типа поперечного сечения.
  • Способа внутреннего армирования.
  • Типа конструкции.
Типы сечения фундаментных опорТипы сечения фундаментных опор

В поперечном сечении они чаще всего имеют форму квадрата или круга, реже – прямоугольника или двутавра. Продольное сечение бывает прямоугольным, в виде призмы, ромба или трапеции. Могут быть цельнолитыми или пустотелыми, и выполняться как совсем без армирования, так и с продольным или продольно-поперечным способом установки арматуры. Железобетонная опора обычно исполняется в виде монолитного бетонного столба, но особо габаритные конструкции могут делаться составными, из нескольких стыкуемых друг с другом деталей. Такой метод используется при необходимости опускания сваи на значительную глубину, или при значительной массивности опоры – для удобства транспортировки и заглубления.

По типу заглубления висячие сваи могут быть:

  • Забивными, когда заглубление в почву происходит механическим воздействием на верхнюю часть опоры – молотом-копром, вдавливающим или вибрационным механизмом.
  • Буронабивными. В этом случае в почве бурятся отверстия необходимой глубины, которые заполняются бетонным раствором.
  • Винтовыми. Подобные опоры снабжаются спиралевидными лепестками, и закручиваются при помощи специальных машин – сваекрутов.
  • Буровыми – в грунте бурится скважина определённого диаметра, который не должен превышать размер сечения сваи. В данное отверстие заглубляется свая под действием собственного веса либо посредством воздействия на неё извне.

Область применения

Используется висячая технология при возведении зданий самой различной массы и этажности – от небольших малоэтажных строений, до больших заводских цехов и многоквартирных домов. Выбор висячего или стоечного фундамента производится ещё на стадии проектирования здания в зависимости от геологических условий и конструктивных особенностей постройки. Перед этим в обязательном порядке производятся предварительные геодезические исследования, цель которых — определение показателей плотности грунта и глубины залегания твёрдых пород.

Особое внимание следует уделить возможности подвижек слабой почвы в результате сезонных или тектонических воздействий – замерзания и таяния, землетрясений, селей и оползней. Данные характеристики могут стать противопоказаниями к использованию при строительстве висячей технологии.

Не рекомендуется использования висячих свай на грунтах, сложенных илистыми и болотными осадками, торфяниках, а также на искусственных насыпях. Категорически запрещается монтаж висячих фундаментов на слабых поверхностях, имеющих уклон к горизонту, из-за высокой вероятности оползней.

Бетонные монолитные сваиБетонные монолитные сваи

Инженерные расчёты

Технология висячего фундамента достаточно сложна, и требует произведения тщательных расчётов ещё на этапе планирования. Данные вычисления отличаются от расчётов для свай-стоек — в них учитывается гораздо больше прямых и косвенных значений и параметров. Связано это с ненадёжностью слабых просадочных грунтов, как несущей опоры.

Определить необходимую несущую способность фундамента можно по формуле, данной в разделе №2-02-03-85 СНиП. Инженерные расчёты достаточно сложны, и производить их следует специалистам, обладающим соответствующим образованием. Для точного вычисления понадобятся следующие параметры:

  • Наружный периметр сечения сваи (u).
  • Площадь нижнего торца опоры (A).
  • Длина заглублённой части висячей опоры (Hi).

Также в формулу входит ряд табличных значений:

  • Сопротивление грунта под нижней частью опоры (R).
  • Сопротивление всех слоёв почвы, сквозь которые проходит свая (Fi).
  • Условный коэффициент работы конструкции под наконечником и на боковых поверхностях опоры. Зависит от способа заглубления и даны в соответствующих таблицах СНиП.

Коэффициент сопротивления различных типов грунта физическим нагрузкам

Рассчитывается нагрузка на сжатие каждой отельной опоры в соответствии со следующей формулой.

Коэффициент сопротивления различных типов грунта физическим нагрузкам

Это базовая формула для висячих опор, заглубляемых забивным методом. Имеется ещё одна формула, позволяющая рассчитать несущую способность сваи. Выполняется она на определение минимальной выдёргивающей нагрузки.

Коэффициент сопротивления различных типов грунта физическим нагрузкам

Параметры, используемые в данном случае аналогичны ранее приведённым, с той лишь разницей, что коэффициент условий работы имеет другое значение.

Недостатки технологии и способы их устранения

Главным недостатком висячего фундамента является его недостаточная несущая способность. Чтобы решить данную проблему и повысить надёжность конструкции, разработан целый ряд технологических методик.

  1. Увеличение поперечного сечения и длины опоры. Это позволяет сделать силу трения, удерживающую сваю в подвешенном состоянии более существенной.
  2. Использование «куста» из нескольких свай, забитых рядом друг с другом.
  3. Расширение нижней части опоры в виде пяты, что позволяет распределить давление массы постройки на большую площадь.

Практическое применение перечисленных методик имеет неплохую отдачу, однако, далеко не во всех случаях. Увеличение сечения и длины сваи неизбежно ведёт к удорожанию сметной стоимости постройки. Более габаритную сваю также сложнее транспортировать до места строительства, а работа с ней более трудоёмка.

При работе на слабых грунтах любое увеличение массы конструкции ведёт к ещё большей осадке фундамента. Это касается методики «кустистых» свай, когда опоры заглубляются пачками по 2 – 4 штуки.

