Теплообменник на: Теплообменник — Википедия – Что такое теплообменники, виды и особенности применения

Содержание

Что такое теплообменники, виды и особенности применения

Запросить цену

Процесс передачи тепла называют теплообменом. Аппараты, в которых происходит процесс – теплообменники. Если в процессе участвуют два агента, разделенные перегородкой – это поверхностные рекуперационные аппараты. Происходит процесс смешения теплого и холодного потока контактом – теплообменник смесительный.

что такое теплообменник

Системы теплообмена, зачем нужен теплообменник

Пример смесительного устройства – градирни. Отходящие газы отдают тепло воде, распыляемой из форсунок. В аппаратах, где два агента протекают по отдельным контурам, тепло передается через стенку, поверхность.

Признаком теплообменника является развитая поверхность и подводка двух систем. Это может быть пар-вода, антифриз-вода, вода-вода. Вместо воды в процессе используют химический раствор, вместо пара – нагретые газы.

Применение теплообменников позволяет:

  • Использовать остаточное тепло при получении электрической энергии.
  • Вести химические процессы в точном режиме, поддерживая температуру теплообменниками.
  • Использовать вторичное тепло от энергоносителя для бытовых нужд.
  • Поддерживать температуру теплоносителя для бытовых систем отопления в параметрах, соответствующих стандарту.

Разновидности поверхностных теплообменников

Простейший т/о – труба в трубе. Холодная трубка с водой проходит в трубе большего сечения, заполненной горячим агентом. При этом поверхность внутренней трубки нагревается и передает тепло воде. Так работают бойлеры. Если трубок много и собраны они в пучок, то получается кожухотрубный теплообменник. Аппараты с трубным пучком, закрепленном с торцов решетками, распространены в промышленности и применяются для бытовой водоподготовки.

Витые теплообменники представляют змеевики, навитые в корпусе. Межтрубное пространство заполняется другим потоком. Аппаратура применяется при высоком давлении одного из агентов.

Двухтрубные теплообменники применяются для передачи тепла в фазах газ-жидкость. Аппараты могут работать под давлением с высокой теплопередачей.

разновидности теплообменников

Спиральный т/о

Спиральные теплообменники представляют бочку, в которой лентой-спиралью расположен плоский лабиринт с внутренней полостью. По спирали движется горячий агент, омываемый холодной водой. Конструкция сложная в изготовлении. Но это единственный вид аппаратов для теплообмена агента, содержащего взвеси, пульпу. Откидывающиеся с обеих сторон крышки позволяют легко чистить зазоры.

Пластинчатый теплообменник представляет особую конструкцию греющих труб, собранных в виде плоского элемента их оребренных труб и многоходовым движением воды. Пластины напоминают гармошки. Их недостаток – забиваются накипью при плохой водоподготовке.

Зачем нужен теплообменник в системе отопления? Представьте, что в трубах вода 900. Это приведет к разрыву пластиковых труб, ожогам. В каждом тепловом узле имеется система т/о, позволяющая поддерживать температурные параметры.

От чего зависит эффективность теплообменника

эффективность теплообменников

Кожухотрубный т/о

Поверхностный теплообмен происходит всегда через стенку. При этом возникают потери тепла. Чем тоньше перегородка, тем меньше потери. Новый т/о кожухотрубный имеет кпд 75%, но с зарастанием внутренней и верхней поверхности осадком, эффективность аппарата снижается. Он не может удерживать температурный режим. Поэтому аппараты имеют съемный пучок, который прочищают под высоким давлением специальным пистолетом.

Пластинчатые аппараты имеют кпд 90%, но щели между пластинами забиваются, требуется чистка. Для чистки оборудование разбирают. Важно установить на место сетчато-магнитный фильтр, который препятствует образованию осадка. Пластинчатые теплообменники можно подключать к автоматизированному управлению.

пластиковые теплообменники

Пластинчатый разборный т/о

Эффективность процесса зависит от схемы подключения. Полнее теплоотдача у противоточного аппарата, когда потоки движутся навстречу друг другу.

Чем тоньше перегородка, тем лучше идет процесс. Но для аппаратов, работающих под давлением, толщина стенок зависит от способности выдерживать нагрузки на стенки. Если нельзя утоньшить стенки трубок необходимо увеличить поверхность нагрева, сделать аппарат длиннее.

Каждый т/о изготовлен в соответствии с теплотехническим расчетом, имеет паспорт и рассчитан для работы с определенным теплоносителем.

Как правильно выбрать теплообменник

Зачем нужен теплообменник в системе отопления в быту, понятно. Какой аппарат подходит в конкретном контуре – зависит от условий монтажа. Можно поставить кожухотрубный т/о – он неприхотлив, может простоять без чистки 10 лет, только счета за использование теплоносителя будут все больше – нарушается теплопроводность. Можно поставить пластинчатый, но чистить его придется через 3 года.

Вас может заинтересовать:

Теплообменное оборудование
Кожухотрубные теплообменники
Горизонтальные теплообменники с U-образным трубным пучком

Рекомендуемые статьи

  • Устройство газовой заправки

    Газовая заправка представляет собой компрессорную станцию. Её используют чтобы заправлять автомобили, транспортные средства разных размеров – маршрутки, автобусы, микроавтобусы и технику, которая используется в сельском хозяйстве. Газовая заправка подходит для двигателей, которые были специально перенастроены для эксплуатации на газе. Как работает газовая заправка Её присоединяют к газопроводу, а давление газа выставляют на…

  • Применение резервуаров

    Годовая реализация нефтехимических продуктов обычно производится относительно небольшими объемами. Это служит причиной того, что их емкость для баз хранения и АЗС, как правило, находится в диапазоне 100-5000 м3. Возможно также изготовление резервуаров объемом от 100 до 100000 м3. При расчете таких конструкций учитывается, что они должны выдерживать избыточное давление в пределах 2000 Па. По месту расположения  различают наземные и…