Как показали наблюдения, в данном случае технология хорошо работает, если расстояние между отдельными «кустами» не превышает их 3-х диаметров. В противном же случае усадка «кустов» из-за их большей массы аналогична усадке одиночной сваи, а иногда и превышает этот показатель.

В настоящее время ведётся разработка новых, более эффективных способов увеличения прочности висячих фундаментов:

  1. Уплотнение грунта вокруг уже заглублённых опор. Достигается это при помощи бурения в межсвайных промежутках. При этом окружающий новую скважину грунт уплотняется, плотнее прилегая к уже имеющимся опорам. Для достижения большего эффекта рекомендуется производить бурение до глубины, превышающей нижний уровень заглубления фундамента на 1-2 м. В этом случае почва уплотняется и непосредственно под сваей, создавая опору для её острия. Чтобы закрепить достигнутый результат, в пробуренные скважины нагнетается быстротвердеющий цементный раствор.
  2. Целенаправленная инъекция бетонных растворов под каждую из установленных ранее свай. Это позволяет создать вокруг каждой опоры, а также под ней, прочную армирующую подушку из бетона. Среди плюсов инъекторного метода – отсутствие необходимости в проведении сложных земельных работ, и возможность усиления фундамента спустя длительное время после постройки здания. Данный способ вполне возможно применять для усиления и ремонта прочих типов фундаментов – ленточных, столбчатых и плитных.

На видео показаны основные виды свайных фундаментов.

Из-за сложности расчётов и самой технологии метод висячих свай чаще всего применяется профессиональными строителями. В частной же застройке он мало востребован из-за своей трудоёмкости. Однако при необходимости данный способ возведения фундамента вполне может быть использован и при строительстве небольших зданий с малой массой: деревянных жилых домов, хозяйственных построек и т.д.

kakfundament.ru

описание, виды, размеры, методы монтажа

Висячая свая используется на рыхлых грунтах при необходимости монтажа фундамента. Такие сваи способны удерживать нагрузку за счет сил трения почвы о боковую и торцевую части опоры. Отсутствие опоры снизу компенсируется длиной сваи и боковым трением. Если рассмотреть конусную висячую винтовую сваю, то у нее боковая поверхность будет принимать нагрузку до 70 %.

Описание

несущая способность висячей сваи

Висячая свая отличается от сваи-стойки тем, что последняя устанавливается опорой на почву. По длине уплотняет землю на боковых стенках. Со временем сцепление лишь возрастает. Осадка происходит за счет уплотнения почвы под острием опоры. Между одиночной висячей сваей и кустом есть отличия. При одинаковых нагрузках куст усаживается сильнее. Осадка увеличивается при тесном расположении свай куста.

Величина осадки будет зависеть от соотношения расстояний между сваями и их длины. Длину сваи можно определить с учетом характеристик почвы. Чем более рыхлой будет земля, тем длиннее должна быть свая. Следует брать в расчет и проектные нагрузки. Свая будет длиннее, чем большую нагрузку она должна будет принимать. Когда обычной длины не хватает, используются висячие составные опоры.

Методы монтажа

висячие сваи и сваи стойки

Висячая свая может погружаться несколькими способами, которые подбираются исследователями и проектировщиками при геодезических изысканиях. Среди основных способов погружения следует выделить:

  • ударный;
  • вибрационный;
  • виброударный;
  • вдавливание;
  • завинчивание;
  • вибровдавливание.

Описание способов

При вибрационном способе опора погружается методом направленной вибрации, что позволяет разряжать почву. Как только установка будет прекращена, осуществляется схлопывание почвы. Завинчивание подходит для винтовых висячих опор. Исключен метод с подмывом для таких свай, так как рыхлая почва будет ухудшать свои характеристики и необходимого сцепления добиться не удастся. Трения между боковой поверхностью опоры и почвой не будет.

Монтаж висячих опор на готовом фундаменте

висячая забивная свая

Иногда возникает ситуация, когда эксплуатируемый фундамент требует укрепления. В этом случае используется технология буронабивных висячих свай. В фундаменте или вплотную к основанию при этом шагом в 2 м в почве проделываются отверстия. Их глубина должна быть больше линии залегания основных свай, если работать предстоит с двойным основанием. Разница между этими значениями может достигать 2,5 м.

Пробуренные отверстия должны располагаться в свайных промежутках или около старых опор. Если укрепления требует плитный фундамент, то бурение осуществляется по всему периметру плиты. При этом плита сверлится насквозь. Так как фундаментная опора располагается внизу цокольного этажа или в подвале, работы производятся там.

На следующем этапе производится уплотнение почвы под воздействием давления. В шахты заливается бетонный раствор. Рекомендуется применять бетононасос, так как с его помощью можно получить нужное давление смеси. Это позволяет укрепить готовый фундамент любого типа. Такой метод имеет некоторые преимущества. Например, земляные работы минимальны. Сложные манипуляции исключены. Сама технология позволяет получить свайное основание буронабивного типа. Используется бетононасос и бурильная установка. Грунт уплотняется под высоким давлением, благодаря этому возрастает сила трения между сваей и почвой.