  • Виды резервуаров для хранения нефтепродуктов

    Нефть – один из главных ресурсов нашей планеты, использующийся практически в каждой сфере и являющийся неотъемлемой частью современного мира. Добыча нефти началась несколько столетий назад, и первое время её хранению не уделялось должного внимания, так как никто не считал, что нефть вообще нужно как-то бережно хранить. Чтобы где-то хранить большое количество добытого вещества, строились специальные амбары или просто…

  • Волновые электростанции в россии

    Министерство энергетики разработало план развития зеленой электроэнергетики к 2020 году. Доля электроэнергии от альтернативных источников электроэнергии должна достигнуть 4,5% от общего количества энергии, вырабатываемой в стране. Однако по оценкам экспертов такое количество электроэнергии от возобновляемых источников стране просто не нужно. Общее мнение в этой области — развивать выработку электроэнергии за счет…

Теплообменник, виды теплообменных аппаратов

1. Пластинчатые разборные теплообменники (состоят из отдельных пластин, разграниченных резиновыми прокладками, двух концевых камер, рамы и крепежных болтов)

2. Пластинчатые паяные теплообменники (состоит из набора металлических гофрированных пластин, изготовленных из нержавеющей стали, которые соединены между собой посредством пайки в вакууме с использованием медного или никелевого припоя)

3. Пластинчатые сварные теплообменники предназначены для использования в условиях экстремально высоких температурах и давлениях на установках, параметры которых не позволяют использовать уплотнения. Эти теплообменники отличаются высокой эффективностью, малыми габаритами и требуют минимального обслуживания. Материал пластин – нержавеющая сталь, титан, никелевые сплавы.

Рабочие среды – высокотемпературный пар, газы и жидкости, в том числе агрессивные, а также их смеси. Сварные ТО отличаются от РПТО опять же методом герметизации пластин, в сварных аппаратах пластины свариваются сталью, образованные сварные кассеты компонуются внутри стальных плит. Применяются в тех. процессах с агрессивными средами, газовыми средами, на больших давлениях.

4. Пластинчатые полусварные теплообменники. Аналогично, как и в сварных аппаратах, пластины свариваются в кассеты, но метод соединения кассет между друг другом посредством паронитовых соединений. Область применения – тех. процессы с агрессивными средами. Пластинчатый полусварной теплообменник сделан в виде конструкции из небольшого количества сварных модулей. А они в свою очередь соединены при помощи лазерной сварки в виде пары пластин. Вся эта конструкция собрана между торцевыми плитами при помощи болтов. Между каждым сварным модулем проложен резиновый уплотнитель.

Такие теплообменники применяются в особых случаях, когда в качестве теплоносителя будет использовано вещество с очень высокой температурой, давлением, любым другим опасным параметром или просто опасное вещество. В этом случае оно будет перемещаться в заваренных каналах по теплообменным пластинам.

5. Кожухотрубные теплообменники (их основными элементами являются пучки труб, собранные в трубные решетки и помещенные в корпус, патрубки и концы труб крепятся в трубных решетках развальцовкой, сваркой, пайкой)

6. Спиральные теплообменники (поверхность нагрева образуется двумя тонкими металлическими листами, приваренными к разделителю (керну) и свернутыми в виде спирали) В спиральном теплообменнике, в отличии от РПТО используются всего две пластины, свернутые вокруг керна в спираль и «упакованные» в сваренные кожух.

Используются спиральные аппараты в тех. процессах, с агрессивными средами и высокими давлениями (P.S. на данный момент из брендов на нашем рынке остался один производитель – Alfa Laval. GEA и Sondex отказались от дальнейшего выпуска данных аппаратов. Исключительная компактность и эффект самоочистки делают спиральные теплообменники Альфа Лаваль в высшей степени универсальным оборудованием – они применимы, как в работе с жидкими неоднородными средами, склонными к образованию отложений на теплопередающих поверхностях, так и при наличии конденсации пара или газа в условиях высокого вакуума.

виды, принцип работы, технические характеристики, схема обвязки

Эффективный и экономичный нагрев или охлаждение рабочей среды в современной промышленности, жилищно-коммунальной сфере пищевой и химической отраслях осуществляется с помощью теплообменников (ТО). Существует несколько типов теплообменных агрегатов, однако наибольшее распространение получили пластинчатые теплообменники.

В статье будут подробно рассмотрены конструкция, область применения и принцип работы пластинчатого теплообменника. Особое внимание будет уделено конструктивным особенностям различных моделей, правилам эксплуатации и особенностям технического обслуживания. Кроме того, будет представлен перечень ведущих отечественных и зарубежных производителей пластинчатых ТО, продукция которых пользуется повышенным спросом у российских потребителей.

Устройство и принцип работы

Конструкция разборного пластинчатого теплообменника включает в себя:

  • стационарную переднюю плиту на которой монтируются входные и выходные патрубки;
  • неподвижную прижимную плиту;
  • подвижную прижимную плиту;
  • пакет теплообменных пластин;
  • уплотнения из термостойкого и устойчивого к воздействию агрессивных сред материала;
  • верхнюю несущую базу;
  • нижнюю направляющую базу;
  • станину;
  • комплект стяжных болтов;
  • Набор опорных лап.

Такая компоновка агрегата обеспечивает максимальную интенсивность теплообмена между рабочими средами и компактные габариты устройства.

Конструкция разборного пластинчатого теплообменника

Чаще всего, теплообменные пластины изготавливаются методом холодной штамповки из нержавеющей стали толщиной от 0,5 до 1 мм, однако, при использовании в качестве рабочей среды химически активных соединений, могут использоваться титановые или никелевые пластины.

Все пластины, входящие в состав рабочего комплекта, имеют одинаковую форму и устанавливаются последовательно, в зеркальном отражении. Такая методика установки теплообменных пластин обеспечивает не только формирование щелевых каналов, но и чередование первичного и вторичного контуров.