Если проводить сравнение с традиционной забивной опорой, описываемая позволяет получить опору, которая удерживается в земле надежнее. Такая технология позволяет укрепить готовый фундамент, если он начал проседать или разрушаться. Однако есть и минусы. Один из них заключается в том, что монтаж сваи такого типа выполнить довольно сложно. Это особенно верно, если у вас нет специальной техники.

Расчет сваи

расчет висячих свай

Расчет висячей сваи осуществляется по формуле: P = km (RH × F + u∑f ⁿili). Опоры могут иметь разные сечения:

  • квадратное;
  • прямоугольное;
  • круглое.

При определении главных параметров используются следующие величины: k — это коэффициент однородности почвы. F — это площадь упора, которая принимается по площади поперечного сечения. Сопротивление нижележащий почвы — это RH. Для глинистого грунта средней консистенции это значение равно 0,3 тонны на квадратный метр. Здесь следует соблюсти глубину забивки в 5 м.

Коэффициент условий работы обозначается буквой m. Толщина слоя почвы по бокам сваи в метрах обозначается в формуле буквами li. Нормативное сопротивление — f ⁿi. Периметр сечения опоры в метрах обозначается буквой u.

Висячий ростверк

висячая забивная свая

Свайные фундаменты обычно возводят под легкие здания. Именно поэтому наиболее популярны высокие свайные ростверки, которые еще называются висячими. Они выполняются в виде монолитной железобетонной ленты, высота которой достигает 40 см. Ее ширина может быть такой же, все будет зависеть от вида материала стен.

Устройство висячего ростверка на сваях начинается с монтажа опалубки. Ее сооружают по технологии, которая будет зависеть от выбранного вида ростверка. Он может быть незаглубленным, заглубленным или высоким. При сооружении заглубленного ростверка на дно траншеи укладывается песчано-гравийная подушка. Сверху устанавливается опалубка для ростверка. В плотном устойчивом грунте опалубка может устанавливаться лишь для его наземной части. При сооружении наземного ростверка опалубка устанавливается на песчано-гравийную подушку. Ее основание должно располагаться на уровне земли. При устройстве висячего ростверка можно установить опалубку несколькими способами. В некоторых случаях ее монтируют на подушку, которая предварительно осыпается и утрамбовывается. Ее высота должна соответствовать высоте подошвы ростверка. Как только бетон затвердеет и опалубка будет снята, подушка из-под ростверка удаляется.

Сваи-стойки

висячий ростверк на сваях

Рассматривая висячие сваи и сваи-стойки, вы должны знать, как определяется их несущая способность. Этот параметр для висячей сваи был рассчитан выше. Теперь можно узнать, какая формула используется для стойки. Она выглядит следующим образом: Fd = Yc × R × A. Разница здесь состоит лишь в том, что значение R, которое определяет сопротивление почвы под нижней частью опоры, принимается не по таблицам, а рассчитывается самостоятельно.

Железобетонная конструкция может работать в почве двумя способами. Один из них – опора-стойка. Такая свая получает устойчивость за счет того, что своей торцевой частью опирается на шар несжимаемой почвы. Висячий тип опоры устойчив за счет сопротивления земли острию и трению грунта с боковыми стенками сваи. На практике можно понять, что разница выражена в длине опоры. Та, что работает в виде стоек, обладает внушительной длиной. Ее острие проходит пласт поверхностной низкоплотной почвы. Далее он упирается в шар грунта.

Увеличение несущей способности. Размеры опоры

определение несущей способности висячих свай

Несущая способность висячей сваи определяется по формуле, которая была представлена выше. Но если ее недостаточно, то проблему можно решить несколькими способами. Первый заключается в увеличении диаметра опоры, в некоторых случаях увеличивается и длина. Кустистость тоже можно увеличить на одну единицу площади основания здания.

Изделия иногда расширяются в области питы. При этом повышается площадь трения на конце. Если при определении несущей способности висячих свай было обнаружено, что это значение должно быть увеличено, проблему можно решить методом использования современных технологий. Например, разрядно-импульсной методикой. Но стоит помнить, что увеличение размеров изделия может стать причиной удорожания строительства. Цена фундамента будет складываться из цен на каждый элемент. Чем толще опора, тем сложнее будет вкопать ее в почву. Количество вгоняемых свай для усиления может способствовать утяжелению конструкции как в прямом смысле, так и с финансовой точки зрения. Желаемой пользы при этом можно и не получить.

Иногда висячая забивная свая требует большей несущей способности. Но если использовать для этого кустистость, то конструкция будет больше усаживаться, чем одна опора. Длина стандартной сваи равна 7 м.

Существует практическое наблюдение: если шаг между опорами больше 3 диаметров, то одиночная свая и куст осаживаются примерно одинаково. Уменьшив это расстояние, можно увеличить усадку.

В заключение

При обустройстве фундаментов на слабой почве используются разные сваи. Они могут отличаться по методу погружения, материалу изготовления, форме и размерам поперечного сечения. По способу взаимодействия с почвенными слоями конструкции могут быть представлены стойками или висячими изделиями. В последнем случае столбы опираются на сжимаемые почвы, передавая нагрузки наконечнику и боковым поверхностям.

fb.ru

3Вопрос. Понятие о висячих сваях и сваях-стойках. Определение несущей способности свай-стоек.

1вопрос. Выполните разрез и вертикальный стык панелей наружной стены 5-ти этажного жилого дома, возводимого на основе поперечно-стеновой системы в районе с сухим климатом. Дайте обоснование выбора конструкций.

В современ.строительстве примен. только 3х-слойные панели с эффектив.теплоизолир.слоем. Внутр. и наруж. слои бетона соединяются на гибких связях, которые воспринимают температур.деф-ции.

Наруж.бетон.слой имеет большее сопротивление водопроницанию, что исключает возможность накопления свобод.и капилляр.влаги в толще ограждающих конструкций. 3х-слойные панели имеют большее сопротивление водопроницанию по сравнен. с 1- и 2х-слойными, позволяют в широком диапазоне менять прочность стены (за счет повышения марки бетона, армирования или увеличения сечения несущего слоя) и ее теплозащитные качества (за счет применения утеплителей различной эффективности). Это делает конструкцию стены из 3х-слойн.панелей универсальной, пригодной для различ. статических функций и в разных климатических условиях.

Требования к стыкам: 1).влагостойкость, 2).прочность, 3).долговечность, 4).воздухопроницаемость, 5).эстетичность.

Для района с сухим климатом применяется закрытый, открытый и дренированный стык панелей наружных стен. Для районов с погодными условиями, характеризующимися пыльными и песчаными бурями, а также для районов крайнего севера стыки должны проектироваться закрытыми с дополнительными конструктивными мероприятиями (нащельниками, нахлестками и т.д.). Закрытые стыки имеют герметизированную синтетическими мастиками внешнюю зону. Мастики наносят по шнуровым прокладкам(гернит, пароизол), прикрепленных клеем. Наличие упругих прокладок дает возможность свободной деформации, хорошее сцепление с бетоном, обеспечивает водо- и воздухоизоляцию. В качестве герметика используем пленочные, полисульфитные, силикатные или объемные нетвердые мастики.

— Поперечно-стеновая конструктивная система

2вопрос. Назовите функции перекрытий в многоэтажных зданиях. Объясните необходимость замоноличивания швов между сборными плитами перекрытий. Изобразите возможные схемы раскладки сборных плит перекрытий в панельных зданиях с:

а) поперечно-стеновой несущей системой;

б) продольно-стеновой несущей системой;

в) перекрестно-стеновой несущей системой.

Перекрытия в здании выполняет роль ограждающей конструкции, звукоизоляции, а также несущей конструкции.

Перекрытия, кроме основной функции (нести вертикальные нагрузки) выполняют функцию жесткого диска с целью распределения горизонтальной нагрузки между вертикальными несущими стенами, который обеспечивает прочность и устойчивость здания. Чтобы создать жесткий диск перекрытия необходимо сваривать расположенные на боковых гранях арматурные выпуски и замоноличивать швы цементным раствором марки 100, создавая растворные шпонки в плитах толщиной 160мм. Бетонные шпонки обеспечивают совместную работу плит на сдвиг в вертикальном и горизонтальном направлениях, повышается жесткость перекрытия. Жесткий диск перекрытия работает упруго.

Швы между плитами:

а) с поперечными несущими стенами:

«+» — высокая поперечная жесткость и устойчивость, рациональное использование материала продольных стен.

«-» — ограничение свободной планировки. Здания применяются для жилья.

б) с продольными несущими стенами:

Перекрытия опираются на продол.несущие стены. Под несущие стены и диафрагмы жесткости ставятся фундаменты. Недостаток – неэффектив.использование материала в прод.несущих стенах. Преимущество – большая свобода планировки внутри пролета. Применяется для обществ.зданий.

в) с перекрестно-стеновой несущей системой.

По характеру передачи нагрузки на грунт сваи подразделяются на висячие сваи и сваи-стойки.

К сваям-стойкам относятся сваи, прорезающие толщу слабых грунтов и опирающиеся на практически несжимаемые скальные или малосжимаемые грунты (крупнообломочные грунты с песчаным заполнителем, глины твёрдой конси-стенции). Свая-стойка практически всю нагрузку на грунт передаёт через нижний конец, так как при малых вертикаль-ных перемещениях сваи не возникают условия для проявления сил трения на её боковой поверхности (рис.1,а). Свая-стойка работает как сжатый стержень в упругой среде, её несущая способность определяется или прочностью матери-ала сваи, или сопротивлением грунта под её нижним концом.

К висячим сваям относятся сваи, опирающиеся на сжимаемые грунты. Под действием продольного усилия N висячая свая получает вертикальные перемещения, достаточные для возникновения сил трения между сваей и грунтом. В резуль-тате нагрузка на основание передаётся как боковой поверхностью сваи, так и её нижним концом (рис.1,Б). Несущая способность висячей сваи определяется суммой сопротивления сил трения по её боковой поверхности и грунта под остриём.

Расчёт несущей способности сваи-стойки

Поскольку потеря несущей способности сваей-стойкой может произойти либо в результате разрушения грунта под её нижним концом, либо в результате разрушения самой сваи, её расчёт на вертикальную нагрузку проводится по двум условиям: по условию прочности материала ствола сваи и по условию прочности грунта под нижним концом сваи. За несущую способность сваи в проекте принимается меньшая величина.