Каждая пластина имеет 4 отверстия, два из которых обеспечивают циркуляцию первичной рабочей среды, а два других изолируются дополнительными контурными прокладками, исключающими возможность смешивания рабочих сред. Герметичность соединения пластин обеспечивается специальными контурными уплотнительными прокладками, изготовленными из термостойкого и устойчивого к воздействию активных химических соединений материала. Устанавливаются прокладки в профильные канавки и фиксируются с помощью клипсового замка.

Принцип работы пластинчатого теплообменника

Оценка эффективности любого пластинчатого ТО осуществляется по следующим критериям:

  • мощности;
  • максимальной температуре рабочей среды;
  • пропускной способности;
  • гидравлическому сопротивлению.

Исходя из этих параметров подбирается необходимая модель теплообменника. В разборных пластинчатых теплообменниках регулировать пропускную способность и гидравлическое сопротивление можно, изменяя количество и тип пластинчатых элементов.

Интенсивность теплообмена обусловлена режимом течения рабочей среды:

  • при ламинарном течении теплоносителя интенсивность теплообмена минимальна;
  • для переходного режима характерно увеличение интенсивности теплообмена за счет появления завихрений в рабочей среде;
  • максимальная интенсивность теплообмена достигается при турбулентном движении теплоносителя.

Рабочие характеристики пластинчатого ТО рассчитываются для турбулентного течения рабочей среды.

В зависимости от расположения канавок, различают три типа теплообменных пластин:

  1. с «мягкими» каналами (канавки расположены под углом 600). Для таких пластин характерна незначительная турбулентность и небольшая интенсивность теплообмена, однако «мягкие» пластины обладают минимальным гидравлическим сопротивлением;
  2. со «средними» каналами (угол рифления от 60 до 300). Пластины являются переходным вариантом и отличаются средними показателями турбулентности и интенсивности теплопередачи;
  3. с «жесткими» каналами (угол рифления 300). Для таких пластин характерна максимальная турбулентность, интенсивный теплообмен и значительное увеличение гидравлического сопротивления.

Для увеличения эффективности теплообмена движение первичной и вторичной рабочей среды осуществляется в противоположном направлении. Процесс теплообмена между первичной и вторичной рабочими средами происходит следующим образом:

  1. Теплоноситель подается на входные патрубки теплообменника;
  2. При перемещении рабочих сред по соответствующим контурам, сформированным из теплообменных пластинчатых элементов, происходит интенсивная теплопередача от нагретой среды нагреваемой;
  3. Через выходные патрубки теплообменника нагретый теплоноситель направляется по назначению (в отопительные, вентиляционные, водопроводные системы), а остывший теплоноситель снова попадает в рабочую зону теплогенератора.

Принцип работы пластинчатого теплообменного аппарата

Для обеспечения эффективной работы системы необходима полная герметичность теплообменных каналов, которая обеспечивается уплотнительными прокладками.

Требования к прокладкам

Для обеспечения полной герметичности профильных каналов и предотвращения утечки рабочих сред, уплотнительные прокладки должны обладать необходимой термостойкостью и достаточной устойчивостью к воздействиям агрессивной рабочей среды.

В современных пластинчатых теплообменниках применяются следующие виды прокладок:

  • этиленпропиленовые (EPDM). Применяются при работе с горячей водой и паром в температурном диапазоне от -35 до +1600С, непригодны для жирных и масляных сред;
  • NITRIL прокладки (NBR) используются для работы с маслянистыми рабочими средами, температура которых не превышает 1350С;
  • VITOR прокладки рассчитаны на работу с агрессивными рабочими средами при температуре не более 1800С.

На графиках представлена зависимость срока службы уплотнений от условий эксплуатации:

Что касается крепления уплотнительных прокладок, существует два способа:

  • на клей;
  • с помощью клипсы.

Первый способ из-за трудоемкости и длительности укладки применяется редко, кроме того, при использовании клея значительно усложняется техническое обслуживание агрегата и замена уплотнений.

Клипсовый замок обеспечивает быстрый монтаж пластин и простоту замены вышедших из строя уплотнений.

Виды пластинчатых теплообменных аппаратов и их применение

По способу соединения теплообменных пластин теплообменник может быть:

  • разборной;
  • паяный;
  • полусварной;
  • сварной.

Конструкция и принцип работы разборных пластинчатых ТО были описаны выше. Рассмотрим более подробно особенности конструкции и область применения паяных, полусварных и сварных теплообменников.

Паяный пластинчатый теплообменник

Агрегат широко используется для:

  • нагрева и охлаждения рабочих сред;
  • испарения;
  • конденсации;
  • утилизации и рекуперации тепловой энергии.

Теплообменные пластины ППТО изготавливаются из нержавеющей стали. Сборка пакета осуществляется аналогично с разборными теплообменниками, после чего производится пайка медным или никелевым припоем, в зависимости от агрессивности рабочей среды: для более агрессивных сред используется никель.

К наиболее существенным преимуществам паяных ПТО можно отнести:

  • высокую надежность;
  • возможность работы в широком температурном диапазоне;
  • легкость и небольшие габариты;
  • надежность конструкции;
  • простоту монтажа и технического обслуживания;
  • доступную стоимость.

Особенно хорошо паяные ПТО зарекомендовали себя в холодильных и замкнутых отопительных системах.

Полусварные пластинчатые теплообменники

Главной конструктивной особенностью полусварных теплообменников является попарное сваривание штампованных пластин, в результате чего формируется отдельный герметичный модуль. Сборка ПСПТО осуществляется также, как и разборного теплообменника, различие состоит в том, что вместо отдельных пластин используются готовые сварные модули.

Между первичными и вторичными модулями устанавливаются прокладки из термостойкой резины. Отсутствие внутренних прокладок позволяет существенно увеличить рабочее давление в системе и температуру рабочей среды.

Благодаря высоким эксплуатационным характеристикам ПСПТО получили широкое распространение следующих областях:

  • в системах вентиляции и кондиционирования;
  • в химическом и фармацевтическом производстве;
  • в пищевой промышленности;
  • в системах рекуперации;
  • в отопительных системах;
  • в системах централизованной подачи горячей воды.

Среди наиболее значимых преимуществ данной конструкции можно выделить:

  • широкий диапазон рабочих температур;
  • отсутствие герметизирующих прокладок;
  • инертность к агрессивным рабочим средам;
  • простоту монтажа и технического обслуживания.

В отличии от сборных ПТО, полусварные агрегаты практически полностью исключают возможность неправильной сборки.

Сварные пластинчатые теплообменники

Отсутствие уплотнений является главной особенностью конструкции сварных теплообменных аппаратов. Гофрированные пластины сварены в один блок, в котором рабочая среда протекает по внутренним каналам, а нагреваемая – по внешним.

Применяются СПТО при работе с агрессивными средами при повышенных температурах и высоком давлении рабочих сред.

Конструктивные особенности сварных теплообменников обеспечивают следующие преимущества:

  • компактность;
  • высокий коэффициент теплопередачи;
  • незначительные теплопотери;
  • простоту технического обслуживания.

Отсутствие уплотнений в сварных ПТО обеспечивает полную герметичность рабочих каналов, что позволяет работать в экстремальных условиях.

Технические характеристики

Как правило, технические характеристики пластинчатого теплообменника определяются количеством пластин и способом их соединения. Ниже приведены технические характеристики разборных, паяных, полусварных и сварных пластинчатых теплообменников:

Рабочие параметры

Единицы измерения

Разборные

Паяные

Полусварные

Сварные

КПД

%

95

90

85

85

Максимальная температура рабочей среды

0С

200

220

350

900

Максимальное давление рабочей среды

бар

25

25

55

100

Максимальная мощность

МВт

75

5

75

100

Средний период эксплуатации

лет

20

20

10 — 15

10 — 15

Исходя из приведенных в таблице параметров определяют необходимую модель теплообменника. Помимо этих характеристик, следует учесть тот факт, что полусварные и сварные теплообменники больше приспособлены к работе с агрессивными рабочими средами.

Для чего нужен теплообменник в отопительной системе

Объяснить наличие теплообменника в отопительной системе довольно просто. Большинство систем теплоснабжения в нашей стране спроектировано таким образом, что температура теплоносителя регулируется в котельной и подается нагретая рабочая среда непосредственно в радиаторы, установленные в квартире.

При наличии теплообменника, рабочая среда из котельной отпускается с четко определенными параметрами, например, 1000С. Попадая в первичный контур, нагретый теплоноситель не поступает в отопительные приборы, а нагревает вторичную рабочую среду, которая и попадает в радиаторы.

Преимущество такой схемы заключается в том, что регулировка температуры теплоносителя осуществляется на промежуточных индивидуальных тепловых станциях, откуда и подается потребителям.

Достоинства и недостатки

Широкое распространение пластинчатых теплообменников обусловлено следующими достоинствами:

  • компактными габаритами. За счет использования пластин существенно увеличивается площадь теплообмена, что снижает общие габаритные размеры конструкции;
  • простотой монтажа, эксплуатации и технического обслуживания. Модульная конструкция агрегата позволяет легко разобрать и промыть требующие очистки элементы;
  • высоким КПД. Производительность ПТО составляет от 85 до 90%;
  • доступной стоимостью. Кожухотрубные, спиральные и блочные установки, при сходных технических характеристиках, стоят значительно дороже.

Недостатками пластинчатой конструкции можно считать:

  • необходимость заземления. Под действием блуждающих токов в тонких штампованных пластинах могут образовываться свищи и другие дефекты;
  • необходимость использования качественных рабочих сред. Поскольку поперечное сечение рабочих каналов небольшое, применение жесткой воды или некачественного теплоносителя может привести к засору, что снижает интенсивность теплопередачи.

Схемы обвязки пластинчатого теплообменника

Существует несколько способов подключения ПТО к отопительной системе. Наиболее простым принято считать параллельное включение с регулировочным клапаном, принципиальная схема которого приведена ниже:

Схема параллельного подключения ПТО

К недостаткам такого подключения можно отнести повышенную нагрузку на отопительный контур и небольшую эффективность нагрева воды при значительной разности температур.

Параллельное подключение двух теплообменников в двухступенчатую схему обеспечит более продуктивную и надежную работу системы:

Схема двухступенчатого параллельного подключения

1 – пластинчатый теплообменник; 2 – температурный регулятор; 2.1 – клапан; 2.2 – термостат; 3 – насос циркуляционный; 4 – счетчик расхода горячей воды; 5 – манометр.

Нагревающей средой для первой ступени служит обратный контур отопительной системы, а в качестве нагреваемой среды – холодная вода. Во втором контуре нагревательной средой служит теплоноситель из прямой магистрали отопительной системы, а в качестве нагреваемой среды – предварительно подогретый теплоноситель из первой ступени.

Инструкция по эксплуатации

К каждому заводскому пластинчатому теплообменнику обязательно прилагается подробная инструкция по эксплуатации, содержащая всю необходимую информацию. Ниже будут приведены некоторые основные положения, касающиеся всех типов ПТО.

Установка ПТО

  1. Место расположения агрегата должно обеспечивать свободный доступ к основным узлам для проведения технического обслуживания.
  2. Крепление подающих и отводящих магистралей должно быть жестким и герметичным.
  3. Устанавливать теплообменник следует на строго горизонтальную бетонную или металлическую основу, обладающую достаточной несущей способностью.

Пуско-наладочные работы

  1. Перед запуском агрегата необходимо проверить его герметичность согласно рекомендациям, приведенным в техническом паспорте изделия.
  2. При первичном запуске установки скорость повышения температуры не должна превышать 250С/ч, а давление в системе 10 Мпа/мин.
  3. Порядок проведения и объем пуско-наладочных работ должны четко соответствовать приведенному в паспорте агрегата перечню.