По прочности материала сваи рассчитываются как центрально сжатые стержни. При низком ростверке расчёт ведётся без учёта продольного изгиба сваи, за исключением случаев залегания с поверхности площадки слоев очень слабых грунтов (торф, ил), а при высоком ростверке — с учётом продольного изгиба на участке сваи, не окружённом грунтом. Расчётная нагрузка на сваю по материалу определяется по формулам для расчёта соответствующих строительных конструкций.

По прочности грунта под нижним концом сваи несущая способность Fα сваи-стойки определяется по формуле:

Fα=γcRA,

где γc=1 – коэффициент условий работы сваи в грунте;

R – расчетное сопротивление грунта под нижним кон-цом сваи;

А – площадь опирания сваи на грунт.

4вопрос. Изложите последовательность и технологию выполнения строительных процессов при монтаже конструкций типового этажа крупнопанельного жилого дома с поперечными несущими стенами. Укажите виды применяемой оснастки, особенности геодезического контроля.

Схема с поперечными несущими стенами (рис. 12.5) тре­бует первоначально устанавливать именно эти стены с тщате­льной выверкой и контролем соосности панелей. Затем мон­таж выполняют традиционно — дальние от крана наружные, внутренние и ближние к крану панели. Панели устанавливают с наклоном внутрь, чтобы при переводе ее в вертикальное положение раствор под наружной гранью будет уплотняться, что обеспечит плотный и герметичный шов.

Точность монтажа здания может быть обеспечена комплек­сом геодезических разбивочных работ:

  • закрепление осей на здании с возможностью переноса их на вышележащие этажи, т. е. создание разбивочного геодезическо­го плана. Для этого до начала возведения надземной части зда­ния размечают оси на цоколе и перекрытии над подвалом;

  • передача по вертикали основных осей на перекрытие каждо­го этажа, т. е. на новый монтажный горизонт. Число основных переносимых осей зависит от конструктивных особенностей здания. Для крупнопанельных зданий переносят две попереч­ные оси по границе захватки и одну дальнюю от крана край­нюю продольную ось;

  • разбивка промежуточных и вспомогательных осей на пере­крытии каждого монтируемого этажа. В этом случае опорные точки для переноса осей на этажи располагают не на основных осях здания, а на параллельно смещенных продольных и попе­речных линиях (линиях, определяющих положение внутренних плоскостей наружных стен), но по осям внутренних несущих стен. При работе монтажникам необходимы не основные, а именно эти вспомогательные оси;

  • разметка положения установочных рисок, необходимых по условиям монтажа элементов. На перекрытии смонтированного этажа с помощью мерной ленты размечают положения всех сте­новых панелей, как наружных, так и внутренних. Определяют точное проектное положение (разметка положения) каждого элемента по отметкам в трех плоскостях — с помощью рисок, показывающих положение каждой панели вдоль продольной оси наружных стен, и поперечных рисок, фиксирующих поло­жение панели относительно этой оси;

  • определение монтажного горизонта на этаже. Его опреде­ляют на каждом этаже с помощью нивелира. В крупнопанель­ных зданиях нивелируют поверхность панелей перекрытий в стыках установки панелей наружных и внутренних стен. За монтажный горизонт принимают отметку наивысшей точки. Уровень монтажного горизонта подготавливают путем устройст­ва маяков;

  • составление поэтажной исполнительной съемки. На каждом этапе монтажных работ выполняют геодезическую исполните­льную схему, которая документально фиксирует положение смонтированных конструкций относительно разбивочных осей. Это позволяет учитывать накопление погрешностей и прово­дить корректировку положения конструкций при монтаже вы­шележащих этажей.

Также применяется лента с вилкой. Обеспечение точности решается разработкой стыков, которые центруют ( пас,гребень)

Наружные панели устанавливают по риске, фиксирующей положение вертикального шва, наружную грань панели — по линии обреза стены и по линии, определяющей внутреннюю плоскость стены. Установив панель на место, при натянутых стропах подправляют ее положение монтажными ломиками.

Осуществив выверку панели, ее раскрепляют двумя подкосами со стяжными муфтами, которые сами закрепляются за петли плит перекрытий, доводят панель до вертикального положения с помощью стяжных муфт. Далее освобождают петли стропов, уплотняют и выравнивают горизонтальный шов панели.

онструкции крупнопанельных бескаркасных зданий пре­дусматривают совместную пространственную работу всех эле­ментов, совмещение в стеновых конструкциях несущих и ограждающих функций. Каждый только что установленный сборный элемент необходимо прочно закрепить в проектном положении. Для этого используют ранее установленные конст­рукции — элементы лестничных клеток, санитарно-техниче- ские кабины и др. В противном случае устанавливаемую кон­струкцию временно закрепляют на раскосах.

Монтаж панелей перекрытия ведут от ячеек, примыкаю­щих к лестничной клетке. Сначала устанавливают панели уда­ленного от крана ряда, затем ближнего. Монтаж ведут после­довательно в две стороны от лестничной клетки. Первая плита при укладке принимается с подмостей, последующие — с уже смонтированных плит перекрытий.

studfile.net

Висячие сваи — устройство и применение

  • Монтаж фундамента
    • Выбор типа
    • Из блоков
    • Ленточный
    • Плитный
    • Свайный
    • Столбчатый
  • Устройство
    • Армирование
    • Гидроизоляция
    • После установки
    • Ремонт
    • Смеси и материалы
    • Устройство
    • Устройство опалубки
    • Утепление
  • Цоколь
    • Какой выбрать
    • Отделка
    • Устройство
  • Сваи
    • Виды
    • Инструмент
    • Работы
    • Устройство
  • Расчет

Поиск

Портал о фундаментах Портал о фундаментахФундаменты от А до Я.
  • Монтаж фундамента
    • ВсеВыбор типаИз блоковЛенточныйПлитныйСвайныйСтолбчатый

      Фундамент под металлообрабатывающий станок

      Устройство фундамента из блоков ФБС

      Заливка фундамента под дом

      Характеристики ленточного фундамента

  • Устройство
    • ВсеАрмированиеГидроизоляцияПосле установкиРемонтСмеси и материалыУстройствоУстройство опалубкиУтепление

      Устранение трещин в стенах фундамента

      Как армировать ростверк

      Необходимость устройства опалубки

      Как сделать гидроизоляцию цоколя

  • Цоколь
    • Все

fundamentaya.ru

Виды свай — Доктор Лом. Первая помощь при ремонте

Итак

По виду взаимодействия с грунтом

Сваи делятся на 2 основных вида: висячие сваи и сваи-стойки. Принципиальная разница между этими видами свай следует из определения и может быть проиллюстрирована следующей картинкой:

Рисунок 483.1. 1 — сваи-стойки, 2 — висячие сваи

Висячие сваи

Сюда относятся все виды свай, которые опираются на сжимаемые грунты и при этом передают нагрузку на грунты основания боковой поверхностью (за счет сил трения, на рисунке 483.1 обозначены как т — касательные напряжения, возникающие в грунтах) и нижним концом (сжатие по площади на нижнем конце сваи, на рисунке 483.1 обозначены как σ — нормальные напряжения, возникающие в грунтах).

К сжимаемым грунтам относятся глины от текучей до полутвердой консистенции, суглинки, супеси и пески.

Примечание: При расчете висячих свай следует учитывать влияние отрицательных сил трения (если таковые имеются), уменьшающих несущую способность свай. Отрицательными (негативными) силами трения называются силы, которые возникают на боковой поверхности свай при осадке околосвайного грунта. Отрицательные силы трения направлены вертикально вниз.

В свою очередь в пучинистых грунтах в зимнее время в результате пучения из-за промерзания грунта на боковой поверхности висячих свай могут возникать положительные силы трения, т.е. направленные вверх. Эти силы как бы пытаются выдавить сваи на поверхность. С одной стороны это приводит к повышению несущей способности висячих свай в зимнее время. А с другой стороны в материале свай кроме сжимающих могут возникнуть и растягивающие нормальные напряжения. Соответственно материал таких свай следует проверять расчетом на действие подобных растягивающих напряжений. Для восприятия этих растягивающих напряжений в ж/б сваях используется соответствующая арматура.

Сваи-стойки

Сюда относятся все виды свай, которые опираются на скальные грунты, а кроме того забивные сваи, опирающиеся на малосжимаемые грунты.

К малосжимаемым грунтам относят крупнообломочные грунты с плотным или средней плотности песчаным заполнителем, а также твердые глины, имеющие модуль деформации Е > 50 МПа (500 кг·с/см2) в водонасыщенном состоянии.

Модуль деформации грунта Е отличается от модуля упругости Е, тем, что при определении его значения учитываются не только упругие, но и пластические (остаточные) деформации.

Примечание: При расчете несущей способности по грунту основания свай-стоек силы сопротивления грунтов (силы трения на боковой поверхности) не учитываются, так как опирание на скальные (практически несжимаемые) грунты минимизирует вероятность осадки свай-стоек, а значит и силам трения на боковой поверхности, появляющимся при проседании висячих свай, взяться неоткуда. Исключение составляют все те же отрицательные сил трения. Они, если есть, при расчетах учитываются, так как снижают несущую способность свай.

По материалу

Различают металлические (как правило стальные), деревянные, бетонные, бутобетонные и железобетонные сваи. Железобетонные сваи в свою очередь могут быть как готовыми элементами, так и изготавливаться непосредственно в скважине.

По форме

В зависимости от геометрии продольного, поперечного сечения и нижнего конца сваи принято различать

По форме поперечного сечения

Сплошные сваи прямоугольного (1), квадратного (2), круглого (3), таврового (4) и двутаврового (5) сечений, а также полые круглого (6) сечения (трубы, оболочки) и квадратные с круглой полостью (7).

Рисунок 484.2. Геометрия поперечных сечений свай.

Сваи-оболочки от свай-труб отличаются относительно большим наружным диаметром и относительно малой толщиной стенок сваи по сравнению с наружным диаметром. Соответственно устраиваются сваи-оболочки в грунтах с очень низкой несущей способностью, а такая форма свай позволяет экономить значительное количество материала.

По форме продольного сечения

Сваи постоянного по длине сечения: цилиндрические (1), призматические (2) и сваи с наклонными боковыми гранями: ромбовидные (3), пирамидальные (4), трапецеидальные (5).

Рисунок 484.3. Геометрия продольных сечений свай

По конструкции нижнего конца

Сваи с плоским нижним концом (рис. 483.1.1), с заостренным нижним концом (рис.483.3.2), полые с открытым (1) или закрытым (2) нижним концом, булавовидные с плоским или объемным уширением (3), с камуфлетной пятой (4), винтовые (5).

Рисунок 484.4. Конструкции нижнего конца свай.

Примечание: в нормативных документах классификация по форме дается только для забивных свай (само собой винтовые сваи к ним не относятся). Однако такой подход мне кажется не совсем верным, поэтому я выделил геометрию свай в отдельную категорию.

По методу заглубления в грунт

Принято различать

Погружаемые в грунт без выемки грунта

Сюда относятся:

Забивные

Сваи всех видов для заглубления в грунт которых используются молоты, вибропогружатели, вибровдавливающие или вдавливающие устройства.

Другими словами забивные сваи погружаются в грунт под воздействием ударной, вибрационной или динамической нагрузки, соответственно материал забивных свай должен рассчитываться на воздействие таких нагрузок.

Кроме того забивные железобетонные сваи диаметром ≤ 80 см и сваи-оболочки диаметром ≥ 100 см дополнительно подразделяются

По способу армирования

На сваи с ненапрягаемой и предварительно напряженной продольной арматурой вне зависимости от наличия поперечного армирования.

По конструктивным особенностям

На сваи цельные и составные (из нескольких секций).

Примечание: К забивным сваям также относят железобетонные сваи-оболочки, погружаемые в грунт вибропогружателями без выемки или с частичной выемкой грунта и не заполняемые бетонной смесью.

Классификация забивных свай по геометрическим признакам приводилась выше в отдельной категории.

Набивные

Сюда относят бетонные и железобетонные сваи, устраиваемые путем укладки в скважины бетонной смеси. Для образования скважин грунт принудительно отжимают (вытесняют).

В свою очередь набивные сваи

по способу устройства

подразделяют на

Набивные, устраиваемые с использованием инвентарных труб

Нижний конец труб у таких свай при погружении в грунт закрыт бетонной пробкой или оставляемым в грунте башмаком. По мере заполнения скважин бетонной смесью трубы извлекаются.

Набивные, виброштампованные

Такие сваи делаются путем заполнения жесткой бетонной смесью пробитых скважин. Бетонную смесь уплотняют виброштампом в виде трубы с нижним заостренным концом. Ну трубу крепится вибропогружатель.

Набивные в выштампованном ложе

В грунте производится выштамповка скважин конусной или пирамидальной формы, после чего скважины заполняются бетонной смесью.

Винтовые

Сваи со стальным или железобетонным корпусом (стволом) с лопастью (или лопастями) на конце (рис. 484.4.5), погружаемые в грунт завинчиванием, иногда в сочетании с вдавливанием.

Винтовые сваи относятся к висячим. Одно из главных достоинств винтовых свай — это значительное уширение площади сечения на конце свай, образуемое лопастью или лопастями, которое не только увеличивает несущую способность свай при относительно малом диаметре, но также препятствует выдергиванию свай. Потому винтовые сваи раньше использовались в основном для устройства фундаментов, которым передаются значительные выдергивающие силы. В настоящее время винтовые стальные сваи очень часто используются при возведении небольших частных домов.

При расчете винтовых свай следует учитывать крутящий момент, возникающий при завинчивании.

Устраиваемые с выемкой грунта

Сюда относятся

Буровые

Железобетонные сваи, устраиваемые в грунте путем установки готовых железобетонных элементов в пробуренные скважины или заполнением скважин бетонной смесью. В малоэтажном частном строительстве — это самый распространенный вид свай.

В свою очередь буровые сваи

по способу устройства

подразделяют на

Буронабивные сплошного сечения

Для устройства таких свай бурятся скважины. Стенки скважин не крепятся, если скважины пробурены в пылевато-глинистых грунтах выше уровня грунтовых вод. При бурении скважин ниже уровня грунтовых вод в любых грунтах стенки скважин закрепляются глинистым раствором или инвентарными обсадными трубами, извлекаемыми после устройства скважин. Затем скважины заполняются бетонной смесью. На конце свай может быть уширение.

Буронабивные полые

Сваи круглого сечения, устраиваемые с использованием многосекционного вибросердечника.

Буронабивные с уплотненным забоем

Перед заливкой бетонной смеси в забой скважины втрамбовывается щебень для повышения несущей способности грунта.

Буронабивные с камуфлетной пятой

После бурения на дне скважины производится взрыв, приводящий к образованию камуфлетной пяты. В результате увеличивается площадь основания будущей сваи, а также уплотняется грунт в области взрыва. Все это приводит к значительному повышению несущей способности грунта. Затем скважины заполняются бетонной смесью.

Буроопускные с камуфлетной пятой

Отличие буроопускных свай с камуфлетной пятой от буронабивных в том, что после взрыва в скважину опускаются готовые железобетонные сваи, а не бетонная смесь.

Буроинъекционные

Сваи малого диаметра (15-25 см) устаиваются нагнетанием (инъекцией) в пробуренные скважины мелкозернистой бетонной смеси или цементно-песчаного раствора.

В последнее время буроинъекционные сваи получили большое распространение в малоэтажном частном строительстве. Их еще называют микросваями.

Буроопускные сваи-столбы диаметром или со сторонами ≥ 80 см

После бурения в скважины укладывается омоноличивающий цементно-песчаный раствор. Затем в скважину опускаются призматические или цилиндрические элементы сплошного сечения

Вибропогружные

Железобетонные сваи-оболочки, погружаемые в грунт с выемкой грунта и полностью или частично заполняемые бетонной смесью.

При устройстве свай без выемки грунта или с частичной выемкой физические свойства основания в результате уплотнения могут значительно изменяться. При устройстве свай с выемкой грунта физические свойства основания как правило изменяются не значительно и это тоже необходимо учитывать при расчете свай и оснований под сваями.

doctorlom.com

расчет несущей способности забивных опор, цена

Висячие сваи и сваи-стойкиМногие строители сталкиваются с проблемами неустойчивых грунтов на участках строительства. Это представляет ряд трудностей при возведении фундамента. На выручку приходят висячие сваи, которые удерживаются в почве благодаря силам трения своих боковых поверхностей о грунт.

Сила трения сваи и ее длина компенсируют отсутствие опоры под сваей. Таким образом, даже на слабых и неустойчивых грунтах можно создать фундамент, опирающийся на висячие сваи. Существует разделение подобных свай на две основные категории — сваи висячие и сваи-стойки. Несмотря на внешнюю схожесть, принцип работы этих двух конструкций принципиально различен.

Свая-стойка

Основное отличие сваи-стойки от рассмотренной нами висячей сваи состоит в том, что она своим острием опирается на твердый грунт. Более того, свая может быть утоплена в твердый грунт на некоторую глубину.

Длина сваи-стойки может составлять более 20 м. Такие сваи не ведут к осадке здания, поэтому они массово используются в промышленном строительстве, для прокладки трубопроводов, а также в районах с неустойчивой сейсмической активностью.

Расчет висячей сваи

При расчете висячей сваи в учет принимается плотность материала, из которого она изготовлена, ее рабочая длина, а также характеристики грунта.

Длина свай зависит от следующих параметров:

  • Висячая сваяНагрузка. Чем больше проектная нагрузка здания, тем большей длиной должна обладать висячая свая.
  • Влияние состава грунта. На рыхлых, слабых и болотистых грунтах используются опоры большей длины.
  • Иногда возникает потребность применения висячих составных свай. Это может произойти в случае недостаточной длины готовых свай или чрезмерно подвижном грунте на участке.

Поскольку висячая свая имеет недостаточную опору о грунт, предпринимались попытки повышения эффективности свайного фундамента:

  • Увеличение длины свай. Это сопряжено с завышенными расходами материалов и с увеличением себестоимости основания. Сюда же добавляется использование крупногабаритной подъемной техники.
  • Использование свай, имеющих больший диаметр. Несущая способность висячей сваи, при этом, увеличивается. Это также приведет к перерасходу стройматериалов. Кроме того, широкую сваю гораздо труднее забить или вдавить в грунт.
  • Более частое размещение свай, называемое кустистостью. В некоторых конкретных случаях это оправдано, а в некоторых доказано совершенно обратное. Учитывайте, что количество используемых опор ведет к удорожанию строительных работ.
  • Расширение конца сваи, контактирующей с нижней частью грунта. За счет этого свая дополнительно опирается на грунт. Однако возникают неудобства по введению опоры в грунт. Висячие забивные сваи таким способом использовать не выйдет, ведь наличие острого наконечника обязательно при забивных работах.

Буронабивные висячие сваи на готовом фундаменте

Бывают ситуации, когда уже стоящий фундамент необходимо укрепить. Можно использовать технологию буронабивных висячих свай. Непосредственно в фундаменте или вплотную к нему, на расстояниях около 2 метров между собой, в грунте бурятся отверстия. Их глубина должна превышать глубину залегания основных свай (при наличии свайного фундамента) на Буронабивные висячие сваи1-2,5 м. Внимание обращается на то, чтобы пробуренные отверстия находились в межсвайных промежутках или рядом со старыми сваями.

При наличии плитного фундамента бурение производится по всему периметру плиты, сквозь саму плиту. Поскольку фундаментная плита находится внизу цокольного этажа или в подвале, то все работы производятся именно там.

Затем производится уплотнение грунта под действием высокого давления. В подготовленные шахты закачивается бетонный раствор. Рекомендуется использовать бетононасос, так как он способен обеспечить необходимое давление бетонной смеси. Так производится укрепление готового фундамента любого типа.

Преимущества такого метода:

  • Без сложных и затратных земляных работ удается создать свайный фундамент буронабивного типа. Используется только бурильная установка и бетононасос.
  • Благодаря уплотненному под высоким давлением грунту значительно увеличивается сила трения между свайным телом и почвой. В отличие от обычной забивной сваи, это позволяет создать опору, которая будет удерживаться в грунте гораздо надежнее.
  • Подобная технология дает возможность укрепления уже готового фундамента в случае его разрушения или проседания.

Выполнить своими руками монтаж висячих свай такого типа очень сложно, тем более, если не иметь специальной техники. В этом состоит единственный минус такой технологии. Несмотря на это, арендовать подобную технику можно без проблем, ведь качественный фундамент очень важен для всего строения.

opalubok.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о