Эксплуатация агрегата

  1. В процессе использовании ПТО не допускается превышение температуры и давления рабочей среды. Перегрев или повышение давления могут привести к серьезным поломкам или полному выходу из строя агрегата.
  2. Для обеспечения интенсивного теплообмена между рабочими средами и увеличения КПД установки необходимо предусмотреть возможность очистки рабочих сред от механических примесей и вредных химических соединений.
  3. Значительно продлить срок службы устройства и увеличить его производительность позволит регулярное проведение технического обслуживания и своевременная замена поврежденных элементов.

Промывка пластинчатого теплообменника

Функциональность и работоспособность агрегата в значительной степени зависит от качественной и своевременной промывки. Частота промывки обусловлена интенсивностью работы и особенностями технологических процессов.

Методика проведения очистных работ

Образование накипи в теплообменных каналах является наиболее распространенным видом загрязнения ПТО, ведущим к снижению интенсивности теплообмена уменьшению общего КПД установки. Удаление накипи производится с помощью химической промывки. Если помимо накипи присутствуют другие виды загрязнения, необходимо произвести механическую очистку пластин теплообменника.

Химическая промывка

Метод применяется для очистки всех типов ПТО, и эффективен при незначительном загрязнении рабочей зоны теплообменника. Для проведения химической очистки не требуется разборка агрегата, что позволяет значительно сократить время проведения работ. Кроме того, для очистки паяных и сварных теплообменников другие методы не применяются.

Химическая промывка теплообменного оборудования производится в следующей последовательности:

  1. специальный моющий раствор вводится в рабочую зону теплообменника, где под воздействием химически активных реагентов происходит интенсивное разрушение накипи и других отложений;
  2. обеспечение циркуляции моющего средства по первичному и вторичному контурам ТО;
  3. промывка теплообменных каналов водой;
  4. слив чистящих препаратов из теплообменника.

В процессе проведения химической очистки особое внимание следует уделить окончательной промывке агрегата, поскольку химически активные компоненты моющих средств могут разрушить уплотнения.

Наиболее распространенные виды загрязнений и способы очистки

В зависимости от используемых рабочих сред, температурных режимов и давления в системе, природа загрязнений может быть различной, поэтому для эффективной очистки необходимо правильно подобрать моющее средство:

  • очистка от накипи и металлических отложений используются растворы фосфорной, азотной или лимонной кислоты;
  • для удаления оксида железа подойдет ингибированная минеральная кислота;
  • органические отложения интенсивно разрушаются гидроксидом натрия, а минеральные – азотной кислотой;
  • жировые загрязнения удаляют с помощью специальных органических растворителей.

Поскольку толщина теплообменных пластин составляет всего 0,4 – 1 мм, особое внимание следует уделять концентрации активных элементов в моющем составе. Превышение допустимой концентрации агрессивных компонентов может привести к разрушению пластин и уплотнительных прокладок.

Широкое применение пластинчатых теплообменников в различных отраслях современной промышленности и коммунального хозяйства обусловлено высокой производительностью, компактными габаритными размерами, простотой монтажа и технического обслуживания. Еще одним преимуществом ПТО является оптимальное соотношение цена/качество.

функция, виды, принцип работы, производители

Содержание статьи:

Прямая передача тепла от сгорающего топлива теплоносителю невозможна. В отопительных котлах она выполняется за счет работы специального устройства. Это теплообменник для газового котла. От его конструкции и материала зависит срок службы аппарата и его КПД.

Основная функция теплообменника для котла

В теплообменнике происходит нагревание воды, которая циркулирует в системе и передает тепло радиаторам

На горелку котла подают газ и воздух для сжигания. Газ горит, выделяя тепло, продукты сгорания выводятся вовне. Источник тепла в этом случае – элемент неподвижный.

Теплоноситель – вода или антифриз – поступает в теплообменник. Это устройство, которое обеспечивает теплообмен между двумя средами с разной температурой. Последний размещается в камере сгорания над горелкой. Вода, двигаясь по теплообменнику, нагревается и подается в трубы отопления. Чаще всего устройство имеет вид набора пластин или трубок. Чем больше его рабочая поверхность, тем лучше и быстрее нагревается вода.

Материал изготовления

Изготавливают теплообменник для котла из материалов прочных, хорошо проводящих тепло, не склонных к коррозии и достаточно устойчивых к давлению. Поскольку приходится учитывать и стоимость материала, выбор невелик.

Сталь

Стальной теплообменник дешевле в цене, но менее долговечный

Это самый доступный материал. Сталь очень прочная, но хорошо поддается обработке. Цена невелика. Плюс такого варианта – стойкость к высокой температуре. Сталь пластична и при нагреве не покрывается трещинами, не деформируется даже на участках, контактирующих с горелкой.

Стальной теплообменник на твердотопливный или газовый котел склонен к коррозии. Вода внутри трубок и продукты сгорания в камере котла разрушительно действуют на материал. Это сказывается на долговечности. Модель из стали много весит, это приводит к дополнительному расходу топлива на прогрев самого элемента.

Теплообменник из нержавеющей стали устойчив к коррозии и служит не менее 50 лет.

Чугун

Материал гораздо устойчивее к коррозии чем сталь, не боится ржавчины и действия кислотных ангидридов. Срок эксплуатации достигает 50 лет. Однако чугун – сплав хрупкий, под действием температуры может растрескиваться. Чтобы избежать повреждений, чугунный трубчатый теплообменник необходимо промывать: если используется обычная вода, то 1 раз в год; если антифриз – то 1 раз в 2 года; если дистиллированная жидкость – 1 раз в 4 года.

Вес элемента из чугуна еще больше, поэтому на нагрев приходится тратить больше топлива и времени.

Медь

Медь – благородный металл, не подверженный никаким видам коррозии. Она химически инертна, отлично переносит давление. Медь лучше проводит тепло, поэтому для нагрева самого элемента и протекающей жидкости требуется меньше топлива. Вес медной модели невелик, размеры компактны при очень развитой рабочей поверхности.

Недостаток – высокая цена. Также медный теплообменник слишком чувствителен к нагреву до высоких температур. Чаще встречается у котлов от зарубежных изготовителей.

Медный
Чугунный

Классификация теплообменников

Первичный теплообменник для контура отопления в виде змеевика с пластинами

Газовые котлы могут выполнять несколько функций. Главная – обогрев жилища. Однако двухконтурные модели также нагревают воду для разных бытовых нужд: от мытья посуды до ванной. По этому признаку и различают теплообменники.

Первичные

Обслуживает систему отопления. Представляет собой трубу с довольно большим диаметром, изогнутую в виде змеевика в одной плоскости. Чтобы увеличить рабочую поверхность устройства, здесь же размещают пластины разного размера.

Первичный теплообменник подвергается самым высоким нагрузкам. Извне на него действуют продукты сгорания – копоть, грязь, кислотные ангидриды, изнутри – соли, растворенные в теплоносителе. Чтобы снизить износ, деталь покрывают краской и обрабатывают антикоррозийными составами.

Лучший вариант – теплообменник из нержавейки или меди, так как он не подвержен ржавлению и не боится отложения солей.

Вторичные

Вторичный теплообменник для ГВС

Такой теплообменник нагревает жидкость для горячего водоснабжения. Температура его нагрева меньше, но и нагревать воду для бытовых нужд выше +60 С не стоит. Чаще всего это пластинчатая конструкция: собирается из множества пластин с выдавленными ходами, по которым циркулирует водопроводная вода. Многоходовые модели более эффектны, так как в пределах одной пластины жидкость несколько раз меняет направление, то есть находится в ней дольше и прогревается лучше. Изготавливают его из стали, меди, алюминия.

Битермические

Битермические теплообменники при засорении необходимо менять на новые

Представляет собой вставленные друг в друга 2 трубы. По внутренней перемещается теплоноситель, по внешней – вода для ГВС. Жидкость для отопления нагревается в камере сгорания и частично отдает тепло воде для бытовых нужд.

Конструкция гораздо дешевле. Но хотя вода здесь нагревается быстрее, ее объем ограничен. Кроме того, битермический теплообменник очень чувствителен к качеству воды и намного быстрее загрязняется. Чистить прибор недостаточно. Чтобы предотвратить быстрое засорение и вывод из строя, необходимо установить на входе фильтры для воды.

Очистить совмещенный теплообменник как обычный отдельный не удается. При больших отложениях соли или засорении элемент придется поменять.

Критерии выбора

Главный параметр теплообменника – его мощность

При выборе устройства учитывают назначение – в данном случае это нагрев теплоносителя, и тип среды – пар, воду, антифриз. Газовый котел обычно работает с водой, но бывают исключения.

Остальные критерии выбора:

  • Температура теплоносителя на входе и выходе – необходимо рассчитать, какое количество тепла должен получать потребитель. Исходя из этих данных вычисляют мощность теплообменника.
  • Допустимые потери по давлению – давление воды во время прохождения по теплообменнику снижается. Если оно падает слишком низко, не удается создать столб горячей воды достаточной высоты.
  • Максимальная рабочая температура – на горелке достигает 600–700 С. Такую температуру выдерживает чугунный и стальной теплообменник, медный с некоторым трудом. Алюминиевую модель использовать запрещается.
  • Максимальное рабочее давление – не ограничивает выбор конструкции или материала.

Значимым параметром оказываются габариты. При одинаковой эффективности кожухотрубный теплообменник занимает площадь в 3–4 раза больше, чем пластинчатый.

Правильная эксплуатация

Промывку теплообменника проводят в зависимости от жесткости воды

Транспортировка, монтаж и эксплуатация теплообменного устройства подробно описаны в инструкции:

  • Теплообменник в аппарате размещают так, чтобы к нему был свободный доступ для осмотра и ремонта.
  • Запуск выполняют при стабильных показателях давления и температуры. Нельзя повышать температуру быстрее, чем на 10 градусов в минуту или увеличивать давление больше, чем на 10 бар в час.
  • При заполнении водой воздушные клапаны и вентили за теплообменником остаются открытыми. После запуска насоса их закрывают. Таким образом добиваются стабильного давления.
  • Изменять параметры нагрева нужно плавно. Чем медленнее это происходит, тем дольше прослужат уплотнители и сам теплообменник.
  • Периодически устройство нужно чистить. Пластинчатый очищают прямо в раме, затем вынимают пластины и промывают. Возможен другой метод: сначала изъятие, а затем очистка пластин. Кожухотрубные чистить не рекомендуют. При сложных засорениях мастер ставит заглушку.
  • Перед повторным пуском проверяют состояние всех прокладок. Давление и температуру устанавливают как при 1 запуске.

Чтобы избежать отложения солей, на водопроводную трубу перед входом котел ставят фильтр.

Возможные неисправности

Стальные изделия подвергаются коррозии и подлежат замене

Большинство неполадок требует вмешательства специалистов. Некоторые может устранить и пользователь:

  • Снижение давления – если вызвано загрязнением, достаточно почистить теплообменник. При неправильном подключении к сети нужно сверить подсоединение с чертежом в инструкции.
  • Снижение КПД – при механическом загрязнении устройство промывают. Если причина в накоплении масла, некондиционных газов, устанавливают дополнительные устройства для их вывода.
  • Протечка – чаще всего вызвана разложением уплотнителей. Их заменяют.
  • Смешение рабочих сред – возникает при коррозии пластин или трубок. Пластины можно заменить частично, кожухотрубный теплообменник придется ставить новый.

Пока действует гарантия, запрещается самостоятельно вскрывать теплообменник и выполнять какой-либо ремонт.

Популярные производители

Теплообменник чугунный для напольного котла Белето

Теплообменники выпускают многие производители. Наиболее популярными в 2019 году были следующие компании.

Navien

Крупнейший корейский производитель. Выпускает изделия, предназначенные для бытовых котлов. Преимущество – стойкость к низкому качеству воды и гидроударам. Устройство прекрасно адаптировано к плохим условиям эксплуатации.

Baxi

Итальянский изготовитель. Представляет на рынке настенные и конденсационные котлы напольные с чугунным теплообменником, а также электрические обогреватели.

Первичные теплообменники компания выполняет из меди и латуни. Для вторичных пластинчатых используется нержавеющая сталь. Это повышает стоимость изделий, но обеспечивает максимальную долговечность.

И другие

На рынке есть и другие достойные производители:

  • Fondital Victoria Compact – итальянская фирма. Предлагает битермические медные теплообменники высокой производительности.
  • Белето – известный российский завод, выпускает разнообразное газовое оборудование. Изготавливает стальные, чугунные и медные теплообменники разного типа.
  • Аристон – предлагает алюминиевые и медные теплообменники. Материалы нечувствительны к коррозии, а технология изготовления гарантирует их прочность.

Если есть необходимость увеличить КПД котла при замене устройства, консультируются со специалистом, чтобы рассчитать требуемые параметры.

Пластинчатый теплообменник — Википедия

Материал из Википедии — свободной энциклопедии

Концептуальная схема пластинчатого теплообменника Отдельная пластина пластинчатого теплообменника

Пластинчатый теплообменник — устройство, в котором осуществляется передача теплоты от горячего теплоносителя к холодной (нагреваемой) среде через стальные, медные, графитовые, титановые гофрированные пластины, которые стянуты в пакет. Горячие и холодные слои перемежаются друг с другом.

Первый агрегат пластинчатого теплообменника в близком к современному виде был изобретён доктором Ричардом Селигманом, основателем компании Aluminium Plant & Vessel Company Limited в 1923 году. Согласно другим источникам, создателем первого современного пластинчатого теплообменника была шведская компания Густава де Лаваля, выпустившая первую модель, предназначавшуюся для пастеризационного оборудования, в 1938 году.[источник не указан 1283 дня]

  1. Неподвижная плита с присоединительными патрубками.
  2. Задняя прижимная плита.
  3. Теплообменные пластины с уплотнительными прокладками.
  4. Верхняя направляющая.
  5. Нижняя направляющая.
  6. Задняя стойка.
  7. Комплект резьбовых шпилек.

Такая конструкция теплообменника обеспечивает эффективную компоновку теплообменной поверхности и, соответственно, малые габариты самого аппарата. Все пластины в пакете одинаковы, только развернуты одна за другой на 180°, поэтому при стягивании пакета пластин образуются каналы, по которым и протекают жидкости, участвующие в теплообмене. Такая установка пластин обеспечивает чередование горячих и холодных каналов.

Теплообменные пластины с уплотнительными прокладками[править | править код]

Основным элементом теплообменника являются теплопередающие пластины, изготовленные из коррозионно-стойких сплавов толщиной 0,4-1,0 мм методом холодной штамповки. В рабочем положении пластины плотно прижаты друг к другу и образуют щелевые каналы. На лицевой стороне каждой пластины в специальные канавки установлена резиновая контурная прокладка, обеспечивающая герметичность каналов. Два из четырёх отверстий в пластине обеспечивают подвод и отвод греющей или нагреваемой среды к каналу. Два других отверстия, дополнительно изолированы малыми контурами прокладки предотвращающими смешение (переток) греющей и нагреваемой сред. Для предупреждения смешивания сред в случае прорыва одного из малых контуров прокладки предусмотрены дренажные пазы.

Пространственное извилистое течение жидкости в каналах способствует турбулизации потоков, а противоток между нагреваемой и греющей средой способствует увеличению температурного напора и, как следствие, интенсификации теплообмена при сравнительно малых гидравлических сопротивлениях. При этом резко уменьшается отложение накипи на поверхности пластин.

При большой разнице в расходе сред, а также при малой разнице в конечных температурах сред существует возможность многократного теплообмена сред путём петлеобразного направления их потоков. В таких теплообменниках патрубки для подвода сред расположены не только на неподвижной плите, но и на прижимной, а вдоль пластин-перегородок среды движутся в одном направлении.

Схема теплообмена[править | править код]

В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке). В местах их возможного перетекания находится либо стальная пластина, либо двойное резиновое уплотнение, что практически исключает смешение жидкостей.

Вид гофрирования пластин и их количество, устанавливаемое в раму, зависят от эксплуатационных требований к пластинчатому теплообменнику. Материал, из которого изготавливаются пластины, может быть различным: от недорогой нержавеющей стали до различных экзотических сплавов, способных работать с агрессивными жидкостями.

Материалы для изготовления уплотнительных прокладок также различаются в зависимости от условий применения пластинчатых теплообменников. Обычно используются различные полимеры на основе натуральных или синтетических каучуков.

Виды пластинчатых теплообменников[править | править код]

Пластинчатые теплообменники бывают следующих видов:

  • разборные пластинчатые теплообменники;
  • паяные пластинчатые теплообменники;
  • сварные и полусварные пластинчатые теплообменники.

Основные параметры[править | править код]

Для разборных пластинчатых теплообменников характерны следующие параметры:

  • материал пластин: тонколистовые стали (AISI304, AISI316), Титан, Hastelloy, 254SMO и др.;
  • температура в пластинах носителя не превышает 200°;
  • давление в пластинах носителя не превышает 25кгс/см2;
  • поверхность теплообмена одного аппарата может значительно колебаться(0,1 и 2100 м2) в зависимости от назначения;
  • число пластин также колеблется от самых малых значений(практикуют от 7-10 пластин) и до самых больших.
  • Г. С. Борисов, В. П. Брыков, Ю. И. Дытнерский и др. Основные процессы и аппараты химической технологии: Пособие по проектированию / Ю. И. Дытнерский. — М.: Химия, 1991. — 496 с. — 24 000 экз. — ISBN 5-7245-0133-3.

Пластинчатые теплообменники — принцип работы, конструкция, виды

Принцип работы теплообменников

1 – передняя неподвижная плита, 2 – верхняя направляющая, 3 – задняя подвижная плита, 4 – задняя стойка (штатив) , 5 – рабочая пластина с уплотнением, 6 – нижняя направляющая, 7 – патрубки, 8 – ролики для перемещения пластин вдоль направляющих, 9 — шильд с названием и техническими данными, 10 — шпильки

Пластинчатый теплообменник состоит из следующих элементов: двух плит ( одной неподвижной, а другой прижимной), входных и выходных патрубков с различными видами соединений, комплекта жестко и герметично соединенных рабочих пластин, специальных направляющих, резьбовых метизов и подставки для монтажа в системе теплоснабжения.

Главным элементом теплообменника являются пластины, которые предназначены для передачи тепловой энергии одного теплоносителя другому. Они изготавливаются из инертных материалов, стойких к коррозии. В производстве пластин используется операция штамповки. В зависимости от мощности они имеют толщину от 0,4 до 1 миллиметра.

Собранный теплообменный аппарат состоит из плотно прилегающих друг к другу пластин, образующих каналы в виде щелей. Их лицевые стороны имеют углубление по контуру под резиновую прокладку. Благодаря им пластины герметично прилегают друг к другу.

Пластины имеют одинаковую форму и изготавливаются из одного материала, в качестве которого может выступать недорогая нержавеющая сталь (например, марки AISI316), а также дорогостоящие сплавы тугоплавких металлов и титан. Выбор материала для производства пластинчатых теплообменников зависит от характеристик, которыми они должны обладать.

Для изготовления уплотнителей также используются различные материалы. Этот выбор зависит от условий эксплуатации, температуры среды, вида теплоносителя и т. д. В основном прокладки изготавливают из сложных полимеров на основе синтетического каучука. В производстве используются следующие полимерные вещества:

  • EPDM — для неагрессивных сред воды и гликоля
  • Nitril – для масляных и нефтесодержащих теплоносителей
  • Viton – для высокотемпературных сред и пара

Для чего нужен теплообменник в системе отопления

Теплообменник устройство, передающее тепло от одного источника теплоты другому, исключая при этом непосредственный контакт теплоносителей. Поэтому теоретически теплообменник можно установить в любой системе отопления, главное чтобы от этого была польза, поскольку стоимость самой системы отопления при этом возрастает прямо пропорционально нагрузке, или попросту стоимости самого устанавливаемого теплообменника с регулирующей измерительной и контрольной аппаратурой.

Главная область применения теплообменников в системе отопления это независимая система теплоснабжения. Чтобы понять, зачем нам это нужно необходимо совершить небольшой экскурс в природу имеющихся у нас в стране тепловых сетей.

Зависимая система теплоснабжения, работающая без теплообменника.

Индивидуальный тепловой пункт, спроектированный для работы в зависимой системе теплоснабжения без теплообменника

Существуют две схемы отопления или как правильно говорить теплоснабжения. Зависимая система отопления, с которой мы все хорошее знакомы, это когда котел, нагревая воду, подает ее по трубопроводам прямо в отопительные приборы – батареи отопления в квартире, минуя теплообменник. Конечно, в такой схеме есть тепловой пункт, регулирующие и измерительные приборы, иногда устанавливается погодозависимая автоматика. Только без теплообменника влиять на температуру в батареях, а значит, в целом в квартирах мы можем только в сторону уменьшения температуры.

Для котлов в котельной такая схема тоже не удобная, она требует больших насосов, котлы и трубы тепловой сети работают как гармошка, от того рвутся постоянно, а об утечках тепла и потерянных при этом потерях тепла лучше и не вспоминать. Зато на первичном этапе без установки теплообменника в системе отопления получается довольно дешево, но не эффективно, котельная не знает, сколько тепла нужно каждому, а потребитель не в силах влиять на выработку тепла для отопления, отсюда перетоп и низкая энергетическая эффективность такой системы отопления без разделительного теплообменника.

Независимая система теплоснабжения с теплообменником.

Индивидуальный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения с теплообменником

Теплообменник в такой системе отопления главный прибор позволяющий экономить. Конечно, экономит не он, он только отделяет среды друг от друга, экономит автоматика. Как экономит? Вот пример независимой системы отопления – современная централизованная отопительная система, в ней имеется один главный тепловой пункт, распределяющий тепло и дополнительные теплообменники для каждого потребителя установленные уже в ИТП жилых домов.

От котельной к центральному тепловому пункту, где установлен главный теплообменник, тепло подается в жестком, фиксированном тепловом режиме – например 95 градусов на подаче и теоретически 70 градусов на обратке. В котельной не нужна автоматика и операторы, мощность насосов и диаметр труб тепловой сети могут быть гораздо меньше, утечек в контуре котлов нет по своей природе. Иногда теплообменник большой мощности устанавливают непосредственно в системе отопления котельной, тогда контур получается двойным и в котлах, из-за малого объема теплоносителя во внутреннем контуре, отсутствует накипь, котлы служат вечно.

Блочный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения и горячего водоснабжения с теплообменниками

Установив теплообменник в системе отопления, потребитель получает возможность влиять на температуру в квартире, сколько нужно каждому столько и возьмет, конечно, если в квартире на батареях тоже установлены регулирующие приборы. Выгода для всех налицо.

Как подключить теплый пол к системе отопления через теплообменник.

Нужен теплообменник и для теплого пола. Если вы, например, захотите сделать теплый пол, врезав его в систему отопления без теплообменника вы оставите весь дом без тепла, тепла на полы пойдет немного, но вот вода – теплоноситель будет циркулировать только через ваш пол и не пойдет к соседям, она «лентяй» и идет по самому короткому пути.

Недостаток установки теплообменника в систему отопления только один, увеличение затрат на первоначальном этапе монтажа, но он с лихвой перекрывается всеми ее достоинствами.

Зависимую систему отопления легко модернизировать в независимую систему, путем установки дополнительного теплообменника с регулирующей аппаратурой. Правда, делать это придется одновременно во всем районе, подключенном к вашей котельной. Зато так вы сможете сэкономить до 40 процентов на оплату тепла, по сравнению с вашими сегодняшними затратами без установки такого нужного теплообменника в системе отопления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *