4 схемы подключения водяного теплого пола
Теплый водяной пол к системе отопления можно подключить множеством вариантов. Давайте рассмотрим четыре основные схемы, которые чаще всего применяются в наших реалиях.
Но прежде чем перейти к их подробному изучению, стоит обратить внимание на те минимальные требования, которые вообще применяются к теплым полам. Они тем или иным образом могут повлиять на выбор схемы.
Ограничения и нормативы
Начнем с того, что водяной теплый пол не относится к высокотемпературным системам отопления. По нормативам, здесь нельзя превышать и нагревать температуру теплоносителя свыше 55С.
На практике нагрев происходит максимум до 35 или 45 градусов.
При этом не путайте температуру теплоносителя и температуру поверхности пола. Она может составлять от 26 до 31 градуса максимум.
- там где вы находитесь постоянно (зал, спальня, кухня) — это 26С
- в комнатах с временным пребыванием (санузел, отдельная прихожая, лоджия) — 31С
Кроме того, не забывайте про циркуляционный насос. Теплый пол — это все таки отдельный самостоятельный контур. Насос может быть как встроенным в котел, так и смонтирован за его пределами.
С помощью насоса легче выполнить еще одно требование, касающееся перепада температур. К примеру между подачей и обраткой, перепад должен составлять не более 10 градусов.
Но выбирая насос, не переборщите со скоростью протока теплоносителя. Максимально допустимое значение здесь — 0,6м/с.
Зная все эти ограничения и рекомендации, давайте перейдем непосредственно к самим схемам.Схема прямого подключения
У вас есть котел, после которого смонтирована вся арматура безопасности + циркуляционный насос. В некоторых настенных вариантах котлов, насос идет изначально встроенным в его корпус.
Для напольных экземпляров придется ставить его отдельно. От этого котла, вода сначала направляется в распределительный коллектор, и далее разбегается по петлям. После чего завершив проход, возвращается через обратку в теплогенератор.
Спецификация материалов и оборудования на примере Valtec
При такой схеме, котел непосредственно настраивается на желаемую температуру самих ТП. У вас тут нет никаких дополнительных батарей отопления или радиаторов.
На какие главные особенности здесь стоит обратить внимание? Во-первых, при таком прямом подключении, желательно устанавливать конденсационный котел.
В таких схемах, работа при относительно невысоких температурах для конденсационника вполне оптимальна. В этом режиме он достигнет своего наибольшего КПД.
Если же вы будете использовать обычный газовый котел, то в скором времени попрощаетесь со своим теплообменником.
Второй нюанс касается твердотопливных котлов. Когда у вас смонтирован именно он, для прямого подключения к теплым полам, вам потребуется еще и буферная емкость.

Схема с трехходовым клапаном
В подавляющем большинстве домов монтируют именно эту комбинированную систему теплых полов.
Спецификация материалов и оборудования
Она включает в себя:
- наличие радиаторов отопления с нагревом до 70-80С
- отдельный контур ТП со средней температурой воды в 40С
Главный вопрос здесь — как получить из 80 градусов идущих на батареи, поток воды для теплых полов в два раза меньшей температуры.
Проблема решается при помощи трехходового термостатического клапана.
Монтируется он на подающей трубе. При этом после него не забудьте поставить циркуляционный насос.
Более холодная вода берется из обратки теплого пола. Смешиваясь с горячей водой поступающей из котла, теплоноситель и приобретает пониженную температуру, необходимую для напольного отопления.
Недостатком такой схемы является то, что вы не сможете точно ограничить и отрегулировать поток остывшей воды из обратки. Чем это чревато?
Тем, что в трубки теплых полов периодически будет попадать как слишком остывшая вода, так и наоборот — перегретая сверх нормы.
Непридирчивый человек этого может и не заметить, тем не менее данные перепады температуры в этой схеме присутствуют, и от них никуда не деться. Конечно, временные отрезки подачи горячего и непрогретого теплоносителя могут компенсироваться тепловой инерцией бетона стяжки.
Но это все относительно. Никогда точно не рассчитаешь оптимальную толщину при таком обогреве.
Достоинства такой комбинированной схемы с трехходовым клапаном:
- простой монтаж
- доступная цена оборудования
Такой способ монтажа себя оправдывает, если у вас квартира или дом небольшой площади. Да и завышенными требованиями к суперкомфортным условиям проживания вы не страдаете.
Схема с насосно смесительным узлом
Эта схема тоже относится к комбинированным системам, когда у вас одновременно есть и радиаторы, и теплый пол.
Однако здесь вместо 3-х ходового клапана, применяется более дорогой насосно-смесительный узел.
Спецификация материалов
По факту, здесь также подмешивается остывшая обратка к основной котловой подаче. Но благодаря балансировочному клапану, остывшую воду можно подмешивать в определенных дозах и заданных пропорциях.
Этим вы обеспечите точно заданную температуру теплоносителя, поступающего в трубки ТП через коллектор.
Это наиболее эффективная и самая комфортная схема. Сам насосно-смесительный узел может быть собран в различных вариациях.
В зависимости от ваших потребностей и финансовых возможностей в него могут быть включены следующие компоненты:
Схема с терморегулирующим комплектом для одной петли
Данная система отопления реализуется при помощи небольших термомонтажных комплектов. Они изначально рассчитаны на присоединение только одной единственной петли.
Здесь вам не придется городить сложных коллекторов, смесительных групп и т.
С виду это небольшая пластиковая коробочка, в которой смонтированы:
- ограничитель температуры теплоносителя
- ограничитель реагирующий на температуру окружающего воздуха в прогретой комнате
- воздухоотводчики
Горячая вода поступает напрямую в петлю теплого пола без всяких коллекторов или каких-либо регуляторов. Это означает, что ее изначальная температура достигает максимальных 70-80 градусов, а остывание происходит как раз в самой петле.
Чаще всего люди применяют такие комплекты в 3-х случаях:
1Вы хотите сделать теплый пол на небольшой площади (ванная, санузел, балкон) и при этом не тратить огромные деньги на узел смешения с насосом.2У вас большая площадь теплых полов на первом этаже дома, и есть удаленный санузел на втором.

Чтобы не тянуть одну единственную петлю с первого на второй этаж, плюс применять там воздухоотводчики, можно воспользоваться этим недорогим решением.
Опять же в качестве альтернативы, можно воспользоваться терморегулирующим комплектом.
Во всех трех случаях вы просто его подключаете напрямую к ближайшему радиатору, стояку или коллектору отопления. В итоге у вас автоматически получается готовая петля теплого пола.
Недостатки такого комплекта:
- малый комфорт — если хорошенько топить котел, пол у вас будет постоянно перегретым
Конечно можно подавать и остывшую воду из буферной емкости, но тогда мы приходим к ранее рассмотренной схеме №1. Данный же комплект предназначен для подключения именно к высокотемпературной системе, с ПЕРИОДИЧЕСКОЙ подачей в теплый пол горячей воды.
Подали порцию воды, термоголовка перекрыла поток. Далее вода остыла в петле, подали следующую порцию и т.д. Если же теплоноситель низкотемпературный, то и никакого комплекта не нужно.
Кстати, его можно подключать не только к теплым полам, но и к системе теплых стен, или к отдельным радиаторам отопления.
Более подробно с работой системы можно ознакомиться в паспорте на изделие — скачать.
- второй недостаток — комплект будет эффективно работать только в двухтрубной системе
В однотрубной его будет достаточно сложно приспособить. Придется монтировать байпас и балансировочный вентиль.
Достоинства:
- самый простой монтаж из всех вышеприведенных схем
Применяемость — в маленьких помещениях с редким пребыванием людей. В основном это санузлы, коридор, лоджия.
Чтобы понять какая из схем лучше и наиболее подходящая для вашего случая, можете сравнить все их недостатки и преимущества, сведенные воедино в одной общей таблице.
Взвесив все плюсы и минусы можете выбирать ту, которая наиболее полно удовлетворяет вашим потребностям и возможностям. После чего смело приступать к монтажу или приглашать специалистов для проведения ремонтных работ.
Статьи по теме
4 Проверенные схемы подключения водяного теплого пола
Водяной теплый пол – популярная система отопления, которую можно реализовать различными способами. В этом материале разберем 4 основные схемы подключения водяного теплого пола.
Что такое водяной теплый пол
Водяной теплый пол — низкотемпературная система отопления, где теплоноситель подается с температурой 35-45оС, по нормам не выше 55 оС. Кроме того, теплый пол это отдельный циркуляционный контур, которому необходим отдельный циркуляционный насос.
У теплого пола есть ограничения по температуре поверхности пола — 26-31оС. Максимальный перепад температуры между разводкой подачи и обратки теплого водяного пола допускается не более 10оС. Максимальная скорость протока теплоносителя составляет 0,6 м/с.
Схема 1. Соединение теплого пола напрямую от котла
Данная схема подключения водяного теплого пола имеет теплогенератор, арматуру безопасности с насосом. Теплоноситель непосредственно от котла поступает в распределительный коллектор теплого пола и затем расходится по петлям и реверсирует обратно в котел. Котел должен быть настроен на температуру теплого пола.
При этом возникают два нюанса:
- Желательно использовать в монтаже конденсационный котел, т.к. низкотемпературный режим для него оптимален. В этом режиме у конденсационного котла максимальный кпд. У обычного котла при работе в низкотемпературном режиме очень быстро выйдет из строя теплообменник. Если котел твердотопливный, то необходима буферная емкость для коррекции температуры, так как данный котел сложно поддается температурной регулировке.
- Хороший вариант для теплого пола — это когда он подключен к тепловому насосу.
Схема 2. Монтаж теплого пола от трехходового клапана
схема трехходового термостатического клапана
В большинстве случаев при такой схеме монтажа и подключения водяного теплого пола мы имеем комбинированную систему отопления, здесь находятся радиаторы отопления с температурой 70-80оС и контур теплого пола с температурой 40оС. Встает вопрос, как из этих восьмидесяти сделать сорок.
Для этого применяется трехходовой термостатический клапан. Клапан устанавливается на подаче, после него обязательно устанавливается циркуляционный насос. С обратки теплого пола производится подмешивание остывшего теплоносителя к теплоносителю, который получаем из котлового контура и который в дальнейшем с помощью трехходового клапана понижается до ходовой температуры.
Минус такой схемы разводки теплого пола в невозможности дозировать пропорциональность подмеса остывшего теплоносителя горячему и в теплый пол может поступать недогретый или перегретый теплоноситель. Это снижает комфорт и эффективность системы.
Достоинством такой схемы является простота монтажа и невысокая стоимость оборудования.
Данная схема больше подходит для отопления небольших площадей и там, где нет высоких требований заказчика к комфорту и эффективности, где есть желание сэкономить.
В реальной жизни схема встречается крайне редко по причине нестабильности работы радиаторов, подключенной к единой трубе. При приоткрывании трехходового вентиля подпитывается греющий контур, а давление помпы передается в основную магистраль.
Пример реализации:
Схема 3. Разводка теплого пола от насосно-смесительного узла
модуль подмеса
Это смешанная схема подключения водяного теплого пола, где есть зона радиаторного отопления, теплый пол и применяется насосно-смесительный узел. Происходит подмешивание остывшего теплоносителя с обратки теплого пола к котловому.
У всех смесительных узлов присутствует балансировочный клапан, с помощью которого можно дозировать количество остывшего теплоносителя при подмесе к горячему. Это позволяет добиться четко заданной температуры теплоносителя на выходе из узла, т.е. на входе в петли теплого пола. Так существенно повышается потребительский комфорт и эффективность системы в целом.
В зависимости от модели узла, в его состав могут входить другие полезные элементы: байпас с перепускным клапаном, балансировочный клапан первичного котлового контура или шаровые краны с двух сторон от циркуляционного насоса.
Схема 4. Подключение теплого пола от радиатора
Это специальные комплекты, предназначенные для подключения одной петли теплого пола на площадь 15-20 кв.м. Выглядят как пластиковая коробка, внутри которой в зависимости от производителя и комплектации, могут находиться ограничители по температуре теплоносителя, ограничители температуры воздуха в помещении и воздухоотводчик.
Теплоноситель поступает в петлю подключенного водяного теплого пола прямо из высокотемпературного контура, т.е. с температурой 70-80оС, остывает в петле до заданной величины и заходит новая партия горячего теплоносителя. Дополнительный насос здесь не требуется, должен справляться котловой.
Недостатком является низкий комфорт. Зоны перегрева будут присутствовать.
Достоинство данной схемы подключения водяного теплого пола в легкой установке. Применяются подобные комплекты, когда малая площадь теплого пола, малое помещение с нечастым пребыванием жильцов. Не рекомендуется устанавливать в спальнях. Подойдет для отопления санузлов, коридоров, лоджий, и т. д.
Подведем итог и сведем в таблицу:
Вид подключения | Комфорт | Эффективность | Монтаж и настройка | Надежность | Цена |
Обычный газовый,ТТ или дизельный | ± | ± | + | ± | + |
Конденсационный котел или тепловой насос | + | + | + | ± | — |
Трехходовой термостатический клапан | ± | ± | + | + | ± |
Насосно-смесительный узел | + | + | ± | + | — |
Термомонтажный комплект | — | ± | + | + | + |
Мастера-сантехники и эксперты по теплогазоснабжению рекомендуют избегать схем подключения водяного теплого пола к рабочим ветвям отопления. Греющие контуры теплового пола лучше запитывать прямо на котел, чтобы обогрев пола мог функционировать независимо от батарей, особенно в летнее время.
Схемы укладки водяного теплого пола
Способы раскладки трубы теплого пола
Существуют три основных способа укладки водяного теплого пола: змейка, спираль (улитка) и комбинация этих вариантов. Чаще всего теплый пол монтируют улиткой, в некоторых местах используют змейку.
Схема монтажа «Улитка»
Укладка теплого улиткой позволяет более равномерно распределять тепло по всему помещению. При такой разводке труба монтируется по кругу к центру, затем от центра «разворачивается» по кругу в обратном направлении.
При раскладке теплого пола улиткой нужно закладывать отступ для раскладки трубы в обратном направлении.
Укладка теплого пола змейкой
При такой укладке труба теплого пола монтируется в одном направлении и при окончании раскладки контура просто возвращается в обратку коллектора. При таком устройстве в начале контура температура теплоносителя горячее, в конце холоднее. Поэтому раскладку змейкой используют довольно редко.
Расчет теплого пола
Перед подключением теплого пола по разработанной схеме, необходимо сделать его предварительный расчет. Грубый расчет Вы можете сделать самостоятельно по следующим шагам:
- Определите место расположения коллектора. Чаще всего его монтируют в центре этажа.
- Попробуйте схематично изобразить разводку труб теплого пола, соблюдая следующую информацию: при шаге 15 см на квадратный метр трубы тратится 6,5 метров трубы, длина трубы не должна превышать 100 метров, контура все должны быть примерно одинаковыми.
- Определяемся с метражом всех контуров и в целом можно приступать к монтажу.
Так же не забудьте сделать тепловые расчеты здания. В интернете есть множество готовых калькуляторов. Если теплопотери в помещении не превышают 100 Вт на метр квадратный, то теплый пол у вас не потребует дополнительных приборов отопления.
Монтаж теплого пола
youtube.com/embed/YdO1TZVhWtA?version=3&rel=1&showsearch=0&showinfo=1&iv_load_policy=1&fs=1&hl=ru-RU&autohide=2&start=1&wmode=transparent» allowfullscreen=»true» sandbox=»allow-scripts allow-same-origin allow-popups allow-presentation»/>
Как определись со схемой укладки и подключения водяного пола, нужно приступать к монтажу.
- Подготовьте основание теплого пола. Оно должны быть ровным с минимальным перепадом высот.
- Уложите гидроизоляцию, если того требуют местные нормативы
- Уложите полистирол толщиной 10 см на первом этаже и 5 см на последующих.
- Постелите полиэтилен, чтобы меньше стяжки соприкасалось с изоляцией
- Если способом крепления у Вас является армирующая сетка, то уложите ее на полиэтилен
- Раскладывайте трубу теплого пола согласно утвержденной схеме
- Опрессуйте систему
- Заливайте стяжку
гайд по подключению системы к коммуникациям
Теплые полы водяного типа становятся все популярнее у владельцев частных домов, отапливаемых от котла. Комбинированная система, обустроенная по всем правилам, исправно работает на протяжении 15-20 лет. Удачно подобранная схема подключения водяного теплого пола (ВТП) обеспечивает подачу теплоносителя, нагрев его до нужной температуры и распределение по контурам.
В этой статье детально разберем особенности сборки коллекторного узла и схему подключения системы. Также приведем подробную инструкцию по монтажу. Но для начала рассмотрим, когда водяной пол становится полезным, а когда устраивать его нецелесообразно.
Содержание статьи:
Ограничения для монтажа ВТП
Производители комплектующих для теплого пола (ТП) не всегда уточняют, есть ли ограничения для установки водяных систем, однако они существуют. В некоторых случаях монтировать обогревательные конструкции запрещено.
Где не принято устанавливать водяные полы:
- В многоквартирных зданиях. Централизованное отопление распределено между квартирами. Дополнительное подключение в одной из них приведет к обогревательному и гидравлическому дисбалансу.
- В общественных местах. Подогрев пола считается неэффективным, так как велики теплопотери, и экономичные по сути системы становятся дорогостоящими в процессе эксплуатации.
- В жилых помещениях с недостаточной теплоизоляцией в качестве главного источника тепла. Одно из условий установки теплых полов в северных районах – снижение теплопотерь за счет и пола, а также установка радиаторов по периметру помещений, под окнами.
Наиболее эффективной системой отопления признана комбинация традиционного радиаторного обогрева с теплым полом, причем батареи отопления остаются основными источниками тепла.
Но иногда система, скрытая под напольным покрытием, играет главную роль:
Галерея изображений
Фото из
Просторные помещения с панорамными окнами
Интерьер в ретро стиле
Детские и игровые комнаты
Ванные комнаты и санузлы
Теплые полы, оборудованные с соблюдением норм и технологических нюансов, безопасны, гигиеничны и не влияют на эстетику помещений.
А за функциональность и удобство эксплуатации отвечает выбранная схема подключения, на описании которой остановимся подробнее.
Разбор схемы подключения с коллектором
Существует несколько вариантов устройства системы водяных ТП. Но наиболее практичной и рациональной признана конструкция с – многофункциональным узлом, раздающим теплоноситель.
Принцип работы отопления
Главным источником теплоснабжения в доме, как правило, является автономный генератор, функцию которого обычно выполняет котел. Тип котла не имеет значения, однако подсчитано, что обходится в 6-7 раз дешевле, чем электрический.
Котел может быть установлен в кухне, коридоре, подвале или специально выделенном помещении – бойлерной. Связь с радиаторами и теплым полом осуществляется посредством труб (полипропиленовых, металлопластиковых и др.)
Температура нагрева воды для отопления достигает 95 °С. Система является замкнутой, и на обратке температура ниже – примерно 65-70 °С. Но для теплого пола эти параметры не подходят, максимально допустимое значение – 55 °С. На практике теплоноситель поступает в трубы ВТП еще более остывшим – 35-45 °С.
Чтобы отрегулировать нужную температуру, к контурам подключают обратку и устанавливают , осуществляющий подмес потоков.
Схема подключения: 1 – клапан трехходовой; 2 – насос циркуляционного типа; 3 – шаровые краны с термодатчиками; 4 – коллектор для раздачи теплоносителя с расходомерами; 5 – коллектор с вентилями регулировки, установленный на обратке; 6 – теплый пол «улитка»
Температуру в системе можно отрегулировать вручную, ориентируясь на данные термодатчиков. Однако есть газовые котлы, предназначенные для прямого подключения ВТП. Они автоматически подают воду с заранее установленной температурой – 40-45 °С.
Котлы на твердом топливе регулировать сложно. Чтобы теплоноситель в системе с твердотопливным генератором достиг нормы, требуется установка дополнительного буферного бака.
А вот подходят идеально, так как нужная температура поддерживается в автоматическом режиме, однако это наиболее затратный способ отопления, не выгодный экономически.
Выбор и сборка коллекторного узла
Контуры ВТП подключаются к системе отопления через распределяющий коллектор. Это узел, позволяющий производить регулировку подачи теплоносителя, контролировать температуру и расход, балансировать контуры, удалять из системы воздух. За каждую функцию отвечают отдельные элементы: , расходомеры, манометр, термостаты.
Образец коллекторного способа подключения. На стене закреплена гребенка, к которой с одной стороны подводятся магистрали подачи и обратки, с другой – водяные контуры из одного или нескольких помещений
Чтобы правильно подобрать комплектующие для сборки смесительно-коллекторного узла, лучше нанять специалиста, который хорошо разбирается в качестве представленных на рынке деталей.
Основные элементы узла:
Галерея изображений
Фото из
На подающей линии располагается коллектор с балансировочными клапанами, оснащенными расходомерами, на выпуске – такой же коллектор, но с обычными вентилями или термостатическими клапанами
На обоих коллекторах устанавливают краны, выполняющие 2 функции: удаление теплоносителя из системы и выпуск воздуха при первоначальном или очередном заполнении контуров водой
При отсутствии отдельного стояка необходим смесительный узел, включающий байпас, термостат и насос. Существует множество вариантов установки узла в зависимости от расположения коллектора, количества подключенных контуров и других условий монтажа
Существует несколько причин завоздушивания системы, поэтому установка автоматического воздухоотводчика необходима. Его монтируют сбоку, желательно в самой высокой точке коллекторно-смесительного узла, на подающей гребенке
Коллекторные гребенки с расходомерами и клапанами
Дренажные краны для аварийного слива теплоносителя
Смесительный узел для регулировки теплоносителя
Автоматический воздухоотводчик для выпуска воздуха из труб
Кроме перечисленных комплектующих понадобятся фитинги (аксиальные, компрессионные или пресс-фитинги), специальные кронштейны. Узел целиком обычно размещают в коллекторном шкафу, который может иметь различное исполнение и место монтажа.
Пошаговая инструкция по монтажу
Подключение водяного пола к отопительной системе производится на заключительном этапе, когда полностью выполнены строительные работы, собран и установлен коллекторный шкаф.
Весь процесс монтажа системы ВТП включает следующие этапы:
- Проектирование, расчеты, составление схемы.
- Подготовка основания, ;
- Правильная , армирующей сетки;
- Заполнение контуров теплоносителем, гидравлические испытания.
- Заливка , укладка финишного напольного покрытия.
- Подключение к системе, балансировка контуров.
- Ввод в эксплуатацию, тестирование.
Как видите, мероприятия по подключению выполняются в самом конце. И здесь важную роль играет балансировка контуров. Каждая петля имеет различную длину, соответственно, все контуры отличаются гидравлическим сопротивлением.
Инструкция по подключению труб:
Галерея изображений
Фото из
Шаг 1 – надеваем на трубы защитные кожухи
Шаг 2 – устанавливаем зажимное соединение под евроконус на трубу
Шаг 3 – присоединяем фитинг к штуцеру коллектора
Шаг 4 – аккуратно затягиваем соединение
Шаг 5 – намечаем монтаж второго конца трубы
Шаг 6 – находим соответствующий штуцер на обратной гребенке
Шаг 7 – корректируем положение теплоизолирующих рукавов
Шаг 8 – поочередно подключаем все трубы
Если установить коллекторный узел без расходомеров, отопительная функция будет нарушена. При введении системы в эксплуатацию теплоноситель будет стремиться попасть в меньшие контуры, с минимальным сопротивлением. В результате помещения с короткими контурами будут обогреваться согласно проекту, а с длинными – останутся неотапливаемыми.
Балансировку следует начинать, когда коллектор подключен к подающей и обратной трубам.
Схема теплого пола с различными по размеру отопительными контурами. Чтобы температура в них была примерно одинаковой, необходимо произвести балансировку, для которой и нужны расходомеры
Инструкция по балансировке:
- Открыть поочередно клапаны подачи и обратки. Проследить, чтобы воздухоотводчики также находились в открытом состоянии.
- При выключенном котле включить циркуляционный насос и настроить терморегулятор на максимальную температуру.
- Довести давление в системе до нормы – 1-3 бара.
- Закрыть вентили на всех контурах, оставить только самый длинный.
Записать данные расходомера.
- Открыть вентиль на второй по длине петле. Подогнать расход под первый результат, используя балансировочный вентиль.
- Продолжить поочередно открывать вентили на контурах, от длинных к коротким, подгоняя расход к одному значению (первому).
С помощью удобного функционала всегда можно откорректировать параметры расхода. Но делать все придется вручную, ориентируясь на значение в самом длинном контуре.
Начинать эксплуатацию сразу на всю мощность запрещено, температуру теплоносителя в системе следует поднимать постепенно. В первые сутки осуществляют подачу воды чуть выше комнатной температуры – +25 °С, затем каждый день прибавляют по 5-6 °С. Нужную температуру выставляют на терморегуляторе.
При достижении подогреваемой водой температуры 30-45 °С в комнатах должен установится максимально комфортный микроклимат. Если этого не произошло, можно прибавить еще максимум 5-10°С
Скорость насоса поднимать не обязательно, лучше, если он будет работать на первой. Нормальная разница температуры на подаче и обратке – 5-10 °С, но если значение выше, то скорость насоса можно увеличить.
Схема подключения от радиатора отопления
Иногда вместо схемы «котел – смесительно-коллекторный узел – контуры», используют другие варианты подключения теплого пола. И наиболее распространенный из них – подключение контура ВТП к радиатору отопления.
Схема выглядит так:
Подключение осуществляется к трубе обратки: 1 – отсекающие шаровые краны; 2 – обратный клапан; 3 – трехходовой смесительный узел; 4 – насос циркуляционного типа; 5 – воздушный клапан; 6 – коллекторный узел; 7 – труба к котлу
Минус схемы – сезонное использование теплого пола. Как известно, радиаторы отопления не используют летом, следовательно, пол также останется холодным.
Чтобы температура теплоносителя не поднялась выше нормы, в схему включают специальный датчик с клапаном. Он в автоматическом режиме перекрывает поступление воды, как только она становится излишне горячей. Когда теплоноситель остынет до приемлемой температуры, снова открывается.
Такой тип ВТП можно организовать и без насосно-смесительного узла. Единственным инструментом регулировки является термостатическое устройство, установленное на трубе подачи.
Выводы и полезное видео по теме
Обзор способов подключения:
Вариант подключения контура без коллектора:
Как собрать насосно-смесительный узел
При выборе схемы подключения ВТП к отопительной системе лучше проконсультироваться со специалистом, чтобы учесть все нюансы дальнейшей эксплуатации.
Если нет навыков самостоятельной сборки коллекторно-смесительного узла, рекомендуем покупать готовый.
Пользуетесь собственноручно собранным и подключенным теплым полом и хотите поделиться полезными советами монтажа и предупредить новичков о возможных ошибках? Пишите свои комментарии в блоке ниже, добавляйте фотографии и рекомендации.
Может у вас есть вопросы по теме статьи? Не стесняйтесь задать их нашим экспертам ниже под этим материалом.
Схема подключения теплого пола: основные правила
Содержание:1. Особенности подключения электрического обогрева
2. Подключение электрического пола через терморегулятор
3. Расчет необходимого количества терморегуляторов
4. Особенности подключения водяного обогрева
5. Схема контуров с жидким теплоносителем
6. Комбинированная схема подключения пола с обогревом
Напольное покрытие с обогревом, которое в последнее время стало так популярно в частном домостроении, бывает водяным или электрическим в зависимости от вида нагревательных элементов. Монтаж и подключение теплого пола к управляющей системе желательно доверить профессионалам, поскольку его обустройство требует наличия опыта проведения подобных работ. Чтобы грамотно их выполнить, необходимо иметь знания об основах гидродинамики или о правилах монтажа электроприборов.
Особенности подключения электрического обогрева
Одним из основных элементов, обеспечивающих оптимальное функционирование электрического теплого пола, является терморегулятор, он может быть:
- механическим прибором – в нем желаемую температуру выставляют при помощи реостата;
- электронным устройством – температурный режим устанавливается на нем благодаря использованию реле. В этих регуляторах теплого пола при наличии микропроцессорного программатора имеется возможность обеспечивать автоматическое управление процессом функционирования отопительной конструкции в соответствии с заданными параметрами.
И механические, и электронные терморегуляторы обладают способностью влиять на работу следующих электрических элементов систем обогрева пола:
- нагревающего кабеля в надежной изоляции, имеющего большое сопротивление.
Он вырабатывает тепло при прохождении через него электрического тока;
- теплового мата – в данном случае кабель располагается на пленке теплоизоляции, предварительно выполнив расчет электрического теплого пола;
- специальной тонкой пленки, излучающей термические волны (инфракрасные лучи). Ее толщина составляет не более 0,5 миллиметра. В слое пленки вмонтирована плоская полупроводниковая полоса, обеспечивающая нагрев.
Подключение электрического пола через терморегулятор
Чтобы обеспечить экономное расходование электроэнергии при обустройстве электрического пола для обогрева домовладения, его необходимо подключать к кабелю питания непосредственно через терморегулятор (как он выглядит видно на фото). Прочитайте также: «Схема подключения электрического теплого пола — варианты».
Обычно схема подключения теплого пола изображается производителем на корпусе данного терморегулирующего прибора или в паспорте на него.При наличии практических навыков и соответствующих знаний подключение терморегулятора к теплому полу вполне можно выполнить самостоятельно. Кабель электропитания к устройству подводят либо через проводку, либо непосредственно к розетке, соблюдая схему отопления с теплыми полами. При подключении терморегулятора к сети задействуют автоматический выключатель, специально для этого предназначенный.
Расчет необходимого количества терморегуляторов
Обычно в частном доме полы с электрическим обогревом обустраивают в нескольких комнатах и помещениях, поэтому монтировать терморегуляторы и датчики температуры нужно отдельно к каждому из отопительных контуров. Благодаря этому в процессе функционирования системы отопления удается не допускать излишних нагрузок на электрические сети. Поскольку обогреваемые помещения не всегда эксплуатируются в одном режиме, наличие отдельных терморегуляторов – разумное решение. Например, спальню можно прогревать непосредственно перед отдыхом и во время сна.

Особенности подключения водяного обогрева
Способы подключения водяного пола для обогрева отличаются от обустройства электрической системы.
Подачу жидкого теплоносителя можно обеспечить при помощи подключения конструкции к магистральному отоплению. Но подобный вариант не всегда приемлем, поскольку это, скорее всего, приведет к большим потерям тепла у соседей, если квартира расположена в многоквартирном доме. Без ущерба подобное устройство обогрева пола допустимо только для помещений, в которых стационарная система предусматривает обратное течение. Кроме этого, температура теплоносителя будет недостаточной для обеспечения комфортного пребывания в комнате.
Еще такая схема подключения теплого пола не позволяет осуществлять в полной мере регулировку температурного режима жидкого теплоносителя. Даже при условии установки задвижек на входе и выходе нагревательного контура температура воды зависит от степени нагрева ее в магистральной системе, но регулировка водяного теплого пола всё же необходима.

Что касается схем подключения водяного теплого пола к индивидуальным отопительным системам, то они практически не имеют недостатков при условии использования их в частных домовладениях.
Вариант первый.
Как правильно подключить теплый пол водяной наглядно видно на принципиальной схеме, на которой элементами системы отопления являются:- управляющий клапанный термостатический механизм – на него сигнал поступает от установленного в контуре датчика температуры. В случае достижения необходимого температурного режима, прибор останавливает подачу теплоносителя;
- балансировочный клапан – данное устройство позволяет не допустить холостого прогона воды в контурах отопления. При отключении подачи теплоносителя, благодаря данному элементу источник тепла запускается по малому кругу, минуя котел;
- циркуляционный насос – обеспечивает дополнительное давление подогретой воды для прохождения ее через нагревательные контуры;
- предохранительный термостат – его устанавливают на входе теплоносителя в трубу системы для контроля над температурой воды;
- коллектор водяной системы пола с обогревом – он обеспечивает распределение водяного теплоносителя по контурам;
- электропривод клапанной группы на водяном коллекторе – отвечает за управление клапанами, расположенными на нагревательных контурах;
- байпас (притворный клапан коллектора) – необходим для надежной циркуляции жидкого теплоносителя по малому системному кругу;
- несколько выносных регуляторов температуры воды конструкции пола с обогревом – позволяет в индивидуальном порядке поддерживать нужный температурный режим в каждом эксплуатируемом помещении, в котором отопление производится при помощи данной системы.
Вариант второй.
Существует схема подключения теплого пола водяного своими руками с использованием гидравлического разделителя, который представляет собой накопительную емкость, предназначенную для накопления теплоносителя. Его обустраивают в специальном коллекторном ящике в оборудованной для этого нише в стене.Вне зависимости от того, какой выбран вариант подключения обогреваемого пола с использованием жидкого теплоносителя, важным этапом проведения монтажных работ является установка коллектора. К этому устройству подводят все контуры водяной отопительной системы. Коллектор позволяет выполнять регулировку рабочего давления и температуры теплоносителя для каждого контура индивидуально.
Схема контуров с жидким теплоносителем
Когда проектируется схема подключения водяного пола, непременно просчитывают места нахождения отопительных контуров (детальнее: «Длина контура водяного теплого пола: правила расчета»). Они не должны располагаться в помещении там, где планируется установка стационарной техники.

Двумя основными схемами подключения контуров, обеспечивающих функционирование водяного обогреваемого пола, считаются «змейка» и «улитка» (ее еще называют «спиралью»). Специалисты рекомендуют использовать второй способ в регионах с холодным климатом, поскольку тогда напольное покрытие прогревается более равномерно и не подвергается деформации по причине значительных температурных колебаний.
Особенности подключения комбинированной системы отопления, подробное видео:
Комбинированная схема подключения пола с обогревом
Водяные полы с обогревом могут функционировать:
- в качестве самостоятельной системы отопления помещения;
- в совокупности с традиционно используемыми радиаторами.
В последнем случае к трубам, по которым транспортируется теплоноситель, подключают в первую очередь батареи отопления, а обратный ход подогретой воды направляют через контуры системы теплого пола.

Основными элементами комбинированной схемы подключения пола с обогревом являются:
- отопительный котел;
- насос для обеспечения надежной подачи и циркуляции теплоносителя;
- радиаторы отопления;
- бак, имеющий мембранную перегородку;
- устройство управления;
- запорные краны.
В заключении следует отметить, что даже, несмотря на умение выполнить подключение теплого пола своими руками, без соответствующей схемы это сделать невозможно.
Схема водяного теплого пола в частном доме: правила и ошибки монтажа
Загрузка …
Наличие отопления теплым полом даст возможность отказаться от других отопительных приборов, сэкономив на их стоимости и освободив полезные площади. Как устроена схема водяного теплого пола в частном доме и о том, как его смонтировать своими руками, поможет разобраться информация ниже.
Каким образом теплый пол нагревает воздух
Теплый пол — это новая система обогрева, она дополняет или заменяет традиционные конвекторы и батареи. Эта система трубопроводов, по которым прокачивается подогретый теплоноситель, как правило, это обычная вода или антифриз. Трубы укладываются на подложку из бетона, полистирола или дерева, а уже потом идут финишные покрытия.
Трубы, по которым идет циркуляция, обычно являются полимерными. Подача теплоносителя осуществляется от центрального отопления или системы, в которой подогрев выполняет индивидуальный котел.
Рекомендуется использовать трубы с высоким коэффициентом теплоотдачи. Также, они должны быть гибкими и гладкими внутри.
Теплый воздух, нагреваясь внизу от пола, поднимается к потолку комнаты. Таким способом тепло распространяется по всей комнате. Нижняя ее часть прогревается сильнее, чем верхняя, находиться в таком помещении очень комфортно и полезно. Сфера применения водяных теплых полов — практически только в частных домах, в квартире велик риск затопления нижних помещений в результате протекания трубы.
Система состоит из трубопроводов и точки перемешивания теплоносителя. Узел смешивания комплектуется термостатическим смесителем, насосом и коллектором. Иногда необходимо наличие терморегулятора. Заливаются трубы, прикрепленные к полу, цементным раствором. Эта стяжка осуществляет распределение тепла полученного от трубопровода.
Семь «за» в пользу теплого пола
В сравнении с традиционными системами отопления, теплый пол с водяным теплоносителем имеет ряд положительных качеств:
- Экономичность. Когда в помещении высокие потолки или большая площадь, теплый пол водяной — лучший выбор. Экономия может достигать до 50 процентов.
- Комфорт. Комната с теплым полом обогревается более равномерно, создавая комфортные условия для человека. Когда нагрев идет от радиаторов, жилище в нижней части, прогревается плохо, ведь теплый воздух сразу уходит наверх.
- Безопасность. Циркуляция теплоносителя происходит в трубах под напольным покрытием, даже в случае протечки риск обжечься отсутствует.
- Привлекательность. Все элементы скрыты и не портят интерьер.
- Совместимость. Полы водяные можно применять под большинство финишных материалов.
- Цена. Установка такой системы потребует не очень большого бюджета.
- Универсальность. Монтажные схемы подключения к системам отопления теплого пола допускают варианты подключения к котлу или общей системе.
Недостатков у такой системы не так уж много. Основной недостаток — временные затраты на монтаж, система многослойная, и некоторые требуют выдержки по времени. Сложность может возникнуть при появлении протечек, возможно необходимо будет осуществить демонтаж напольного покрытия.
Разновидности монтажных схем теплых водяных полов
По типу материала, в котором прокладывают трубы, можно выделить основные типы монтажа:
- в бетонной стяжке;
- на полистирольной основе;
- по деревянным рейкам.
Первый тип самый надежный и распространенный. На ровной поверхности укладывается слой тепло и гидро изоляции. Для укрепления конструкции прокладывают армирующую сетку. Далее, прокладывают трубы и фиксируют с помощью специальных скоб. Смонтированная система заливается раствором смеси цемента и песка, а также можно добавить пластификаторы, укрепляющие стяжку. Лучшим вариантом декоративного покрытия будет плитка или камень.
Нельзя использовать теплый пол до полного высыхания стяжки, она может потрескаться.
Следующий вариант – монтаж на полистирольной основе. Этот вариант самый простой для монтажа. Трубы устанавливаются в специальные готовые формы. Для монтажа единого основания на них предусмотрены замки зацепления и дополнительная фиксация не нужна. После прокладки труб сверху крепят теплораспределительные пластины, и далее — финишное напольное покрытие.
Последний вариант – монтаж на деревянной основе. Материал различный — доска обрезная, фанера или прочие деревянные изделия. Из них изготавливаются полосы и укладываются на деревянный пол, с промежутками под трубы. В эти промежутки крепят трубопровод с помощью специальных скоб. Далее поверхность накрывается полиэтиленом и слоем гипсоволокна, он распределит температуру равномерно и на него крепится финишное покрытие.
На видео: пошаговая инструкция по укладке.
Подключение системы к подаче теплоносителя и установка коллектора
Чтобы разобраться, как подключить теплый пол к системе отопления, нужно понять, какие элементы системы в этом задействованы. Как и в классических схемах отопления, этими элементами являются:
- труба подачи нагретого теплоносителя;
- труба обратки или возврата остывшего теплоносителя.
Когда система состоит только из одного контура, можно подсоединить ее напрямую к котлу. Если контуров больше одного, для обеспечения равномерного распространения теплоносителя необходимо подключение коллектора теплого пола к подаче теплоносителя. К нему, соответственно, присоединяются контуры остальной системы.
Для начала необходимо выбрать место установки коллектора. Существует несколько вариантов размещения:
- обустройство коллекторного шкафа;
- установка в нишу в стене;
- монтаж на стену в навесном положении.
Популярные модели коллекторов снабжены автоматической терморегуляцией. В комплекте будут датчики температуры и различные измерительные приборы. Процесс распределения теплоносителя происходит в автоматическом режиме. Упрощенная схема коллектора теплого пола предусматривает пару термометров и регулировку в ручном режиме.
Для начала к коллектору подключают две трубы — обратка и подача. После этого подсоединяют «ветки» различных трубопроводов. Для контроля и регулировки отопления более точно необходимо подключить циркуляционный насос, трехходовой смеситель и регулирующие вентили.
Для простоты ремонта и обслуживания в зоне соединения труб монтируют запорные вентили, а на конце коллектора предусматривают сливной кран. Такая система работает от котла, и температура будет зависеть от температуры подачи теплоносителя.
Терморегулятор в системе — правила монтажа
В системах теплого пола наличие терморегулятора позволяет управлять сервоприводом и регулировать подачу теплоносителя в систему. Это позволит автоматически регулировать температуру в помещении, а также существенно экономить. В помещениях с несколькими системами отопления наличие терморегулятора приветствуется.
Они бывают электронными и механическими. Температурный датчик, идущий в комплекте, измеряет нагрев воздуха. Монтируется он на высоте до метра, недалеко от терморегулятора. Главное, чтобы возле датчика не было посторонних источников нагрева. Закрепив датчик, присоедините его к терморегулятору. После запуска отопления зафиксируйте на терморегуляторе желаемую температуру в помещении.
Как выбрать схему укладки трубопровода
Прежде чем начать монтаж и обустройство системы «теплый пол», необходимо ознакомиться со схемами укладки теплого водяного пола, их преимуществами и недостатками. Схем таких несколько:
- «Змейка» — укладка трубопровода происходит параллельно друг другу от стены к стене. Легкая в монтаже и проектировании, но в таком методе раскладки присутствует небольшой перепад температуры поверхности на некоторых участках. Это немного уменьшает комфорт и уют. Для купирования такого негативного момента при проектировке предусматривают ограничение на разницу температур теплоносителя в подаче и обратке.
- «Улитка» — укладка трубопровода происходит по периметру помещения от стен к центру. Более сложный монтаж и проектирование. Но теплораспределение более равномерное, за счет чередования труб с горячим теплоносителем и с остывшим.
- «Комбинированный» — когда применяются оба эти способа в одном помещении.
Любая монтажная схема подключения теплого пола к системе отопления укладки водяного теплого пола в частном доме позволяет использовать необходимый из вышеперечисленных видов, несмотря на их плюсы и минусы.
Параметры и нюансы процесса обсчета теплого водяного пола
Чтобы выполнить верный расчет теплого пола водяного вида нужно учитывать массу параметров и условий:
- главное или второстепенное отопление;
- в доме или в квартире планируется монтаж;
- какое финишное покрытие;
- какой объем помещения;
- какое назначение помещений;
- какие теплопотери помещения.
Расчет теплопотерь помещения очень важен, особенно если теплый пол — единственная система отопления. Для этого необходимо учитывать нюансы:
- тип стройматериалов стен и перекрытий;
- тип оконных рам и остекления;
- количество дверей и размер окон;
- особенности климата вашего региона;
- наличие альтернативных отопительных систем.
Для помещений различных типов предусмотрена определенная температура нагрева покрытия, а именно:
- жилые комнаты — 30 градусов;
- в помещениях где нужен сильный обогрев — 36 градусов;
- с повышенной влажностью — 33 градуса;
- для натурального дерева — 27.
Выбор материала финишного покрытия необходимо произвести еще на стадии калькулирования, заранее. В противном случае мощности обогрева будет недостаточно или она будет излишняя.
Особенности обогрева с помощью теплых полов подразумевают точного теплотехнического вычисления мощности системы. Особенно это касается помещений с деревянными полами. Такая поверхность обладает низкой теплопроводимостью и обогрев будет слабее при стандартной мощности системы. Изучив все нюансы и обратив внимание на важные моменты, нужно сделать точный просчет производительности теплого пола, нагревательного оборудования и высчитать шаг между трубопроводом с учетом выбранной схемы раскладки. Вся эта информация поможет вам своими руками сделать отопление с теплыми полами в частном доме.
Ошибки монтажа водяного пола (2 видео)
Схемы водяного пола (25 фото)
Статьи которые читают другие:
Как подключить водяной теплый пол к системе отопления
Теплый пол как единственный источник тепла, комбинированная система отопления, подключение к радиатору и готовые комплекты.
Теплые полы — возможно, один из самых комфортных видов отопления дома. Воздух в помещении прогревается равномерно на всей площади, не создаются горячие и холодные зоны в комнате, а теплее всего — ногам.
Но вариантов подключения теплого пола к системе отопления так много, что можно запросто в них запутаться. В этом материале расскажем о самых распространенных вариантах подключения теплого пола в разных исходных ситуациях.
Прямое подключение к отдельному котлу под теплый пол
Это оптимальный и простой вариант, так как теплый пол не будет зависеть от другой схемы отопления и как-либо влиять на нее. Но есть важное ограничение:
Теплый пол — низкотемпературная система отопления. Большинство типов котлов работают на высоких температурах, а при работе в низкотемпературном режиме будут выдавать низкий КПД. Кроме того, существует риск быстрого выхода из строя теплообменника.
Лучше всего с отоплением пола справляется конденсационный котел. В низкотемпературном режиме он выдает максимальный для себя КПД.
Простая схема подключения теплого пола непосредственно к котлу. Термометры контролируют температуру поступающего теплоносителя и обратки: оптимальная разница 5-10°C.Так как конденсационный котел может эффективно вырабатывать оптимальную температуру для обогрева теплых полов, подключить такую систему несложно — потребуется меньше всего дополнительных элементов.
Комбинированная система отопления: радиаторы + теплый пол
В этом случае перед владельцем дома стоит принципиально другая задача. Для радиаторного отопления котел работает в высокотемпературном режиме. Вопрос в том, как понизить температуру теплоносителя.
Обычно для отопления дома радиаторами котел нагревает теплоноситель до температуры 70-80°C, для теплых полов она не должна превышать 60°C, оптимально — 35-45°C.
Для понижения температуры теплоносителя применяются разные решения. Одно из самых популярных — подмес остывшего теплоносителя к котловому уже в контуре теплого пола. Но и это можно делать по-разному.
Трехходовой термосмесительный клапан
Устройство работает на смешивание двух потоков теплоносителя разной температуры. С одной стороны через него проходит нагретый теплоноситель с котла, с другой — остывший теплоноситель обратки отопительной системы. Смешиваясь в нужной пропорции — чтобы достичь установленной температуры, — вода направляется в контур теплого пола. После полного круга вода смешивается с обраткой всей отопительной системы.
После устройства смешения обычно устанавливают циркуляционный насос. Одна из распространенных моделей трехходового термостатического клапана для теплого пола. На стикере схематично изображено направление и смешение потоков.Термостатические трехходовые клапаны позволяют настроить температурный режим теплого пола. В некоторых моделях есть преднастройки температурного диапазона согласно климатическим зонам.
В трехходовом клапане без термостата температура теплоносителя регулируется механически. Владельцу придется долго настраивать его в ручную, чтобы добиться комфортной температуры отопления. Если вы решите изменить температуру в котле или выключить теплый пол, настраивать придется заново. На кран можно установить сервопривод — для автоматической регулировки по заданным температурным значениям.
Готовый смесительный узел
Некоторые производители выпускают готовые решения «все в одном» для теплого пола — насосно-смесительные узлы. Их комплектация, качество исполнения и цена разнообразны. Это максимально простой для подключения вариант. Принцип работы тот же: смешивание горячего теплоносителя с остывшей обраткой для поддержания нужной температуры теплого пола.
Обычно такие устройства имеют в своей конструкции трехходовой клапан, термометры на подаче и обратке и элементы подключения — к насосу и трубам или коллектору. Остальное — балансировочный клапан, автоматические воздухоотводчики, байпас, термоголовка с выносным датчиком — опционально. Насос в комплект узла не входит.
В центре – готовый насосно-смесительный узел. Слева – коллектор радиаторного отопления, справа – теплого пола. В этом решении есть все необходимое. Боковые подводы — самое удобное и эстетичное решение для соединения с коллектором.Все элементы смесительного узла можно купить и собрать похожую систему самостоятельно.
Теплый пол на втором этаже дома
Главная проблема монтажа теплого пола на втором этаже — уровень расположения воздухоотводчиков. Воздухоотводчик должен находиться выше теплого пола, иначе воздух будет поступать в трубы и оставаться там. Поэтому устанавливать пол на втором этаже, подключая его к коллектору, расположенному на первом, запрещено.
Варианта решения два:
- 1. Дополнительные узлы с воздухоотводчиками на обеих трубах выше уровня теплого пола.
- 2. Подключение теплого пола от радиатора отопления.
Теплый пол от радиатора отопления
Это решение подходит для отопления помещения небольшой площади или части комнаты — 10-15 кв.м. Представляет собой готовый терморегулирующий монтажный комплект в декоративном боксе для подключения одной петли теплого пола к высокотемпературному контуру отопления без насосно-смесительного узла. Внутри — термостатический клапан, управляющийся вручную, сервоприводом или головкой с выносным термочувствительным элементом, и воздухоотводчик.
Схема подключения готового комплекта к радиатору.К высокотемпературному контуру присоединяется одна петля теплого пола. На выходе из петли монтируется монтажный комплект. Горячий теплоноситель поступает в петлю и остывает до температуры, установленной автоматическим регулятором. Остывший теплоноситель уходит в обратку, а в теплый пол подается новая порция горячего теплоносителя.
Для жилых помещений это не самое комфортное решение — больше подходит для лоджии, балкона, санузла, коридора.
Еще раз самое главное:
- Если теплый пол подключается в качестве единственной отопительной системы, то для надежности и комфорта лучше использовать конденсационный котел в низкотемпературном режиме.
- Для подключения комбинированной отопительной системы с теплыми полами используются насосно-смесительные узлы, состав которых зависит от ваших требований и кошелька.
- Можно купить готовый смесительный узел, который прост в монтаже и в любой комплектации позволяет смонтировать теплый пол — нужно только докупить насос.
- При монтаже теплого пола на втором этаже дома нужно помнить о расположении воздухоотводчиков, при необходимости — установить дополнительные.
- Можно смонтировать теплый пол прямо от радиатора основного отопления, но это решение подходит для нежилых помещений малой площади.
Схема подключения теплого водяного пола к системе отопления, котлу, батарее: однотрубная и двухтрубная
Перед непосредственным подключением тёплого пола важно обратить внимание на многие параметры.
Например, площадь помещения, его способ отопления, высота потолков, количество стен и определённые выделенные зоны комнаты в частном доме.
Особенности подключения тёплого пола к центральному отоплению
У такого вида дополнительного отопления помещения есть положительные и отрицательные стороны.
Плюсы:
- полноценное распределение нагретых воздушных масс по высоте в помещениях с высокими потолками;
- равномерный прогрев поверхности комнаты во всех её зонах;
- циркуляция воздуха и отсутствие сквозняков сокращают количество образования пыли;
- исключается вероятность развития аллергии и дыхательных болезней у хозяев дома;
- возможность регулирования расхода электроэнергии;
- является самостоятельной системой обогрева комнат.
Минусы:
- цена работ по установке такой системы обогрева достаточно высока;
- исключена возможность монтажа в зданиях большой этажности с однотрубным видом центральной отопительной системы;
- формирование цементной стяжки и изоляции увеличивают отметку пола до 15 см.
Возможные проблемы
При вводе в работу отопление помещения в виде тёплых полов могут возникнуть определённые сложные ситуации.
Неравномерный нагрев поверхности
Неприятность может скрываться в перемещении теплоносителя по контурам.
Так как у них различная протяжённость, то и для скорости подачи жидкости на прохождение длинных участков контуров потребуется больший период времени. Поэтому в таких контурах быстрее происходит остывание воды.
Повреждение трубопровода
Протечка труб или резкое падение давления в них приводит к прорыву системы напольного обогрева. Так происходит снижение количества теплоносителя, и, как следствие, разрушение пола.
При низкой степени обогрева и появлении протечки требуется тщательный осмотр поверхности с помощью тепловизора.
Проверять необходимо каждый контур тёплого пола. При обнаружении повреждения участка трубы проводится его замена на новый.
Причину неполного прогрева можно установить путём проверки каждого контура тёплого пола отдельно.
Дефект электрооборудования
При отсутствии протечки пол может не греть вследствие сбоя в работе циркуляционного насоса и термостата, функционирующих от электросети.
С помощью мультиметра или индикаторной отвёрткой проводят проверку на наличие в них напряжения.
А также нужно обратить внимание на проверку датчиков температур на термостате.
Схемы подключения
Существует несколько способов введения в эксплуатацию системы обогрева помещения такого типа.
В каждой из схем необходимо предусмотреть отсутствие частиц в трубах, иначе это приведёт к засорению элементов конструкции напольного отопления.
Через отдельный ввод
При таком способе не допускается работа циркуляционного насоса всухую. Для этого производится монтаж реле, регулирующее давление или силу потока.
А также допустимо использование накладного термостата, позволяющего блокировать работу насоса при пересечении им отметки нижнего температурного порога.
Самый эффективный вариант — установка регулятора, корректирующего температурный режим обогрева комнаты в соответствии с внешней температурой комнаты.
Через вертикальную разводку
Основная цель такой схемы — процесс восстановления существующей радиаторной системы.
Фиксируя трубы тёплого пола непосредственно к стояку, можно вдвое увеличить количество получаемого тепла. Это объясняется тем, что при одном и том же значении температуры в подающей трубе и обратке в момент перепада в трубах пола с подогревом она будет выше, чем в радиаторе.
При наличии в жилом помещении 4-х стояков теплоноситель из двух идёт транзитом, а из оставшихся — используется тёплая вода из системы центрального отопления.
Фото 1. Схема подключения водяного теплого пола к отопительной системе посредством вертикальной разводки.
Последовательность действий по данной схеме:
- установка новых обменников теплом на место ранее используемых радиаторов;
- параллельная фиксация вторичного контура от пола с подогревом.
Важно! При проведении процесса обязательно применение ПВХ труб одной длины.
Вам также будет интересно:
Однотрубная система
Такая схема не предусматривает регулирование расхода теплоносителя и опускание его температуры.
Водяной пол с подогревом при помощи стояка подсоединяется к центральной системе отопления. Осуществить это возможно путём замены радиатора на контур тёплого пола.
Разница тепловых нагрузок системы центрального отопления и напольного обогрева не должен быть больше 5–10 градусов.
Управление комнатной температурой в этом случае можно с помощью циркуляционного насоса и термостата.
При отсутствии теплоносителя в стояке работа насоса автоматически прекращается.
Для поддержания комфортной температуры зимой можно применять в использованной схеме пиковый электрокотел. Этот элемент сможет выполнять данную функцию с помощью термостата, при условии его соединения с центральным отоплением с одной стороны, и к полу с подогревом — с другой.
Как подключить к индивидуальному отоплению
Схемы подключения к индивидуальному отоплению бывают четырех типов: однотрубные, двухтрубные, гравитационные, комбинированные.
Однотрубная
Другое её название — «Ленинградка». Она одна из самых простых и не требует больших финансовых вложений.
Для реализации этой схемы нужна одна магистраль для горячей воды, а контур повышает её общую протяжённость. Весь процесс производится благодаря циркуляционному насосу.
Он устанавливается в центре магистрали. Контур водяного напольного обогрева монтируется после насоса, а обратки — перед ним.
На открытые участки трубы фиксируются регуляторы для управления и смеситель для напольного обогрева.
Внимание! Длина контура, используемая в данной схеме, не должна быть выше 20–30 м.
Двухтрубная
Она считается самой эффективной для полноценного функционирования полов с подогревом.
В отличие от предыдущей, эта схема подразумевает присутствие отдельных труб, присоединённых к котлу — для подачи горячей воды и обратки.
Благодаря использованию шаровых кранов и смесителя на открытом участке становится возможным ввод в действие системы напольного обогрева.
Контур, применяемый в данной схеме, не должен быть больше 50 м.
Фото 2. Двухтрубная схема подключения теплого пола с применением шаровых кранов, циркуляционных насосов.
Гравитационная
Через трубопроводную магистраль естественным путём циркулирует вода. Соединение контура к данной схеме напольного обогрева производится в соответствии с магистральным наклоном. Подключение делается в начале помещения, а обратка — в конце.
Параметр трубы магистрали должен начинаться от 3,2 см.
Трубопровод может проходить в виде змейки либо спирали.
Комбинированная: водяной пол и батареи
Отличают такую систему два свойства: циркуляционная и герметичная.
Оба составляющих схемы фиксируются к общему стояку. Теплоноситель идёт в напольный контур через смесительный узел. Там, для поддержания комфортной температуры пола, к нему из обратной линии может добавляться холодная вода.
После этого происходит разделение теплоносителя по отдельным веткам с помощью гребёнок коллектора. Тёплые полы снабжаются собственным циркуляционным насосом.
Фото 3. Комбинированная схема подключения пола с обогревом: с котлом, батареями, коллекторной системой, смесительным узлом.
Нюансы комбинированной схемы:
- обязательная организация наличия в системе напольного обогрева и у радиаторов независимых температурных режимов;
- необходимость использования большого количества дополнительных составляющих процесса;
- управление комбинированной системой подразумевает наличие смесительных узлов с термостатическими клапанами, погодозависимого регулирования внешним контроллером, комнатных датчиков и т. д.
К котлу
Схемы встречаются коллекторные, последовательные, параллельные, с двухходовым и трехходовым клапаном.
Коллекторная
Суть в том, что производится соединение коллекторной группы (сливного крана, циркуляционного насоса, воздухоотводчика, смесителя и запорных вентилей, расположенных на трубах) и труб, а сами коллекторы фиксируются с котловыми трубками.
Происходит процесс установки шкафа для коллекторов и формирования пола.
Иногда термовентили монтируются вместо обычных запорных. В них указывается пропускная способность благодаря использованию термического баллона с парафином.
Как и в комбинированной схеме, в коллекторной производится подмешивание холодной воды при необходимости. Между коллектором и подающей магистралью фиксируется насос смесителя. Его третий выход позволяет проходить жидкости перед трубкой отдачи.
Благодаря опорной втулке, зажимному кольцу и гайке производится соединение с трубными коллекторами.
Фитинги требуются для фиксации коллектора, трубы и клапана.
С двухходовым клапаном
Этот составляющий системы представляет собой термоголовку с датчиком жидкости. Такой клапан ещё называют питающий кран, потому что он позволяет подмешивать воду только в случае его открытия.
Эта схема предусматривает обязательную установку байпаса с предохранительным клапаном. Он необходим для ситуаций с чрезмерным уровнем давления: при повышении этого показателя, в обратку сбрасывается часть жидкости.
Справка! Такая схема применима для площади помещения не превышающей 200 кв. м.
Со смесительным трехходовым клапаном
Этот способ считается оптимальным. Главные составляющие: термоголовки и отдельный датчик температуры. Перемещение теплоносителя обеспечивает циркуляционный насос. Трёхходовый клапан добавляет необходимое количество жидкости в подающую трубку. Его монтаж производится на коллекторной ветке выхода на обратке.
Без использования циркуляционного насоса протяжённость труб в контурах не должна превышать 40 м. При его наличии — ограничений по длине нет.
Параллельная и последовательная
Первая предусматривает установку байпаса вместо пропускного крана. Это требуется для прохождения через него теплоносителя.
То есть, при работе контуров жидкость не будет идти без остановки, а в ином случае — задействуется пропускной кран для разгрузки насоса. Такой кран устанавливается вручную.
Температура выходящей жидкости должна совпадать с её же входным показателем.
Последовательная схема отличается от параллельной не только методом соединения, но и тем фактом, что выходной поток уходит в котёл, а температура совпадает с показателем водяного тёплого пола.
Полезное видео
Видео, в котором представлена схема обвязки котла для подключения пола с обогревом с обязательной установкой смесительного узла.
Установка своими руками
Если учесть все особенности различных схем и внимательно изучить инструкции, возможно самостоятельно подключить тёплый пол, не обращаясь к профессионалам.
Подключение вашей излучающей системы | | Теплый пол своими руками
Стандартные электрические схемы для контроллеров I-Link
Важное примечание: Помимо электрического бойлера, t здесь нет прямого электрического соединения между реле I-Link и любой моделью водонагревателя по запросу. Единственное электрическое соединение с водонагревателем по требованию / без резервуара… это питание (вилка) к / от агрегата (независимо от количества зон) .Водонагреватель срабатывает, когда блок обнаруживает как минимум 1/2 галлона в минуту потока. Водонагреватель активируется, когда какая-либо или все зоны требуют тепла, и насос (ы) циркулирует жидкость через агрегат, создавая «поток», который сигнализирует водонагревателю о включении!
Краткое руководство по электромонтажу для многозонных систем. Для получения более подробной информации прокрутите страницу вниз, чтобы увидеть больше схем.
Мы предлагаем неограниченную техническую поддержку ~ бесплатный звонок 866-теплые пальцы ног (927-6863)Базовый контроллер одной зоны
Итак…..Если у вас простая однозонная излучающая система и вы используете реле I-Link SP-81 , которое мы поставили вместе с вашей системой, следуйте схеме ниже.
Контроллер одной зоны включает насос, когда термостат требует тепла.
18/2 провод термостата от термостата в зоне подключается к клеммам R / W. Красный или Белый могут попасть на любой терминал. Отодвинув язычок над клеммной колодкой, можно легко вставить провод. Электрический провод 14/2 Romex рекомендуется для питания системы лучистого отопления (реле / насос).
ПРИМЕЧАНИЕ: «Питание термостата» на приведенной выше схеме указывает на напряжение 24 В переменного тока, поступающее от контроллера для подачи питания на цифровой дисплей на термостатах, которые не используют батареи для этой цели. В термостатах , которые мы продаем, используются батареи , поэтому эта функция не требуется для цифрового дисплея на наших термостатах. Но, прежде всего, не подключайте к этим клеммам линию 120 В переменного тока.
(вернуться наверх)
Базовый «многозонный» контроллер
Системы с несколькими зонами обычно управляются одним блоком, содержащим несколько реле.Как и SP-81, описанный выше, контроллеры с несколькими зонами используют одну и ту же базовую конфигурацию клеммной колодки для низкого напряжения (термостат) и сетевого напряжения (для работы циркуляционных насосов). Ряд оранжевых выступов в верхней части панели контроллера позволяет вставлять провода термостата, а блок клеммных винтов вдоль нижней части с маркировкой N (нейтраль) и L (нагрузка) упрощает подключение каждого зонного насоса.
Конечно, во всех приложениях релейный блок должен получать питание от линии 110 В (см. Схему ниже) от вашей монтажной панели.Либо это, либо ответвление от существующей цепи может быть проведено к блоку контроллера. Также неплохо подключить стандартный выключатель света к цепи контроллера, чтобы всю излучающую систему можно было выключить в одном центральном месте. Если ваша релейная коробка подключена через выключатель, вам не придется полагаться только на термостаты, чтобы отключить систему во время сезона охлаждения. Эта функция может помешать кому-либо «играть» с вашими термостатами и отправлять тепло на ваш пол летом.
В этом примере подключения термостата выполняются в верхнем ряду «Т», клеммы T1, T2, T3 и т. Д. Циркуляционные насосы подключаются к нижним клеммам высокого напряжения для зон 1, 2, 3 и т. д. на блоке на 120 вольт. Линии от источника питания (монтажная панель) подключены к N (общий) и L (горячий). Установленная на заводе перемычка не перемещается.
Ниже приведен еще один пример многозонного контроллера (i-Link SP-83), но для очень простой системы.Другими словами, контроллер — это не что иное, как три зоны теплого пола, активируемые тремя термостатами. Нет необходимости использовать клеммы «системный насос», нет необходимости использовать клеммы «XX» для включения бойлера, и нет «приоритетной зоны» для косвенного водонагревателя.
Базовая схема подключения по существу одинакова для всех контроллеров с несколькими зонами. Многозонный контроллер может содержать от двух до шести реле, но порядок подключения остается неизменным. Конечно, контроллер i-Link также может быть подключен для специальных приложений, наиболее распространенные из которых показаны ниже.
(вернуться наверх)
Специальные схемы подключения контроллеров i-Link
В определенных ситуациях контроллер i-Link должен делать больше, чем просто активировать циркуляционный насос каждый раз, когда зона требует тепла. На следующих схемах показаны три распространенных специализированных приложения.
Активация котла с помощью контроллера одной зоны
Контроллер одной зоны активирует бойлер каждый раз, когда зона требует тепла
Клеммы «5» и «6НО» (нормально разомкнутые) просто замыкают цепь каждый раз, когда термостат зоны излучения требует тепла.Эти клеммы не подают напряжение на котел. В котле есть трансформатор, который срабатывает при замыкании этой цепи.
(вернуться наверх)
Используйте приведенную выше «многозонную» схему, если у вас более одной зоны и вам нужно использовать «концевой выключатель» ( XX, соединения ) на контроллере i-Link для включения котла всякий раз, когда любая из излучающих зон призыв к теплу.
Активировать газовый клапан с зонного контроллера
Контроллер включает газовый котел всякий раз, когда зона требует тепла
Контроллер может взаимодействовать с существующим трансформатором котла и активировать газовый клапан, используя приведенную выше схему.
(вернуться наверх)
Подключение теплообменника / системы первичного контура
Активация «системного насоса» всякий раз, когда какая-либо зона требует тепла.
Это схема для использования с теплообменником или системой первичного контура . Насос, работающий в теплообменнике / первичном контуре, называется системным насосом . Очевидно, он должен работать, когда любая зона требует тепла.
Для (любого) подключения насоса первичного контура или насоса теплообменника, нейтраль (белый провод) и нагрузка (черный провод) к разъемам «Системный насос» в нижней части блока реле (эти подключения находятся слева от зоны. соединения насоса.Все провода заземления будут соединены гайкой внутри коробки реле. Заземляющие провода заземляются на / от источника питания, проходят через релейный блок (через гайку) и заканчиваются на каждом насосе.
Установленная на заводе перемычка остается на месте.
(вернуться наверх)
Подключение термостата
Honeywell Pro 1000 Термостат (6 контактов)Pro Th2000 — это универсальный, многофункциональный термостат, очень простой в использовании и подключении.Но вы никогда не узнаете этого, просмотрев РУКОВОДСТВО ПО УСТАНОВКЕ Honeywell. Поэтому мы рекомендуем вам использовать эту страницу и прилагаемую к ней фотографию, чтобы сделать процесс быстрым и простым.
STEP 1 : Рекомендуется провод термостата калибра 18. Можно использовать три (3) провода (R-W и C), если вы решите использовать функцию питания 24 В от реле и устраните необходимость в батареях для термостата Honeywell. Эти провода подключаются к клеммным соединениям реле и термостата (R-W и C).Снимите переднюю крышку и подключите один из проводов термостата калибра 18/2 к клемме «R», а второй провод — к клемме «W». Провода полностью взаимозаменяемы. Но для простоты поместите «красный» провод термостата в клемму «R», а «белый» провод термостата — в клемму «W».
ШАГ 2 : Установите (2) батарейки AAA и снова установите крышку. Этот шаг не требуется при 3-проводном подключении (см. Выше)
ШАГ 3 : Деактивируйте функцию «Пятиминутная задержка».и v) и удерживая их в течение трех секунд. Это переведет вас в «программный» режим.
B) Находясь в «программном» режиме, нажмите обе кнопки одновременно и переходите по номерам вверх в режим программирования №5.
C) Заводская установка — «1» (5-минутная задержка «включено»), и вы хотите установить этот режим на «0», чтобы отключить функцию 5-минутной задержки.
D) Нажмите кнопку «вниз» («v»), и на экране отобразится «0».
E) Нажмите обе кнопки переключения еще раз, чтобы выйти из «программного» режима.Отображается текущая «заданная» температура.
ШАГ 4: Используйте кнопки-переключатели, чтобы установить термостат на любую желаемую температуру.
Положения проводов для Honeywell Pro 1000 (6-контактная модель)
Подключение и настройка термостата Honeywell Pro 1000 (8 контактов)Версия Pro 1000 с 8 контактами также проста в подключении и программировании, но ее конфигурация немного отличается. Вместо (2) 3-контактных блоков, левой и правой, эта версия имеет (1) вертикальный 8-контактный блок посередине.Выглядит это так:
Процедура настройки выглядит следующим образом:
ШАГ 1 : Снимите переднюю крышку и подключите один из проводов термостата калибра 18/2 к клемме «R», а второй провод к клемме «W». Провода полностью взаимозаменяемы. Но для простоты поместите «красный» провод термостата в клемму «R», а «белый» провод термостата — в клемму «W».
ШАГ 2: Установите (2) батарейки AAA и снова установите крышку.и v) переход по различным функциям. Переключайтесь, нажимая обе кнопки, пока не дойдете до функции №15. Используйте стрелку вниз, чтобы установить эту функцию на 0 (ноль).
Примечание: Вам не нужно переключаться четырнадцать раз, чтобы перейти к функции №15. Фактически, вам нужно будет переключиться всего три раза. Это потому, что разработчики термостатов не учитывают последовательно, как все мы. Они инженеры, и в их непостижимом квантовом мире числа представляют собой эзотерические концепции дизайна, а не упорядоченную систему расположения.Для нас, удалив банан из шести пучков, остается пять бананов. Для инженера Honeywell пять оставшихся бананов представляют «функцию № 13». Добавление банана к грозди можно выразить как «функция № 23», или, говоря языком непрофессионала, 6 бананов.
Роберт Шоу термостат маркиЕсли у вас есть термостат марки Robert Shaw , используйте следующую схему.
Схема Роберта Шоу
(вернуться наверх)
Управление насосом с помощью «датчика пола»
Термостат / датчик температуры пола AZEL D-508F (показан ниже) может использовать температуру пола окружающего воздуха или для управления зоной.Используйте эту ссылку для получения дополнительной информации и инструкций по установке: http://azeltec.com/images/D-508Finstruction.pdf
Четыре (4) провода (калибр 18) необходимы для напольного датчика / термостата Azel (D-508). Клеммы «R&C» (питание 24 В) на реле подключаются к клеммным соединениям «R&C» на термостате D-508. Клеммы клемм термостата «R&W / TT» на реле подключите к клеммам № 1 и 2 на термостате D-508. Важно отметить, что при удлинении проводов датчика (калибр 22), идущих от клемм «SS» на термостате, рекомендуется использовать многожильный провод. Эти (удлиненные) соединения проводов должны быть ЗАПЫТАЕМЫ и изолированы (заклеены лентой и т. Д.).) друг от друга, чтобы обеспечить абсолютную непрерывность, поскольку это датчик сопротивления «ОМ».
Датчик / реле отключения использует небольшой датчик для включения циркуляционного насоса. Сам датчик представляет собой небольшой термистор, обычно вставляемый в короткую трубку из полиэтиленгликолята, отлитую в излучающую плиту. Конечно, датчик также можно установить в полости балки, чтобы контролировать температуру пола в системе скоб. Этот датчик отслеживает фактическую температуру пола и игнорирует температуру воздуха в помещении.Это очень полезно в излучающих зонах, где имеется более одного источника тепла.
Если система принудительной подачи воздуха или дровяная печь используются регулярно в излучающей зоне, например, стандартный термостат контроля воздуха, обычно используемый для контроля пола, будет большую часть времени отключен. Вместо этого встроенный датчик позволяет пассажирам поддерживать базовую температуру пола.
Johnson Controls «Контроллер уставки» Запорный и температурный термистор:
- Коробка Джонсона
- Датчик пола
- Схема подключения
Правильно подключенный датчик температуры пола
Датчик / реле отключения также доступен в модели с низким напряжением (24 В переменного тока).В этом случае датчик температуры пола не питает напрямую циркуляционный насос. Вместо этого он работает как стандартный настенный термостат низкого напряжения — он подключается к реле, которое, в свою очередь, приводит в действие циркуляционный насос. Подключения приложений, использующих датчик / реле отключения низкого напряжения , показаны на фотографиях ниже.
- Макет, показывающий низковольтный датчик пола, подключенный к реле I-Link.
- Соединения проводов крупным планом
Другие области применения датчика столь же разнообразны, как и ваше воображение.Его можно использовать, например, для контроля температуры воды в накопительном / резервном баке. Датчик прикрепляется к одной из труб, входящих или выходящих из резервуара для хранения, изолированной пеной или стекловолокном, затем линия термостата 18 калибра проходит от датчика к реле.
Когда температура в резервуаре падает до заданного вами значения, включается циркуляционный насос и забирает тепло из теплообменника. Такая установка может быть полезна для системы, использующей дровяной котел на открытом воздухе, подключенный к постоянно активному теплообменнику.В зависимости от установленных вами параметров накопительный бак забирает тепло от теплообменника для поддержания постоянной температуры в баке.
Таким образом можно нагреть любой носитель тепла, включая горячие ванны, грядки для выращивания в теплицах, аквариумы, фермы для червей, полотенцесушители… вы называете это.
Этот контроллер также можно использовать в обратном направлении. Другими словами, реле может быть активировано, когда температура в резервуаре с водой поднимается на до заданного значения, и резервуар необходимо охладить.
Чаще всего этот подход используется в системе «Тепловой отвод» , водопроводной системе, которую мы используем для отвода избыточного тепла от солнечного контура. Перемычки внутри A419 настроены на РЕЖИМ ОХЛАЖДЕНИЯ (обе перемычки — перемычка 1 и перемычка 2 — находятся в «снятом» положении на своих штырях), а датчик прикреплен к выпускной трубе HOT солнечного накопителя. Когда достигается высокая уставка в накопительном баке, включается циркуляционный насос теплового сброса.
Пружинный таймер для систем снеготаяния
(вернуться наверх)
Солнечный дифференциальный контроллер
Резол DeltaSol BS
В тепловых системах Resol DeltaSol BSSolar обычно используется специальное реле, называемое дифференциальным контроллером .Как следует из названия, это реле активирует насос или насосы при достижении диапазона (или разницы) между двумя температурами. Другими словами, когда температура в солнечном коллекторе на X градусов выше, чем температура на дне солнечного резервуара, дифференциальный контроллер активирует необходимый насос (ы) и втягивает это полезное тепло в систему.
Передача тепла от более горячего к более холодному резервуару для выравнивания температуры в обоих резервуарах и увеличения общей емкости хранения — еще одно распространенное применение дифференциального регулятора.
Два датчика (резервуарный и солнечный) необходимы для правильного «дифференциала». Датчик резервуара прикреплен к трубе около дна резервуара для хранения солнечной энергии или в специальный «колодец» в некоторых резервуарах.
Второй датчик считывает температуру воды на выходе из солнечных коллекторов. Оба датчика должны быть изолированы (стекловолокном или пеной), чтобы температура окружающей среды не влияла на показания. Следует отметить, что датчик, прикрепленный к горячей трубе, НЕ будет точно определять фактическую температуру воды.Фактически, вода обычно на 15-20 градусов теплее, чем показывает датчик.
К счастью, для хорошо функционирующей солнечной системы горячего водоснабжения фактическая температура воды не важна (если, конечно, она не слишком теплая для горячего душа). Важна разница в и температур воды в двух местах. В конце концов, если вода на самом деле горячее, чем показывает датчик, тем лучше.
СТАНДАРТНЫЙ РЕЖИМ ДИСПЛЕЯ
Контроллер Resol активируется тремя кнопками: ВПЕРЕД (крайний правый), НАЗАД (крайний левый) и кнопкой УСТАНОВИТЬ (в центре).
В СТАНДАРТНОМ РЕЖИМЕ ОТОБРАЖЕНИЯ, то есть не в РЕЖИМЕ ПРОГРАММЫ, пользователь может переключаться между тремя основными полями:
1. COL (датчик коллектора)
2. TST (температура датчика резервуара)
3. HP (накопленные часы солнечной энергии)
ПРОГРАММИРОВАНИЕ
Нажмите и удерживайте кнопку ВПЕРЕД (правая кнопка) в течение ДВУХ секунд. Это переводит RESOL в РЕЖИМ ПРОГРАММИРОВАНИЯ, начиная с DT-O (Delta T, ON).
Примечание. Если удерживать кнопку «Вперед», начнется быстрое переключение между всеми опциями программирования, поэтому, если вы пропустите DT-O, просто используйте кнопку BACKWARD, чтобы вернуться назад.
Delta T — это разница между температурой в ваших солнечных коллекторах и температурой на дне резервуара для хранения. Когда достигается значение Delta T , контроллер Resol включает солнечный насос и перекачивает нагретую жидкость из солнечных коллекторов.
См. ВЫБОР ДЕЛЬТА Т (ниже), чтобы узнать, как лучше всего подходит Дельта Т для вашей ситуации.
Чтобы установить температуру вашего Delta T ON, войдите в РЕЖИМ ПРОГРАММЫ и нажмите центральную кнопку SET.Значок SET начнет мигать на экране. Переключайтесь вверх или вниз до желаемой разницы температур. Снова нажмите SET, чтобы заблокировать программу.
Та же процедура используется для следующего экрана, DT-F, параметра насоса ВЫКЛ.
Это поле позволяет вам решить, когда выключить помпу. Кстати, эта температура должна быть как минимум на 2 градуса ниже, чем температура насоса ВКЛ
.
Как правило, когда жидкость в вашем солнечном контуре всего на несколько градусов выше температуры вашего резервуара, от циркуляции жидкости мало что можно получить.Выключите насос и дайте коллекторам снова нагреться. Разница температур от 3 до 5 градусов, вероятно, подходит для этой области.
S MX , следующее поле, позволяет вам установить МАКСИМАЛЬНУЮ ТЕМПЕРАТУРУ БАКА. Заводская настройка по умолчанию — 140 градусов. Это слишком мало. Установите это поле как минимум на 180 градусов. Возможно, вы даже захотите подняться выше. Контроллер Resol позволяет нагреть бак до 205 градусов. Это всего лишь 7 градусов от пара, но с правильно установленным терморегулирующим клапаном (обязательным для любой солнечной системы) для защиты вашего дома от ожогов вы также можете сохранить как можно больше тепла.
Однако, если вы хотите более низкую максимальную температуру, просто нажмите центральную кнопку SET и переключитесь на желаемую температуру. Снова нажмите SET, чтобы зафиксировать желаемую температуру.
Следующее поле — EM . Это означает аварийное отключение. Если по какой-либо причине в вашем солнечном контуре есть хрупкие, чувствительные к нагреванию компоненты, эта настройка отключит насос при заданной вами температуре и предотвратит перегрев. Заводская настройка довольно низкая — 285 градусов, потому что ничто в нашей системе не находится даже близко к опасной зоне при этой температуре (например, циркуляционный насос рассчитан на 400 градусов), поэтому оставить его на заводской температуре по умолчанию должно быть хорошо.
ПРИМЕЧАНИЕ. RESOL — это очень продвинутый контроллер, предлагающий множество функций, которые большинству людей не понадобятся. Остальные поля входят в эту категорию и полезны для специальных приложений. Для обычной системы солнечного нагрева воды игнорируйте эти поля. Заводская установка по умолчанию для этих настроек ВЫКЛЮЧЕНА.
Однако, несмотря на это, тщательное чтение руководства RESOL может вдохновить некоторых пользователей на эксперименты с этими более продвинутыми функциями.
Краткое руководство
В основном режиме доступны только поля температуры коллектора (COL), температуры резервуара (TST) и накопленного солнечного усиления (HP).
Удерживайте кнопку FORWARD две секунды , чтобы войти в режим программирования.
Перейдите к желаемому полю, нажмите SET, используйте FORWARD или BACKWARD, чтобы найти желаемое значение, затем снова нажмите SET для подтверждения.
Примечание. Примерно через 45 секунд бездействия подсветка дисплея гаснет.Нажмите кнопку ВПЕРЕД, чтобы снова засветить дисплей, нажмите еще раз, чтобы перейти к желаемому полю.
Кроме того, после нескольких МИНУТ простоя контроллер RESOL автоматически выйдет из РЕЖИМА ПРОГРАММЫ и вернется в ПЕРВИЧНЫЙ РЕЖИМ.
Если вы хотите выйти из РЕЖИМА ПРОГРАММЫ до автоматического возврата, просто используйте кнопку НАЗАД и переключитесь обратно на COL (поле номер один).
Выбор дельты Т
Почему обычно лучше использовать широкий дифференциал
Коллекторная петля — это общая длина медной трубы 3/4 дюйма, как подающей, так и обратной, которая соединяет солнечную батарею с механическими компонентами, т.е.е. теплообменник, накопительный бак и т. д. Эта петля может быть довольно короткой (коллекторы расположены на крыше гаража с механическим оборудованием всего в пятнадцати футах ниже) или довольно длинным (коллекторы заземлены в шестидесяти футах от дома). Труба в короткой петле вмещает тридцать футов (0,8 галлона жидкости). Длинная петля, сто двадцать (3,2 галлона жидкости).
В обоих этих случаях жидкость в коллекторном контуре должна быть нагрета до температуры, прежде чем система будет «работать» в течение любого промежутка времени.Причина в том, что рано утром, когда солнце начинает нагревать коллекторы, большая часть жидкости в контуре коллектора остается холодной. Однако, как только солнце попадает на панели, жидкость в верхней части коллектора, ближайшей к датчику коллектора, быстро нагревается и запускает систему. Но как только более холодная жидкость в контуре циркулирует мимо датчика, она снова остывает.
Это вызывает совершенно нормальное состояние, известное как «короткий цикл». Ожидайте, что солнечный насос будет работать с коротким циклом, пока вода в общем контуре коллектора не нагреется.Если коллекторная петля длинная, а солнце слабое, многие галлоны холодной жидкости должны нагреться, прежде чем любое полезное тепло может быть передано в резервуар для хранения. Это может занять время.
Практическое правило: держите коллекторную петлю короткой… и хорошо изолируйте ее.
Из приведенного выше описания видно, что «жесткий» дифференциал (от 8 до 15 градусов) увеличивает эффект короткого цикла. Особенно, если коллекторная петля длинная, а массив небольшой (т.е. ограниченная теплопроизводительность).Максимально возможная разница в этой ситуации сведет к минимуму тенденцию системы отключаться и включаться каждые несколько секунд.
Однако, если ваша система имеет высокую пропускную способность (много плоских пластинчатых коллекторов или более 48 вакуумированных трубок), а ваша коллекторная петля короткая , более узкий дифференциал активирует систему раньше и получает больше полезного тепла.
Большая теплопроизводительность и короткий коллекторный контур = плотный дифференциал (от 8 до 15 градусов)
Малая теплопроизводительность и длинный коллекторный контур = широкий дифференциал (от 20 до 24 градусов)
(вернуться наверх)
Как подключить водонагреватель
Знаете ли вы, что срок службы электрического водонагревателя составляет около 10-15 лет? Это означает, что если вы живете в своем доме десять лет, вам, вероятно, придется заменить его и подключить проводку к новому устройству.Установить электрический водонагреватель — не такая уж сложная задача, которую вы будете повторять в жизни, так почему бы не научиться делать это самому? Здесь вы можете узнать, как подключить водонагреватель без помощи профессионала. Помните, что при выполнении электромонтажных работ безопасность превыше всего. Не рискуйте, и , если вам не нравится то, что требуется в этом процессе, наймите профессионального . 240v электричества достаточно, чтобы убить человека.
Общие советы по электробезопасности см. В этой полезной статье.
Как подключить электрический водонагреватель
Прежде чем начать, вы должны спросить себя, подается ли в настоящее время электричество к месту расположения водонагревателя? В случаях, когда вы заменяете бензобак на электрический, вам, вероятно, потребуется проложить кабель (2-полюсный прерыватель на 30 А с кабелем 10–2 НМ) от цепи к резервуару. Если автоматический выключатель уже подключен к водонагревателю, можно переходить к шагу 1.
Последний совет перед тем, как мы начнем: не наполняйте резервуар водой, пока резервуар не будет полностью подключен, и не включайте цепь, пока резервуар не наполнится водой на .Нагревательный элемент сломается, если его не погружать в воду.
Подключение водонагревателя за 7 шагов
- Снимите крышку распределительной коробки — она, вероятно, находится сверху или сбоку водонагревателя. Скорее всего, вам нужно будет открутить только один винт, чтобы открыть два подводящих провода и винт заземления.
- Проверьте напряжение — никогда не связывайтесь с электрическими компонентами, предварительно не проверив, есть ли питание на приборе.Если там есть питание, это называется «живым» контуром. Пожалуйста, будь осторожен! Вы не только аннулируете гарантию при манипуляциях с электропроводкой под напряжением, но и вполне можете привести к травмам. Если вы не уверены, есть ли у вас цепь под напряжением или нет, было бы неплохо использовать измеритель напряжения для проверки подачи питания на подводящие провода. Если вы обнаружите, что есть сила, прервите ее. Вы можете сделать это, отключив прерыватель GFCI в вилке, если таковой имеется (нажмите кнопку «ТЕСТ», расположенную в центре розетки).Если это не вариант, найдите соответствующий прерыватель в коробке выключателя источника питания и переключите его в положение выкл. .
- Удалите заглушку — вы найдете заглушку в распределительной коробке. Вы можете удалить его с помощью плоскогубцев с иглой .
- Зачистите изоляцию провода — если вы проложили кабель самостоятельно, вам, возможно, придется удалить пластиковую оболочку, чтобы можно было обнажить проводку (вам нужно около 6 дюймов, чтобы войти в распределительную коробку).Затем снимите примерно 0,75 дюйма изоляции с отдельных проводов.
- Выловите проводку — пропустите провода через разъем ROMEX, затем затяните и зажать часть кабеля NM с оболочкой. Вы не должны остаться без оголенных проводов. Проденьте провода через заглушку, а затем зафиксируйте разъем ROMEX с помощью контргайки. Совет: вы не хотите, чтобы соединитель Romex касался водопроводных труб. Вы не хотите, чтобы температура на выходе горячей воды ставила под угрозу вашу работу с электричеством.
- Подключите водонагреватель к цепи — вернувшись в распределительную коробку, вы оберните провод заземления вокруг винта заземления и закрепите его. Возьмите черный провод от цепи и любой провод от водонагревателя и соедините их (скрутите вместе и закрепите гайкой). Возьмите белый провод («горячая» линия) и обмотайте его изоляцию изолентой (это для идентификации). Сделайте это также на панели выключателя. Затем соедините белый провод с другим проводом водонагревателя.
- Замените крышку распределительной коробки — это, по сути, последний шаг. Наполните его водой, затем снова включите автоматический выключатель, и тогда вы сможете запустить свой новый водонагреватель.
Спасибо за выбор специалистов по сантехнике
Спасибо, что посетили нас на PlumbersStock.com. Если у вас есть вопросы по проекту электропроводки вашего водонагревателя, свяжитесь с нами. Помните, мы носим проверенные имена, такие как Брэдфорд Уайт, Такаги, Стибель Элтрон и т. Д.Приобретите запасных частей , а также аксессуары для водонагревателей.
Под полом с подогревом — Extreme How To
Это простой факт — тепло идет вверх. Учитывая это, кажется, что наиболее эффективной системой обогрева будет пол. Новые продукты, доступные сегодня, позволяют полу обеспечивать очень эффективное тепло. И не думайте, что лучистые полы с подогревом — это что-то новое. Вероятно, это один из старейших известных методов центрального отопления. Римляне разводили огонь под жилым помещением, и тепло от огня проходило через проходы или каналы под полом.Европейские короли и королевы использовали аналогичную систему в «темные века» для обогрева своих замков. Горячая вода была одной из первых «современных» систем отопления. Еще в 1942 году американская компания начала испытания и эксперименты с лучистым теплом для жилых помещений. После Второй мировой войны эту технику использовали в ряде крупных жилых домов. Металлические трубы первых блоков, установленные в наспех возведенных в то время бетонных плитах, быстро пришли в негодность. А медные, стальные и кованые трубы с годами испортились, когда их поместили в бетонную плиту.
Сегодняшние технологии производства пластмасс позволили получить продукты, которые устраняют проблемы ранее существовавших систем лучистого отопления. В процессе сшивания пластика образуются трубки, которые очень прочны при высоких температурах и высоких давлениях, а гибкость пластика позволяет ему двигаться естественным образом и оседать, как в доме, без утечек или других повреждений.
В отличие от плинтуса с горячей водой или принудительной вентиляции, система лучистого теплого пола нагревает предметы, а не только воздух в комнате.Поскольку каждое здание, независимо от того, насколько хорошо изолировано, постоянно теряет тепло наружу, обычные системы отопления работают, чтобы восполнить эту потерю. Наши тела теряют тепло из-за более холодных объектов вокруг нас. Нам холодно из-за этой потери тепла. Поскольку тепло всегда течет в сторону холода, если вы стоите рядом с объектом, который холоднее вашего тела, этот объект будет отбирать тепло тела.
Система лучистого теплого пола не нагревает воздух напрямую, как плинтус или система принудительной вентиляции.Скорее, лучистая система нагревает пол, стул, диван, столы и так далее, и это замедляет скорость, с которой ваше тело отдает тепло этим объектам. Результат — общее равномерное ощущение тепла и комфорта.
Интересно, что температура воздуха в комнате может быть значительно ниже, если ваше тело находится в комнате, полной теплых предметов. Фактически, многие люди, использующие лучистое тепло, понижают свои термостаты до 65 градусов и по-прежнему чувствуют себя более комфортно, чем с плинтусом или системой принудительной вентиляции, установленной на 70-72 градуса.Важно отметить, что в плинтусе или системе принудительной вентиляции самый теплый воздух находится у потолка, а самый холодный — у пола. Это, конечно, неэффективно. Система сияния, которая обеспечивает теплые ноги и более прохладную голову, более здоровая и комфортная.
Системы лучистого теплого пола могут быть водяными, с циркуляцией воды по трубам, встроенным в пол, или электрическими, использующими электрические тепловые кабели под напольным покрытием. Последнее доступно только для определенных напольных покрытий, а гидронное — нет.
Большинство систем водяных полов разделены на отдельные зоны нагрева. (Изображение любезно предоставлено Uponor Wirsbo)
Гидравлические системы
СистемыHydronic, такие как системы Radiant Floor Company, используют теплую воду, чтобы превратить ваш пол в большой радиатор, который рассылает волны лучистой энергии во всех направлениях, согревая все в комнате.
Способы нагрева воды столь же разнообразны, как и ваша фантазия.Солнечные панели, котлы на жидком топливе и газе, водонагреватели, котлы на дровах, геотермальные и электрические — все это жизнеспособные методы нагрева воды для системы водяного водяного пола. Затем вода подается по трубке с помощью циркуляционного насоса. Дополнительные материалы, такие как коллекторы, смесительные клапаны, расширительные баки и термостатические регуляторы, встроены в систему для точной настройки тепла для оптимального комфорта.
Перед установкой какой-либо излучающей системы в вашем доме подрядчик или поставщик системы должны выполнить расчет тепловых потерь.Это делается путем определения количества тепла, которое ваш дом потеряет в самый холодный день года в вашем районе. Эти тепловые потери выражаются в британских тепловых единицах или британских тепловых единицах. Затем поставщик или подрядчик проектирует систему таким образом, чтобы тепловая мощность от излучаемого пола превышала тепловые потери из дома. Это достигается за счет комбинации расстояния между трубками и температуры воды.
Высокотехнологичный сшитый полиэтилен сегодня используется в качестве трубопровода для горячей воды.Кроме того, коллекторы и циркуляторы используются для точной настройки системы и направления воды в различные зоны.
По словам сотрудников компании Radiant Floor, «лучистые полы с подогревом — один из самых быстрорастущих сегментов рынка жилья, который растет со скоростью от 25 до 30 процентов в год. В новых домах, спроектированных по индивидуальному заказу, это наиболее часто используемая система отопления. Даже домовладельцы, занимающиеся ремонтом, по возможности используют лучистые. Конечно, единственная вещь, которую Radiant не может сделать (по крайней мере, с нынешними технологиями), — это обеспечить кондиционирование воздуха.Если вы живете в районе, где требуется кондиционирование воздуха, тогда вместе с излучающей системой устанавливается система кондиционирования без компонента печи ».
Три гидронных метода
В лучистом напольном отоплении используются три основных гидравлических метода. В открытой системе используется один источник тепла — водонагреватель для бытового потребления — для обеспечения теплого пола и горячего водоснабжения. Эти две системы в основном связаны друг с другом. Та же вода, которая попадает, например, в горячий душ или в посудомоечную машину, сначала прошла через пол.Это очень эффективная система, потому что всю работу выполняет один источник тепла. Если водонагреватель имеет соответствующий размер и соответствует вашим потребностям в отоплении и быту, необходимость в «отдельной» системе отопления отпадает.
Существуют два различных типа лучистого отопления для пола. Первый — это гидроника, использующая горячую воду, подаваемую по трубам в полу или под полом. (Изображение любезно предоставлено Uponor Wirsbo)
В закрытой системе для теплого пола используется специальный источник тепла.Жидкость в замкнутой системе повторно циркулирует вокруг и вокруг в полностью замкнутом контуре. Нет подключения к бытовому водопроводу. Основное преимущество этой системы заключается в том, что в закрытом состоянии в качестве теплоносителя можно использовать незамерзающий продукт вместо воды. Закрытые системы часто используются во вторых домах или основных жилых домах в районах, подверженных длительным отключениям электроэнергии. Если проблема заключается в защите от замерзания, тогда хорошая идея — закрыть систему с антифризом. Обратной стороной этого типа системы является необходимость использования двух источников тепла.
Доступны три типа гидравлических систем. Первая — это открытая система, в которой используется водонагреватель, используемый для горячего водоснабжения.
Все водонагреватели расходуют тепловую энергию, даже если горелка выключена, а агрегат простаивает между циклами нагрева. Устройство, предназначенное для обогрева пола, расходует тепло только в зимние месяцы, однако потери в режиме ожидания в течение шести месяцев в году могут увеличиваться. При рассмотрении этих систем основным источником тепла является водонагреватель, хотя в некоторых случаях возможен вариант использования солнечной энергии.В любом случае, температура воды, протекающей по трубке, должна составлять от 120 до 135 градусов по Фаренгейту. Важно, чтобы подогреватель горячей воды соответствовал работе. Если ваши потребности в горячей воде и обогреве помещения составляют менее 300 000 БТЕ, водонагреватель для бытового потребления справится с этой задачей. Некоторые из них специально разработаны для отопления жилых помещений и помещений. До недавнего времени КПД многих водонагревателей составлял всего 60 процентов. Это означает, что 40 процентов вашего топлива попадает в дымоход.Лучше всего приобрести лучший водонагреватель с максимальной эффективностью, который вы можете себе позволить, и размер его будет соответствовать вашим потребностям в отоплении.
Другая система — лучистое зональное отопление с существующим котлом с использованием плинтуса или чугунных радиаторов. (диаграммы любезно предоставлены компанией Radiant Floor)
Третий тип системы включает соединение теплых полов или «зон» с существующим плинтусом с горячей водой или чугунной радиаторной системой. Во многих случаях установки этого типа источником тепла для воды является бойлер, а не нагреватель горячей воды.Бойлеры нагревают более эффективно, потому что они нагревают небольшое количество воды до очень высоких температур и нагреваются довольно быстро.
Гидравлическая система, установленная в бетонной плите, вероятно, является наиболее эффективным методом обогрева пола. (Изображение любезно предоставлено Uponor Wirsbo)
Если отапливаемая площадь не очень мала, она, скорее всего, будет разбита на несколько «зон». Зона — это любая область, управляемая одним термостатом и снабжаемая одним циркуляционным насосом.Зона может состоять из множества «контуров» или петель труб или может быть одним контуром. Длина контура не должна превышать 400 футов труб, но зона может содержать любое количество контуров. Как правило, важно свести зонирование к минимуму, и нет ничего плохого в том, чтобы рассматривать весь этаж или этаж как одну зону. Если у вас двухэтажный дом, у вас будет минимум две зоны.
Минимальное зонирование, но зонирование целых участков пола — лучший выбор, потому что лучистое отопление очень равномерное.Например, если у вас есть блок из редко используемых спален, у них должна быть своя зона. Также многие люди предпочитают, чтобы в главной спальне была более прохладная температура, чем в остальной части дома. Это легко сделать с помощью зонального обогрева пола. С другой стороны, если у вас есть солнечная комната или большая комната с большим количеством стекла и она зонирована с другими комнатами, независимо от того, находится ли термостат в этой комнате или в другой комнате, он не будет обеспечивать комфортное отопление для различных комнат.
Гидравлическая установка
Гидравлическое лучистое отопление можно использовать в нескольких различных строительных областях.Установка излучающих труб внутри бетонной плиты либо «на уровне», либо на несколько футов ниже уровня земли как часть полного фундамента, вероятно, является самым простым, наиболее эффективным и высокопроизводительным применением науки. Тепловые преимущества непревзойденные. Фактически, любая бетонная заливка здания должна содержать излучающие трубы, даже если у вас нет ближайших планов по обогреву помещения. Трубки и коллектор относительно недороги, а механические компоненты могут быть добавлены даже спустя годы.
Альтернативой установке плиты на грунте является «подвесная плита», и по тепловым характеристикам она может конкурировать с плитой на грунте.Подвесная плита включает песок, цемент или гипсокрит для хранения и рассеивания тепловой энергии. Обратной стороной является дополнительный вес пола, возможная потеря высоты и (особенно при модернизации) трудности с переходом в другие комнаты и регулировкой дверных порогов.
Третий метод — установка излучающих трубок. Это работает в двух основных ситуациях. Первый — это существующая плита, на которую вы планируете добавить балку перекрытия, например, превратив гараж, который на 8 дюймов или около того ниже уровня остальной части дома, в офис или комнату.Вы захотите поднять пол, чтобы он соответствовал остальной части дома. Вторая ситуация — это проект повторного моделирования, который требует удаления существующего чернового пола или помещения, в котором высота потолка слишком высока, и поднять пол не проблема. В обоих случаях балки открываются, а трубы устанавливаются сверху.
Гидравлические системы также могут быть установлены под балками пола.
Последняя система — установка балок перекрытия. Это в первую очередь используется, когда балки пола обнажены, например, в комнатах над недостроенным подвалом или в подвальных помещениях.В этом случае труба проходит между балками и через них и крепится к основанию пола. Обычно это создает больше проблем, но большинство из них легко преодолеваются.
Гидравлические трубки Radiant Onix мощностьюВт крепятся скобами к нижней стороне чернового пола в многоэтажных проектах. Onix — это гибкие трубы из сшитого EPDM с армированием из арамида и алюминиевым кислородным барьером. Onix проводит тепло через пол, чтобы обогреть вашу комнату, не меняя высоты готового пола.
Электрические кабельные системы
Электрические нагревательные кабели, проложенные в пол под плиткой, мрамором, шифером или, в некоторых случаях, ламинатом, — это еще один подход к внутрипольному отоплению.Примером может служить продукция Warm Tiles. В наборах Warm Tile впервые появились простые в продаже решения для лучистого обогрева пола. Лучистое тепло Warm Tiles подходит практически для любой комнаты: ванной комнаты, кухни, детской или семейной комнаты — где бы вы ни пожелали комфортно теплые полы. При работе от обычного тока Warm Tiles стоит меньше пенни за квадратный фут в день, если система включает в себя специально разработанный термостат Warm Tiles. Если у вас есть возможность самостоятельно укладывать напольное покрытие, установить систему Warm Tiles несложно.Готовые комплекты кабелей для обогрева Warm Tiles позволяют полностью покрыть светлый пол любой формы и удовлетворить многие потребности. Просто сопоставьте площадь, по которой вы ходите, с таблицей выбора теплой плитки, чтобы рассчитать, какую кабельную систему купить. Или же систему можно приобрести в виде сборных матов для экономии труда. Затем выберите контроллер в соответствии с размером вашей системы и требованиями.
Каждый компонент системы содержит подробные инструкции по правильной и безопасной установке. Как правило, установку электрической системы можно выполнить в пять этапов.На первом этапе проектируется система, рассчитывается обогреваемая площадь и определяется количество необходимых кабелей и / или комплектов. На втором этапе электроэнергия подводится к электрическому шкафу управления в помещении или комнатах, которые будут обслуживаться. На третьем этапе устанавливаются кабель и датчик термостата, а также прилагаемые аксессуары в соответствии с инструкциями. На четвертом этапе укладка пола завершается обычным способом, укладкой керамической, мраморной или сланцевой плитки или ламината. На пятом этапе установка контроллера завершается с использованием прилагаемых к нему принадлежностей и инструкций.
Только несколько компаний рекомендуют установку под ковровое покрытие. Одна из них — система Environ II, продаваемая Warmly Yours вместе с некоторыми кабелями Flextherm. Хотя любую гидравлическую или электрическую кабельную систему, установленную внутри бетонной плиты, можно использовать под ковром или любым другим полом.
Независимо от используемой системы важно соблюдать местные и государственные правила зонирования для любых установок.
Может быть, у римлян это было с самого начала.Теплые полы могут превратиться в теплые тела. При нынешних высоких затратах на электроэнергию выгодно использовать наиболее эффективную систему отопления, которую вы можете себе позволить. В наши дни вы можете захотеть изучить систему подогрева пола для вашего гаража, магазина, ванной комнаты или даже всего дома. И вы можете сделать это сами, будь то новый дом или переоборудование старого дома, гаража или магазина.
Ряд компаний предлагают внутрипольное лучистое отопление. Дополнительную информацию о напольном отоплении можно получить в Ассоциации излучающих панелей, www.radiantpanelassociation.org, а также Radiant Design Institute, www.radiantdesigninstitute.org.
Рекомендуемые статьи
Лучистое отопление | Министерство энергетики
Системы лучистого отопления поставляют тепло непосредственно к полу или панелям в стене или потолке дома. Системы во многом зависят от лучистой теплопередачи — доставки тепла непосредственно от горячей поверхности к людям и объектам в помещении с помощью инфракрасного излучения.Лучистое отопление — это эффект, который вы ощущаете, когда чувствуете тепло горячей плиты через всю комнату. Когда лучистое отопление расположено в полу, его часто называют лучистым подогревом пола или просто подогревом пола.
Лучистое отопление имеет ряд преимуществ. Он более эффективен, чем обогрев плинтуса, и обычно более эффективен, чем воздушное отопление, поскольку исключает потери в воздуховоде. Люди, страдающие аллергией, часто предпочитают лучистое тепло, потому что оно не распространяет аллергены, как системы принудительной вентиляции.Гидравлические (жидкостные) системы потребляют мало электроэнергии, что является преимуществом для домов, не подключенных к электросети, или в районах с высокими ценами на электроэнергию. Гидравлические системы могут использовать широкий спектр источников энергии для нагрева жидкости, включая стандартные газовые или мазутные котлы, дровяные котлы, солнечные водонагреватели или комбинацию этих источников. Чтобы узнать больше о различных типах источников энергии и системах распределения тепла для отопления дома, ознакомьтесь с нашей инфографикой Energy Saver 101 о домашнем отоплении.
Несмотря на свое название, лучистое отопление пола во многом зависит от конвекции, естественной циркуляции тепла в помещении, когда воздух, нагретый от пола, поднимается вверх.Системы лучистого теплого пола существенно отличаются от излучающих панелей, используемых для отделки стен и потолка. По этой причине в следующих разделах излучающий теплый пол и излучающие панели рассматриваются отдельно.
Излучающее тепло для полов
Существует три типа излучающего тепла для пола: излучающие полы (воздух является теплоносителем), излучающие полы с электроприводом и полы с излучающим теплом с горячей водой (гидронные). Вы можете дополнительно классифицировать эти типы по установке. Те, которые используют большую тепловую массу бетонной плиты пола или легкого бетона поверх деревянного чернового пола, называются «мокрыми» установками, а те, в которых установщик «заживает» трубы излучающего пола между двумя слоями фанеры или прикрепляет трубы. Под чистым полом или черным полом называют «сухой монтаж».»
Типы излучающих полов
Излучающие полы с воздушным обогревом
Воздух не может удерживать большое количество тепла, поэтому излучающие воздушные полы нерентабельны в жилых помещениях и редко устанавливаются. Хотя их можно комбинировать с солнечными батареями. системы воздушного отопления, эти системы страдают очевидным недостатком, заключающимся в том, что они производят тепло только в дневное время, когда тепловые нагрузки обычно ниже. Неэффективность попытки обогреть дом с помощью обычной печи путем прокачки воздуха через полы ночью перевешивает преимущества использование солнечного тепла в течение дня.Хотя в некоторых ранних системах солнечного нагрева воздуха в качестве теплоносителя использовались камни, этот подход не рекомендуется (см. Системы солнечного нагрева воздуха).
Электрические излучающие полы
Электрические излучающие полы обычно состоят из электрических кабелей, встроенных в пол. Также доступны системы с матами из электропроводящего пластика, установленными на черновом полу под напольным покрытием, например плиткой.
Из-за относительно высокой стоимости электроэнергии электрические излучающие полы обычно рентабельны только в том случае, если они включают в себя значительную тепловую массу, такую как толстый бетонный пол, и ваша электроэнергетическая компания предлагает тарифы на время использования.Нормы времени использования позволяют «заряжать» бетонный пол теплом в непиковые часы (примерно с 21:00 до 6:00). Если тепловая масса пола достаточно велика, тепло, накопленное в нем, будет поддерживать комфорт в доме в течение восьми-десяти часов без дополнительных электрических подключений, особенно когда дневные температуры значительно выше, чем ночные. Это экономит значительное количество долларов за электроэнергию по сравнению с отоплением по пиковым тарифам на электроэнергию в течение дня.
Электрические лучистые полы также могут иметь смысл для дополнения дома, если было бы нецелесообразно расширять систему отопления в новом помещении.Однако домовладельцам следует изучить другие варианты, такие как тепловые насосы с мини-сплит-системой, которые работают более эффективно и имеют дополнительное преимущество в виде охлаждения.
Hydronic Radiant Floors
Hydronic (жидкостные) системы являются наиболее популярными и экономичными системами лучистого отопления для климата с преобладанием отопления. Системы водяных теплых полов перекачивают нагретую воду из бойлера по трубам, проложенным под полом. В некоторых системах управление потоком горячей воды через каждый контур трубопровода с помощью зонирующих клапанов или насосов и термостатов регулирует температуру в помещении.Стоимость установки водяного излучающего пола варьируется в зависимости от местоположения и зависит от размера дома, типа укладки, напольного покрытия, удаленности участка и стоимости рабочей силы.
Типы напольных покрытий
Независимо от того, используете ли вы кабели или трубы, методы установки электрических и водяных излучающих систем в полах схожи.
При так называемой «мокрой» установке кабели или трубы закладываются в твердый пол и являются самой старой формой современных систем теплого пола.Трубку или кабель можно заделать в толстую бетонную фундаментную плиту (обычно используемую в «плиточных» домах на ранчо, у которых нет подвалов) или в тонкий слой бетона, гипса или другого материала, установленного поверх чернового пола. Если используется бетон, а новый пол не на твердой земле, может потребоваться дополнительная опора пола из-за дополнительного веса. Чтобы определить несущую способность пола, проконсультируйтесь с профессиональным инженером.
Толстые бетонные плиты идеально подходят для хранения тепла от солнечных энергетических систем, которые имеют переменную тепловую мощность.Обратной стороной толстых плит является их медленное тепловое время отклика, что делает такие стратегии, как ночные или дневные задержки, трудными, а то и невозможными. Большинство специалистов рекомендуют поддерживать постоянную температуру в домах с этими системами отопления.
Благодаря недавним инновациям в технологии полов, так называемые «сухие» полы, в которых кабели или трубы проходят в воздушном пространстве под полом, набирают популярность, главным образом потому, что сухой пол является более быстрым и менее дорогостоящим. строить. Но поскольку сухие полы предполагают обогрев воздушного пространства, система лучистого отопления должна работать при более высокой температуре.
Некоторые «сухие» установки включают подвешивание труб или кабелей под черным полом между балками. Этот метод обычно требует просверливания балок перекрытия для установки трубы. Под трубками также должна быть установлена светоотражающая изоляция, чтобы направлять тепло вверх. Трубы или кабели также могут быть проложены над полом между двумя слоями черного пола. В этих случаях трубки для жидкости часто вставляются в алюминиевые диффузоры, которые распределяют тепло воды по полу, чтобы нагреть пол более равномерно.Трубки и рассеиватели тепла крепятся между планками обрешетки (шпалами), которые выдерживают вес нового чернового пола и готовой поверхности пола.
По крайней мере, одна компания усовершенствовала эту идею, создав фанерный материал для чернового пола, изготовленный со встроенными в них канавками для труб и алюминиевыми пластинами рассеивателя тепла. Производитель заявляет, что благодаря этому продукту система лучистого пола (для нового строительства) значительно дешевле в установке и быстрее реагирует на изменения температуры в помещении.Такие продукты также позволяют использовать вдвое меньше труб или кабелей, потому что теплопередача пола значительно улучшена по сравнению с более традиционными сухими или влажными полами.
Напольные покрытия
Керамическая плитка является наиболее распространенным и эффективным напольным покрытием для лучистого теплого пола, поскольку оно хорошо проводит тепло и добавляет теплоаккумулятор. Можно также использовать обычные напольные покрытия, такие как винил и листы линолеума, ковровые покрытия или дерево, но любое покрытие, изолирующее пол от комнаты, снизит эффективность системы.
Если вам нужно ковровое покрытие, используйте тонкий ковер с плотной набивкой и установите как можно меньше коврового покрытия. Если в некоторых комнатах, но не во всех, будет напольное покрытие, тогда в этих комнатах должен быть отдельный контур для труб, чтобы система обогревала эти помещения более эффективно. Это связано с тем, что вода, текущая под крытым полом, должна быть более горячей, чтобы компенсировать напольное покрытие. Деревянный пол должен быть ламинированным, а не массивным, чтобы уменьшить вероятность усадки и растрескивания древесины в результате высыхания под воздействием тепла.
Излучающие панели
Излучающие панели для настенного и потолочного монтажа обычно изготавливаются из алюминия и могут нагреваться либо электричеством, либо трубкой, по которой проходит горячая вода, хотя последнее создает опасения по поводу утечки в настенных или потолочных системах. Большинство имеющихся в продаже излучающих панелей для домов имеют электрическое отопление.
Как и любой другой тип электрического обогрева, излучающие панели могут быть дорогими в эксплуатации, но они могут обеспечивать дополнительное отопление в некоторых комнатах или могут обеспечивать теплом дополнительный дом, когда расширение традиционной системы отопления нецелесообразно.
Излучающие панели имеют самое быстрое время отклика среди всех отопительных технологий и — поскольку панели можно индивидуально контролировать для каждой комнаты — функция быстрого отклика может привести к экономии затрат и энергии по сравнению с другими системами, когда комнаты нечасто заняты. Входя в комнату, человек может увеличить температуру и почувствовать себя комфортно в течение нескольких минут. Как и в любой системе отопления, установите термостат на минимальную температуру, которая предотвратит замерзание труб.
Панели излучающего отопления работают в зоне прямой видимости — вам будет наиболее комфортно, если вы окажетесь близко к панели. Некоторые люди считают потолочные системы неудобными, потому что панели нагревают им верхнюю часть головы и плечи более эффективно, чем остальную часть тела.
Изображение большего размера Изображение большего размера с более детальной разводкой Косвенное Нагреватель и бойлер … На рис. 1 показан обзор работы бойлера и косвенного нагревателя.Цель: отопление дома плюс горячая вода. котел перегревает горячую воду на газе или масле со скоростью 150 000–300 000 + БТЕ в час при диапазоне температур, который может достигнуть почти кипящей воды 200F (смертельная температура для людей, бактерии, омары и т. д.). «Водонагреватель — прибор для подачи горячей воды в жилые дома.
или коммерческое использование, кроме отопления помещений The
котел выполняет две функции. При подключении к
типичный бойлер, косвенный нагреватель может поставлять очень большой объем
питьевая горячая вода (200-400 галлонов в час) в зависимости от рейтинга BTU
котел, характеристики системы, установка термостата, температура
входящая холодная вода, размер косвенного нагревателя и т. д. Есть
представляют собой различные типы конструкций водонагревателей косвенного нагрева, которые получают горячую
вода из внешнего источника тепла …. например, геотермальный контур,
солнечная система на крыше, дровяная печь-котел и т. д. Водонагреватель косвенного действия необходим для любой системы
в котором не циркулирует чистая питьевая вода, для
пример
солнечная система сбора на крыше, в которой используется гликоль (смертельный антифриз)
в циркуляционном контуре, чтобы предотвратить замерзание. Ресурс
Прочтите о водонагревателях с гликолем Косвенный
обогреватель подает в дом питьевую (питьевую) воду. Зачем использовать косвенный бак с теплообменником для подачи горячей воды в дом? 2) супер нагретую горячую воду из котла нельзя пускать в бытовую воду трубы, в которых давление может превышать номинальное значение трубы, и температуры может превышать номинальную мощность резервуара или превышать стандарты безопасности в жилых помещениях для ошпаривание (максимум 150 для бытовых обогревателей). Очень горячая вода (140-180F +) может убить и / или вызвать серьезные ожоги. Типичный температура ванны в душе составляет 104 F и редко намного выше. Типичный установка термостата косвенного нагрева может быть 120-135F, что означает, что холодная вода смешивается с горячей водой на душевом клапане до температуры 104F температура.Руководство по каждому продукту для бытовых водонагревателей рекомендую настройку термостата 120. Смесительный клапан должен быть установлен для любая установка термостата выше 120F. Ресурс: Преимущества смесительного клапана Котловой контур — это «замкнутая система», и должен иметь гарантии минимизировать высокое давление и предотвратить взрыв резервуаров и трубы, содержащие перегретую горячую воду. Котел ДОЛЖЕН устанавливаться, обслуживаться и т.д. лицензированным сантехником с опытом работы в сфере котлов из-за высокого давления и температуры от котла… Не DIY домашний проект. Ресурс Схема труб на 3 котла Типовая Руководство по косвенному обслуживанию котла: Руководство по косвенному обслуживанию Руководство по эксплуатации котла Руководство по установке / обслуживанию котла Установка / обслуживание коммерческого котла Какой размер необходим косвенный нагреватель Бойлер и непрямые — это действительно «бесконечный запас горячей воды» … доставляет 400+ галлонов горячего при непрерывном розливе, прежде чем станет слишком холодным к использовать. | Изображение большего размера Конденсация обогреватели… Начиная с энергетического стандарта 2015 года, любое домашнее хозяйство, нуждающееся в газовой воде обогреватель объемом более 50 галлонов, необходимо обратить внимание на покупку двух обогревателей, или рассмотрите конденсационный нагреватель. Polaris относится к классу воды нагреватели называют «конденсационными» из-за количества тепла, рециркулируемого из дымохода и получаемого в результате конденсированного кислого водяного пара, который должен быть направленным в слив пола. Полярная звезда
обогреватель
… … водонагреватель Polaris со сверхнизким выбросом
Горелка 100000-199000 БТЕ в час и 444 резервуара из нержавеющей стали и тепла
теплообменник, не требует анодного стержня и имеет размер 34 и 50 галлонов. 50 галлон от 100000 до 199000 БТЕ в час Polaris примерно такого же размера, как и обычный жилой водонагреватель (Диаметр 22 дюйма), но может поставить больше горячей воды, чем водонагреватели на 40 000 БТЕ. Например, 50
галлон 100000 БТЕ Polaris обеспечивает ориентировочно 100 галлонов в первый час …
Это означает, что он будет поставлять 100 галлонов горячей воды за один непрерывный розлив
до температуры воды
становится непригодным для использования. Восстановление 129 галлонов в час.(В зависимости от температуры
входящая холодная вода и настройка термостата). компромисс для конденсационных нагревателей, таких как Polaris, — более высокая стоимость, больше дорогой ремонт, крупнее газопровод и расход газа, более сложная установка (мощность прямая вентиляция), необходимость в чистая электроэнергия и выделенная цепь 120 вольт, плюс скачок напряжения защита для защиты сложных электронных элементы управления подвержены скачкам напряжения и т. д. Конденсационный нагреватель Polaris использует
воздуходувка для всасывания воздуха в горелку в нижней части водонагревателя
через всасывающую трубу снаружи. Поставка природного газа или
пропан
газ
смешивается с воздухом внутри горелки, расположенной в нижней части резервуара для воды.
После сжигания топлива вентилятор выталкивает горячие побочные продукты сгорания.
через спиралевидный теплообменник, расположенный внутри бака
перед тем, как нажать на выхлоп
побочный продукт из резервуара и вверх по вентиляционной трубе, выходящей через боковую стенку или
окончания на крыше.Вентиляционная труба типичная
2-3 дюйма ПВХ, как указано в руководстве. Ресурсы: |
Как установить уличный дровяной котел
Установка уличной дровяной печи
Компания Pineview Woodstoves предлагает полный монтаж, включая доставку и рытье траншей.Поставляем и устанавливаем агрегат с нашим прицепом-обручем. Заказчик несет ответственность за подготовку места для установки агрегата. Цементные блоки, брусчатка или небольшая плита могут использоваться в качестве площадки для установки агрегата. Просто убедитесь, что он ровный. Информация о размерах стопы доступна по запросу. Мы нанимаем стороннюю компанию с траншеекопателем для рытья траншеи и прокладываем линию. Мы можем подключить ваш уличный дровяной котел практически к любой существующей системе отопления, включая принудительный воздух, излучающий теплый пол, радиаторы или водяные плиты основания.Мы также можем подключиться к вашей гидромассажной ванне, бассейну или водонагревателю. Свяжитесь с нами для получения бесплатной сметы на установку.
I. Общая информация по установке — перед началом работы
A. Размещение насоса в задней части котла по сравнению с вашим зданием
B. Минимальный расход воды
C. Воздухоотделители (воздуховыпускные устройства / вентиляционные отверстия)
D. Порядок работы — должны ли ваши линии сначала идти к водонагревателю или системе отопления?
E.Смесительные клапаны
II. Расчет тепловых потерь — определите размер уличного дровяного котла
A. Расчет тепловых потерь стен
B. Расчет тепловых потерь окна
C. Расчет тепловых потерь двери
D. Расчет потерь тепла на потолке
E. Расчет потерь тепла в полу
F. Утечки воздуха
III. Размеры труб и насосов — насос какого размера нужен вашей уличной дровяной печи?
A. Выбор правильного размера трубы
Б.Расчет падения давления
C. Выбор насоса
IV. Отопление горячей воды
A. Сантехника в пластинчатом теплообменнике
В. Иллюстрации
A. Иллюстрация установки кондиционера
B. Схема установки нагревателя агрегата
C. Схема установки резервного электрокотла (включение вручную)
D. Схема установки резервного электрокотла (автоматизированная)
E. Резервный котел в напорной системе, схема
Ф.Отопление бытовой горячей воды с пластинчатым теплообменником Схема
G. Промывка пластинчатого теплообменника — Схема
H. Отопление бытовой воды — Схема бокового рычага
I. Радиатор в печи с принудительным воздухом Схема
J. Радиатор в печи с принудительным воздухом + схема нагрева воды для бытового потребления
K. Отопление мастерских — теплый пол и нагреватель с вентилятором / змеевиком Схема
L. Нагрев плит — Инжекционное смешивание — Схема
М.Нагрев плиты — термостатический трехходовой смесительный клапан — Схема
N. Крепление к лучшему теплу для полов с плиточным отоплением и подогревом воды для бытовых нужд
VI. Словарь терминов по установке дровяных котлов на открытом воздухе
Перед началом работы
Настоящее руководство по установке дровяного котла на открытом воздухе должно быть именно тем руководством, которое есть на самом деле. Всегда следите за тем, чтобы ваша установка соответствовала местным нормам и правилам руководящих органов вашего региона.Если вы не уверены в чем-либо, что представлено в этом руководстве, не стесняйтесь обращаться к местному дилеру или производителю за дополнительной помощью.
Общая практика
Размещение насоса
В большинстве случаев лучшее место для насоса — это всепогодный кожух наружной печи. Ваша уличная печь находится выше или ниже того места, где вам нужно направить главный подводящий трубопровод к вашему зданию? Если нижняя часть наружной печи находится ниже точки входа линии подачи в здание, насос всегда следует размещать в защищенном от атмосферных воздействий кожухе у наружной печи.Если нижняя часть печи находится выше точки входа линии подачи в здание, то лучшее место для насоса чаще всего находится в защищенном от атмосферных воздействий кожухе у наружной печи. В этом случае вы также можете разместить насос в отапливаемом здании, если планировка соответствует следующим критериям. В открытой системе необходимо поддерживать как можно большее давление на входе циркуляционного насоса. Любой трубопровод на всасывающей стороне насоса создает определенный перепад давления.Простое руководство для типичных систем: если у вас меньше 7 футов падения на 100 футов подающего трубопровода к потенциальному месту расположения насоса в здании, насос в идеале должен быть у наружной печи. Если перепад составляет более 7 футов на 100 футов, насос можно эффективно разместить в здании. Обратите внимание, что в здании насос ВСЕГДА находится на линии горячего питания и ВСЕГДА в самом начале здания. Помнить! ВСЕГДА устанавливайте запорные клапаны с обеих сторон циркуляционного насоса.Насосы не будут служить вечно, и если вам нужно отремонтировать один из них, вам не захочется слить воду из большого количества трубопроводов, чтобы снять / отремонтировать насос.
Минимальный расход
У наружной печи есть необходимый минимальный расход, который должен постоянно циркулировать. Этот минимальный расход предотвращает расслоение жидкости. Самая горячая жидкость, будучи менее плотной, поднимается до самой высокой точки водяной рубашки. Без достаточного потока эта жидкость нагревается до предела безопасности, установленного на печи, и часто выключатель верхнего предела отключает питание до тех пор, пока температура не снизится в достаточной степени.Минимальная скорость потока гарантирует, что жидкость в печи должным образом перемешана для получения относительно равномерной температуры по всей водяной рубашке. Это позволяет элементам управления определять точную температуру жидкости и обеспечивает наилучшую передачу и распределение тепла в подключенных зданиях. Количество потока будет зависеть от модели печи. Здесь указаны минимальные значения расхода для печи HeatMaster SS серии G. G100 — 8 галлонов в минуту G200 — 14 галлонов в минуту G400 — 30 галлонов в минуту Практическое правило состоит в том, чтобы достичь перепада температуры 20–30 градусов по Фаренгейту (также называемого «дельта Т») в печи при максимальной тепловой мощности.Для поддержания падения на 20 градусов печи с номинальной производительностью 100 000 БТЕ в час потребуется 10 галлонов в минуту. Чтобы рассчитать это, используйте текущую формулу. GPM = BTU / Delta T / 500 Где: GPM = требуемый расход воды в галлонах США в минуту BTU = максимальная производительность печи в BTU в час. Дельта T = желаемое падение температуры воды. Обычно от 20 до 30 F. для уличной печи. 500 = Это постоянное число для воды. если вы используете смесь гликоля, используйте 470 для смеси 50/50. Убедитесь, что размеры труб и насосов подобраны правильно, чтобы обеспечить необходимый минимальный расход для печи.Если общий поток, подаваемый в ваши здания, не соответствует требованиям, необходимо проложить байпасный контур позади печи. По сути, это включает в себя установку дополнительного насоса, который забирает воду из патрубка горячего водоснабжения и возвращает ее непосредственно к патрубку возврата холодной воды. Этот насос и труба должны иметь такой размер, чтобы обеспечивать достаточный поток, чтобы довести общий расход всех контуров до минимального расхода. Информацию о подборе насосов и трубопроводов см. В разделе «Подбор насосов» данного руководства.Пример обходного контура показан ниже.
Вентиляционные отверстия (или воздухоотделители)
Автоматические и ручные вентиляционные отверстия — два типичных типа используемых. Воздух всегда враг в любой системе водяного отопления, но тем более в открытой системе. Расположение воздухоотделителей в системе отопления имеет решающее значение с точки зрения того, насколько они эффективны или мешают. Правильно установленное вентиляционное отверстие должно обеспечивать быстрое и простое удаление воздуха при первом вводе системы в эксплуатацию, а также облегчение проверки или обслуживания в будущем.Обычно вентиляционное отверстие располагается там, где жидкость в системе течет горизонтально, а затем поворачивается вниз. В этот момент используйте тройник вместо колена и установите вентиляционное отверстие в верхней части тройника. Следует ли когда-либо устанавливать вентиляционное отверстие на всасывающей стороне насоса? Если насос расположен у наружной печи, тогда нет необходимости в вентиляционном отверстии на входе насоса. Трубопровод следует просто проложить от соединения в печи вниз или горизонтально к насосу. Если насос находится в здании, его следует расположить так, чтобы, по возможности, не было точек захвата воздуха в трубопроводе перед насосом.Если этого нельзя избежать, то в точке захвата воздуха на всасывающей стороне насоса можно установить вентиляционное отверстие, если расположение вентиляционного отверстия как минимум на два фута ниже уровня воды в наружной печи. Это отверстие ВСЕГДА должно быть ручным и открываться для выпуска воздуха только при ВЫКЛЮЧЕННОМ насосе. Если это вентиляционное отверстие открывается при включенном насосе, он может втягивать воздух через вентиляционное отверстие и усугублять проблемы с воздухом в вашей системе.
Порядок операций
При обслуживании более чем одной тепловой нагрузки в системе очень важен порядок, в котором вы обеспечиваете каждую потребность.Причина этого в том, что после подачи каждой нагрузки в первичную / вторичную или последовательную систему трубопроводов температура теплоносителя в первичном контуре будет падать. При проектировании системы отопления важно учитывать это падение температуры, чтобы каждый компонент системы мог удовлетворить свои потребности. Типичный заказ выглядит следующим образом:
1) Теплообменник бытовой воды. Это может быть паяный пластинчатый теплообменник, кожухо-змеевиковый теплообменник или резервуар для горячей воды косвенного нагрева.Типичная требуемая расчетная температура составляет от 160 до 180 F.
2) Плинтусы с горячей водой. Конструкция из оребренных медных труб. Типичная требуемая расчетная температура составляет от 140 F. до 180 F.
3) Радиатор или фанкойл. Радиатор, установленный в камере сгорания печи с принудительной подачей воздуха, или вентиляторный блок со встроенным радиатором. Типичная требуемая расчетная температура составляет от 140 F до 180 F.
4) Подкрепленный пол с подогревом. Система обогрева пола, которая крепится с помощью зажимов или переходных пластин к нижней стороне пола, в стене или даже к потолку.В этом методе трубопровод излучает тепло через воздух, окружающий трубопровод, а затем в комнату через пол, стену или потолок. В этом методе также могут использоваться алюминиевые теплообменные пластины для повышения производительности в зонах с высокими потерями тепла. Типичная требуемая расчетная температура составляет от 120 до 160 F.
5) Бассейны или джакузи. Для нагрева воды в бассейне или гидромассажной ванне можно использовать специальный теплообменник из нержавеющей стали или титана. Типичная требуемая расчетная температура составляет от 120 до 180 F.
6) Встроенный теплый пол. Система трубопроводов, встроенная в бетонный пол, например в подвал, гараж или мастерскую. Пол, покрытый гипсовой заливкой или бетоном, также попадает в эту категорию. Типичная требуемая расчетная температура составляет от 80 до 130 F.
7) Таяние снега. Система трубопроводов, предназначенная для таяния и испарения снега и льда с открытых площадок, таких как тротуары, проезды или палубы. Этот трубопровод может быть залит бетоном или подвешен скобами в зависимости от области применения.Типичная требуемая расчетная температура составляет от 40 F. до 80 F.
При правильной конструкции это позволяет извлекать максимальное количество тепла из минимального количества потока из наружной печи. Меньше трубопроводов, меньшие размеры трубопроводов, меньшие насосы и меньшие тепловые потери. Это означает экономию средств как на первоначальной настройке, так и на долгосрочных эксплуатационных расходах.
Смеситель — подача низкотемпературной воды из высокотемпературного котла
Если мы посмотрим на последние два пункта в приведенном выше списке «Порядок операций», то увидим, что температура воды, необходимая для обогрева подвала, мастерской или зоны таяния снега, значительно ниже, чем температура воды, которую мы производим из нашей уличной печи.Нам нужно охладить эту воду, прежде чем мы отправим ее на плиту. Один из способов сделать это — снять тепло с воды в других помещениях, прежде чем мы поставим пол, как указано в Порядке работы. Но что, если эти тепловые нагрузки удовлетворены и не забирают достаточно тепла для воды? Мы должны быть уверены, что температура воды, поступающей на эти плиты, тщательно контролируется, в противном случае может возникнуть ряд проблем. Бетонная плита — это, по сути, ОГРОМНЫЙ резервуар для хранения, который медленно отдает тепло окружающей среде.Что произойдет, если в нашей мастерской есть пол с подогревом, и наш термостат требует тепла, и наш насос начнет подавать воду на 160 F. Очень мало, какое-то время. Бетон тяжелый, и требуется много времени, чтобы нагреть эту массу даже на несколько градусов. Обычный термостат может потребовать тепла в течение часа или около того, прежде чем пол нагреется и нагреет комнату до точки, удовлетворяющей требованиям термостата. Что теперь? Термостат выключается, и цикл повторяется, верно? Неправильный. Если мы кормили 160 F.воды в нашу плиту в течение часа, теперь у нас будет МНОГО тепла, сохраненного в бетоне, которое будет продолжать излучать в комнату, пока плита не остынет. Это может привести к тому, что температура превысит заданное значение термостата на несколько градусов, и в комнате станет некомфортно жарко. Теплый пол согревает не только воздух в комнате, но и все, что находится в ней. Эти объекты и сама строительная конструкция действуют как еще одна теплоаккумулирующая масса. Эти объекты медленно отдают свое тепло в комнату по мере того, как здание остывает, и это может поддерживать температуру выше заданного значения термостата в течение другого периода времени.Все это время плита отдавала тепло зданию, а также теряла часть тепла на землю. Теперь наш термостат снова требует тепла, но пол был отключен так долго, что он потерял значительную часть температуры, и ему придется работать в течение длительного периода времени, чтобы начать нагревать комнату. В то же время здание продолжает терять тепло и может фактически упасть ниже уставки термостата, в результате чего в комнате станет немного прохладнее. Теперь цикл повторяется.Это только один из отрицательных последствий подачи слишком горячей воды на пол. Напольные покрытия также могут быть повреждены в результате такой чрезмерной температуры. Полы из твердых пород дерева могут высыхать, давать усадку и трескаться. Ковровые покрытия могут расшататься, а бетон — потрескаться. Стопы людей становятся слишком теплыми, вызывая потоотделение и усталость. Излишне говорить, что очень важно контролировать температуру воды, поступающей в пол. Можете ли вы контролировать температуру, просто замедляя поток, немного закрыв вентиль? Вода будет выходить из пола прохладной, но это вызывает неравномерный нагрев пола.Первая часть петли будет чрезмерно горячей, а последняя часть петли может быть недостаточно горячей. Управление потоком жидкости не так эффективно, как регулирование температуры. Нам необходимо поддерживать надлежащую скорость потока, чтобы обеспечить равномерное распределение тепла по полу и надлежащее отведение воды по трубе. Есть несколько способов добиться этого, два метода, которые мы рассмотрим, — это использование термостатических трехходовых смесительных клапанов или инъекционное смешивание.
Термостатические трехходовые смесительные клапаны
Термостатические трехходовые смесительные клапаны — это то, на что они похожи.Клапан с тремя портами: горячий, холодный и смешанный. Используйте иллюстрацию «Нагрев плиты — смесительный клапан», чтобы следовать этому описанию. Большинство клапанов регулируются от 80 до 150 F. поворотом «головки» клапана. Горячий порт входит в ваш первичный контур, идущий от вашей наружной печи. Порт смешивания идет к напольному тепловому насосу, а затем к подающему коллектору, питающему пол. Возвратный коллектор с пола возвращается в первичный контур после первого тройника. Холодный порт на клапане получает тройник между возвратным коллектором и тройником, возвращающимся в первичный контур.Эти клапаны отлично подходят для подвалов, гаражей и небольших мастерских, поскольку они рассчитаны на довольно низкий расход. Если вам нужно более 4 или 5 галлонов в минуту, вам следует обратить внимание на смешивание инъекций.
Инжекционное смешивание
Инъекционное смешивание — это метод, который прекрасно подходит для любой системы, от дома до промышленного здания. Базовые затраты, как правило, выше для этого типа системы, но есть много дополнительных преимуществ. Используйте иллюстрацию «Отопление в цехе — Инжекционное смешивание», чтобы следовать этому описанию.Первичный контур циркулирует насосом в наружной печи, а контур впрыска входит в него. Циркуляция контура напольного отопления осуществляется вторым насосом. Нагнетательный насос забирает высокотемпературную воду из первичного контура и подает ее в контур напольного отопления. Впрыскивающий насос управляется контроллером смешивания впрыска, который ускоряет или замедляет работу насоса для поддержания желаемой температуры воды в контуре подогрева пола. Когда комнатный термостат требует тепла, он активирует контроллер впрыска.На рисунке вы видите датчик контроллера на трубе после напольного теплового насоса. Также имеется датчик на трубопроводе первичного контура непосредственно перед тройником первого впрыска. Контроллер запрограммирован на подачу либо постоянной температуры воды в контур пола, либо температуры сброса наружного воздуха, которая изменяется в зависимости от температуры наружного воздуха. Большинство производителей контроллеров позволяют использовать стандартный циркуляционный насос с мокрым ротором до определенной мощности в качестве впрыскивающего насоса. Это очень удобно, поскольку часто используются те же насосы, что и в остальной части системы.Эмпирическое правило для определения размеров нагнетательных насосов заключается в том, что они должны обеспечивать примерно 1/3 расхода напольного теплового насоса в типичном бетонном полу с температурой первичного контура от 160 до 180 F. При циркуляции со скоростью 9 галлонов в минуту ваш нагнетательный насос должен подавать 3 галлона в минуту при температуре от 160 до 180 F. Нагнетательный насос проталкивает 3 галлона в минуту высокотемпературной воды в контур пола и вытесняет 3 галлона холодной возвратной воды обратно в первичный контур. Эта холодная вода смешивается с высокотемпературной водой в первичном контуре и перекачивается обратно в наружную печь для повторного нагрева.Первичный контур должен циркулировать с достаточно высокой скоростью потока, чтобы у вас была приемлемая температура воды, возвращающейся в вашу уличную печь.
Расчет потерь тепла
Чтобы определить размер наружной печи, подающего трубопровода и насоса, необходимо выполнить расчет тепловых потерь для каждого обслуживаемого здания. Чтобы быть точным, эти расчеты должны выполняться обученными специалистами, но для грубых расчетов здесь показан упрощенный метод.
Для начала вам необходимо знать основную информацию о вашем здании и климатических условиях.
Дом:
— R-значения стен, потолка, пола, окон и дверей.
— Площадь вышеперечисленных предметов в квадратных футах.
— Качество строительства (Насколько сквозняк в здании?)
Климат:
— Наружная «расчетная» температура для местоположения здания. Этот номер обычно можно узнать, получив в Интернете данные о погоде в вашем районе.
Давайте воспользуемся примером, чтобы проиллюстрировать этот расчет.
Гэри хотел бы установить уличную печь для обогрева своего дома, пристроенного гаража и мастерской. Ему необходимо знать тепловую нагрузку своих зданий, чтобы решить, какой размер печи купить.
Начало работы в цехе:
Размер магазинаGary’s составляет 40 на 60 футов, высота потолка — 18 футов. Стены утеплены до R-20, а потолок — R-40. Он отапливает цех лучистым теплом пола и утепляет плиту до R-5.У него двойные стеклопакеты с рейтингом примерно R-2, а его двери — примерно с R-10. Гэри живет недалеко от Миннеаполиса, Миннесота. где расчетная температура наружного воздуха составляет примерно -16 F, и он хотел бы, чтобы в его магазине оставалось около 65 F.
Площадь стены: 200 футов по периметру x 18 футов в высоту = 3600 квадратных футов
Окна: 3 окна размером 4 x 6 дюймов каждое = 72 квадратных фута
Главный вход: 1 на 3 ‘x 7’ = 21 квадратный фут
Подъемная дверь: 1 с размерами 16 футов x 16 футов = 256 квадратных футов
Потолок: 40 футов x 60 футов = 2400 квадратных футов
Площадь этажа: 40 футов x 60 футов = 2400 квадратных футов
Формула:
Q = A x дельта T x U
Где
Q = потеря тепла в БТЕ / час
A = Дельта площади поверхности T = Разница между желаемой температурой в помещении (в градусах F.) и расчетной наружной температуры (в градусах F.)
U = 1, разделенное на коэффициент сопротивления стены, потолка, пола, окна или двери.
Расчет стены
U = 1, разделенное на 20 (R-значение его стены)
U = 0,05
A = Площадь стены — площадь окна и двери
A = 3600 — (72 + 21 + 256)
A = 3251
Дельта T = Желаемая температура в помещении — Расчетная температура наружного воздуха
Delta T = 65 — (-16)
Delta T = 81
Итак …
Q = U x A x Delta T
Q = 3251 x 81 x.05
Q = 13166
Потери тепла в стене = 13166 БТЕ в час
Расчет окна
U = 1, разделенное на 2 (R-значение его окна, приблизительно R-1 на одно стекло)
U = 0,5
A = Площадь окна
A = 72
Delta T = То же, что и стена
Delta T = 81
Итак …
Q = U x A x Delta T
Q = 72 x 81 x 0,5
Q = 2916
Потери тепла в окне = 2916 БТЕ в час
Расчет двери
U = 1 деленное на 10 (R-значение его двери)
U =.1
A = Дверная зона (Верхняя дверь + Людская дверь)
A = 277
Delta T = То же, что и стена
Delta T = 81
Итак …
Q = U x A x Delta T
Q = 277 x 811 x .1
Q = 2244
Тепловые потери двери = 2244 БТЕ в час
Расчет потолка
U = 1, разделенное на 40 (R-значение его потолка)
U = 0,025
A = Площадь потолка (40 ‘x 60’)
A = 2400
Дельта T = То же, что и стена
Дельта T = 81
Итак …
Q = U x A x Delta T
Q =.025 x 2400 x 81
Q = 4860
Потери тепла на потолке = 4860 БТЕ в час
Расчет перекрытия
U = 1, деленное на 10 (его коэффициент сопротивления изоляции под полом)
U = 0,1
A = площадь пола (40 футов x 60 футов)
A = 2400
Delta T:
Температура грунта довольно постоянна в в большинстве помещений температура плиты
для такого магазина должна быть около 77 F при расчетной температуре
вне помещения. Уровни грунтовых вод и типы почвы могут резко изменить потери тепла пола
.В этом случае мы предположим, что Гэри имеет уровень грунтовых вод примерно на 8 футов
ниже уровня пола и имеет тяжелую глинистую почву. Если уровень должен быть намного ниже и загрязнение гравием или песком типа
, разделите значение Q на 2 для получения общей потери тепла пола.
Delta T = 77 (температура плиты) — 45 (температура грунта)
Delta T = 32
So …
Q = U x A x Delta T
Q = 0,1 x 2400 x 32
Q = 7680
Потери тепла в полу = 7680 БТЕ в час
Проникновение (утечки воздуха в здании)
Магазин Гэри хорошо построен, с пароизоляцией стен и хорошими уплотнениями на дверях и окнах.Его магазин может обменивать около половины своего объема воздуха каждый час. В плохо построенном / обслуживаемом магазине это количество может легко удвоиться или утроиться. Чтобы рассчитать, сколько тепла он теряет из-за инфильтрации, мы используем эту формулу:
Q = (В / 60) x IR x Delta T x 1,068
Где:
Q = потери тепла в BTU в час
V = объем воздуха в здании (длина x ширина x высота)
IR = скорость инфильтрации
Delta T = разница между желаемой температурой в помещении (в градусах F.)
и расчетной температурой наружного воздуха (в градусах F.)
Расчет проникновения Гэри:
В = объем воздуха в цехе (60 футов x 40 футов x 18 футов)
В = 43200
IR = 0,5 (цех Гэри меняет половину воздуха каждый час)
Дельта T = Желаемая температура в помещении — Расчетная температура наружного воздуха
Дельта T = 65 — (-16)
Delta T = 81
Итак …
Q = (V / 60) x IR x Delta T x 1,068
Q = (43200/60) x 0,5 x 81 x 1,068
Q = 31143
Потери тепла при инфильтрации = 31143 БТЕ в час.
Общие потери тепла в цехе Гэри складываются из всех итогов:
Стены — 13166
Окна — 2916
Двери — 2244
Потолок — 4860
Пол — 7680
Инфильтрация — 31143
Общие потери тепла в цехе — 62009 БТЕ в час на открытом воздухе Расчетная температура.
Переменные
Этот расчет кардинально меняется в зависимости от того, как нагревается помещение. В магазине Гэри отапливается пол, благодаря чему температура воздуха на потолке очень близка к температуре воздуха на полу. Если бы его магазин отапливался радиатором и тепловентилятором, цифры сильно изменились бы. Мы теряем меньше тепла от пола, но значительно больше тепла от стен, потолка и потолочной двери из-за высоких температур воздуха в верхней части здания.В этом случае, если термостат был установлен на 65 F, температура потолка в этом магазине могла бы составлять от 75 до 85 F. Этот фактор в сочетании с дополнительными тепловыми потерями из-за турбулентности воздуха, создаваемой вентиляторами, может увеличить общие тепловые потери здания на 30-35 градусов. 70% над тем же зданием с лучистым обогревом пола.
Размеры труб и насосов
Трубопроводы и насосы подходящего размера необходимы для обеспечения здания достаточным количеством тепла. После того, как вы завершите расчет теплопотерь в здании, вы можете определить размер трубы и насоса для подачи тепла.Для того, чтобы добиться успеха, необходима пара информации. Вам понадобится:
— График падения давления для трубопровода, который вы хотите использовать
— График производительности насоса от производителя вашего насоса
Давайте продолжим расчет теплопотерь, который мы использовали для магазина Гэри, чтобы проиллюстрировать этот процесс. Гэри нужно проложить трубу под землей от его уличной печи до магазина, чтобы обеспечить тепло. Его уличная печь находится в 80 футах от цеха, и к тому времени, когда он доберется от зоны подключения в задней части печи до зоны коллектора напольного отопления в цехе, ему понадобится 100 футов трубы в каждую сторону.Гэри собирается использовать изолированные трубы Kitec для выполнения этой задачи и приобрел диаграмму падения давления, показывающую характеристики потока для трубы.
Используемая здесь формула:
галлонов в минуту = БТЕ / дельта T / 500
Где:
галлонов в минуту = требуемый расход воды в галлонах США в минуту
БТЕ = потери тепла в здании
дельта T = желаемое падение температуры воды. Обычно от 20 до 40 F. для печи
на открытом воздухе.
500 = Это постоянное число для воды.если вы используете смесь гликоля, используйте
470 для смеси 50/50.
Гэри нацелился на перепад температур 30 F. Это приемлемо как для наружной печи
, так и для системы лучистого теплого пола в его цехе. Расчет расхода
Гэри выглядит следующим образом:
галлонов в минуту = БТЕ / DeltaT / 500
галлонов в минуту = 62000/30/500
галлонов в минуту = 4,13
Гэри требуется 4,13 галлона в минуту, чтобы доставить количество тепла, необходимое его цеху при расчетных условиях
, и не допускать, чтобы температура возвратной воды была выше 30 F.менее
, чем температура приточной воды.
Выбор правильного размера трубы
При выборе размера трубы важно не использовать слишком маленький или, в некоторых случаях, слишком большой размер. Лучше всего установить скорость от 2 до 4 футов в секунду для этих основных линий, питающих здание. Если ваша скорость слишком высока, это вызывает чрезмерное трение между водой и трубой, что также увеличивает размер насоса, необходимого для подачи необходимого количества воды.Это повышенное трение в некоторых крайних случаях может вызвать эрозию и износ трубы. Если труба слишком большая, скорость вашей воды падает, и у вас могут возникнуть проблемы с выводом воздуха из системы при запуске, поскольку вода будет двигаться слишком медленно, чтобы удалить воздух. Глядя на диаграмму, труба диаметром 1 дюйм имеет скорость 1,53 фута / с при 4 галлонах в минуту. Это все равно сработает, но может быть немного сложно выпустить воздух. Труба 3/4 дюйма имеет скорость 2,52 фута / с и хорошо подходит для этих требований.
Расчет падения давления
Нам нужно знать общий напор (или перепад давления), создаваемый этим контуром, чтобы рассчитать размер насоса. Мы знаем, что Гэри нужно 100 футов трубы в каждую сторону, чтобы идти в магазин и обратно, так что получается 200 футов. Если мы снова посмотрим на диаграмму трубопровода для трубы 3/4 дюйма, мы увидим, что падение давления 1,28 фунта на квадратный дюйм на каждые 100 футов трубы при 4 галлонах в минуту. Если у нас 200 футов трубы, у нас будет падение давления 2,56 фунт / кв.дюйм от насоса в наружной печи до «холодного» соединения в наружной печи.Нам нужно учесть некоторое трение для фитингов и клапанов в контуре, поэтому мы добавим 10% к потерям в трубе, что в сумме составит 2,82 фунта на квадратный дюйм. Если мы посмотрим на диаграмму насосов ниже, вы заметите, что они измеряют падение давления в «футах напора». Чтобы получить эту единицу измерения, умножьте свои фунты на квадратный дюйм на 2,31. У Гэри 2,82 фунта на квадратный дюйм x 2,31 = 6,5 футов напора.
Подбор насоса
Теперь мы знаем, какой размер трубы мы используем и сколько воды нам нужно нести, чтобы мы могли начать процесс определения размеров насоса.
Нам нужен насос, который может производить 4,13 галлона в минуту на высоте 6,5 футов. На приведенной выше диаграмме показаны несколько моделей насосов, но многие из них меньшего размера не предназначены для этого применения. Мы рассмотрим модели 007 и 008. Нам нужно нанести точку на диаграмме, где наш расход пересекает падение давления в футах напора. Внизу диаграммы указано количество галлонов в минуту, поэтому проведите прямую линию примерно от 4 галлонов в минуту. Теперь с левой стороны проведите горизонтальную линию примерно на расстоянии 6,5 футов от головы.Там, где пересекаются две ваши линии, находится ваша цель для накачки. Для того, чтобы насос мог удовлетворить ваши потребности, ваша целевая точка насоса должна находиться под линией, показанной как кривая насоса. Если мы посмотрим на кривую насоса 007, он может составлять до 11 футов напора при нулевом расходе и может двигаться до 23 галлонов в минуту при нулевом напоре. Если бы нам потребовалось 10 галлонов в минуту на высоте 10 футов, насос 007 не смог бы этого сделать, мы находимся за пределами характеристики насоса. Нам нужно всего 4 галлона в минуту на высоте 6,5 футов, чтобы 007 легко справился со своей задачей.Мы также могли бы использовать 008 и при необходимости преодолеть больше напора. Выбирая насос, вы хотите, чтобы он был достаточно большим, но не слишком большим. Если бы вы использовали 0013 на петле Гэри, вы бы потратили энергию на работу более мощного двигателя и, возможно, подняли бы нашу скорость потока выше, чем наша безопасная зона 4 фута / с. В системе Гэри его фактическая скорость потока будет выше 4 галлонов в минуту, поскольку насос всегда будет проталкивать столько воды, сколько сможет, через контур. По мере увеличения скорости потока увеличивается и падение давления (в футах напора), и поэтому здесь мы можем фактически получить 6 или 7 галлонов в минуту через контур, что означает только то, что наша вода будет возвращаться более теплой в наружную печь.
Высота
Еще одна вещь, о которой следует помнить, — это то, насколько высоко вам нужно поднять воду в трубопроводной петле. Если ваш трубопровод поднимается выше уровня воды в наружной печи, вам нужно добавить один фут напора на каждый фут, который ваша труба выше, чем уровень воды в печи. Это необходимо только для заполнения системы, так как после заполнения трубы вес воды в трубе, идущей вниз, компенсирует дополнительный толчок, необходимый для подъема воды. Если бы у нас был водонагреватель под потолком, который был бы на 15 футов выше, чем уровень воды в печи, мы бы никогда не забрали туда воду с помощью нашего насоса 007.Распространенное заблуждение состоит в том, что если ваш трубопровод идет выше расширительного вентиляционного отверстия на вашей наружной печи, вода будет вытекать из верхней части вашего расширительного вентиляционного отверстия. Это может случиться, но предотвратить это очень легко. Если у нас есть блочный нагреватель на 15 футов выше, чем вентиляционное отверстие на наружной печи, мы обычно устанавливаем вентиляционное отверстие в самой высокой точке трубопровода, где вода направляется вниз. Если размер нашего насоса соответствует требованиям, мы сможем закрыть клапан на возвратной линии, а при работающем насосе открыть ручной воздушный клапан и удалить весь скопившийся там воздух.Если насос выключается, а вентиляционное отверстие закрывается, вода будет «зависать» в системе, и во всех трубопроводах будет отрицательное давление, которое выше уровня воды в печи. Если после этого было открыто вентиляционное отверстие, воздух попал бы в вентиляционное отверстие и позволил воде стекать обратно в печь. Если бы печь была полностью заполнена, вода выталкивалась бы из расширительного отверстия печи.
Домашнее водяное отопление
Использование уличной печи для нагрева горячей воды для бытового потребления — это еще один способ сократить расходы на электроэнергию.Эти компоненты часто окупаются быстрее, чем любая другая часть системы отопления. Паяные пластинчатые или кожухотрубные теплообменники компактны, безопасны и обеспечивают очень высокую скорость теплопередачи. Перед включением одного из этих агрегатов в систему бытового водоснабжения необходимо учесть несколько моментов. а) Какой тип жидкости используется в вашем наружном контуре печи? Если это чистая вода или нетоксичный гликоль, вы в хорошей форме. Если вы используете какой-либо другой тип антифриза (автомобильный или этиленгликоль) или какие-либо добавки, которые могут быть вредными для потребления человеком, вам необходимо внести некоторые изменения.Хотя теплообменники предназначены для разделения теплоносителя и бытовой воды, утечка все же возможна. Каким бы маловероятным это ни было, особенно при использовании уличной печи в открытой системе, утечка может привести к смешению теплоносителя с бытовой водой. Если вы используете неподходящую жидкость, это может нанести вред людям или животным, потребляющим эту воду для бытовых нужд. б) У вас есть «жесткая» вода? Если у вас возникли проблемы с чрезмерными отложениями минералов на кранах и другой сантехнической арматуре, вы также можете столкнуться с проблемами из-за отложений в пластинчатом теплообменнике.На схеме установки показаны промывочные порты для этой цели, но вы не хотите делать это очень часто, поскольку это требует дополнительного времени и оборудования. Вы можете изучить фильтр или средство для смягчения воды, чтобы сделать этот вариант более удобным для пользователя.
Трубопровод пластинчатого теплообменника для нагрева бытовой воды
Пластинчатый теплообменник обычно является первым компонентом первичного контура после насоса. Важно установить теплообменник так, чтобы самая длинная сторона была вертикальной, чтобы воздух мог беспрепятственно выходить.При подключении трубопровода убедитесь, что теплоноситель и вода для бытового потребления проходят через теплообменник в противоположных направлениях. На схемах это указано стрелками на блоке. По возможности позвольте стороне теплоносителя перекачиваться через пластину, а воде для бытового потребления стечь вниз. Бытовая система работает при более высоком давлении, и ей легче спустить воздух вниз и из пластин. На бытовой стороне теплообменник подключен последовательно с баком для горячей воды.
В работе (см. «Схема промывки тарелки»)
При использовании уличного котла шаровые краны 7A и 7B должны быть ОТКРЫТЫ. Клапан 7C между двумя тройниками должен быть ЗАКРЫТ. Это заставит воду для бытового потребления проходить через теплообменник до того, как она попадет в резервуар для горячей воды. При правильной работе вода должна выходить из теплообменника с температурой выше, чем заданная температура бака горячей воды для элементов или горелки. Резервуар с горячей водой не должен гореть, если вода не используется в течение длительного периода времени.В этом случае резервуар будет медленно отдавать тепло в комнату, и резервуар будет гореть, чтобы поддерживать желаемую температуру и быть готовым к использованию в любое время. Если вам нужно обойти теплообменник на бытовой стороне, вы можете закрыть клапан 7A или 7B и открыть клапан 7C. НЕ закрывайте одновременно 7A и 7B. Это может вызвать чрезмерное повышение давления в пластинчатом теплообменнике, что может привести к преждевременному выходу из строя.
Промывка теплообменника
Если вы замечаете плохие температурные характеристики пластинчатого теплообменника, это может быть вызвано чрезмерным накипью (минеральными отложениями) на пластинах теплообменника.В этом случае внутреннюю сторону устройства можно промыть средством для удаления накипи, чтобы удалить эти отложения. Проконсультируйтесь с производителем теплообменника по поводу подходящего решения, используемого для этой цели. Небольшой насос-пони, три коротких (от 6 до 8 футов) куска садового шланга и ведро объемом 5 галлонов хорошо подойдут для этого проекта. Некоторые компании также производят удобные «тележки для промывки» со всем этим оборудованием, готовым к работе.
Промывка теплообменника
См. «Схема промывки тарелки».
1 — Перед промывкой закройте шаровые краны 7A, 7B и 7C.
2 — Слейте воду из теплообменника, открыв отстойники 5A и
5B.
3 — Наполните ведро приблизительно на половину рекомендованным промывочным раствором. Навинтите
один конец короткого садового шланга на отстойник 5A, а другой конец — на 5B.
Присоедините противоположный конец шланга от 5A к выпускному отверстию «пони» насоса и
шланг от 5B подайте в ведро. Третий шланг присоединяется к входу насоса
«пони», а другой конец погружается в жидкость в ведре.
4 — Откройте отстойники 5A и 5B. Запустите насос «пони» и дайте ему
циркулировать раствор через теплообменник в течение времени
, рекомендованного производителем.
5 — Переверните шланги на отстойниках 5A и 5B и закачайте жидкость в противоположном направлении
через пластинчатый теплообменник, чтобы удалить как можно больше накипи
.
6 — Эту процедуру, возможно, придется повторить несколько раз, чтобы избавиться от всех отложений.
После того, как теплообменник будет полностью очищен, необходимо смыть чистящий раствор
с пластинчатого теплообменника.Это необходимо делать осторожно, чтобы не допустить загрязнения бытовой воды промывочным раствором
.
1 — Сначала закройте отстойники 5A и 5B. Шланг, присоединенный к отстойнику 5B
, следует вывести в пустое ведро.
2 — Откройте отстойник 5B и дайте раствору стечь в ведро.
3 — Медленно откройте шаровой кран 7A на линии бытовой воды, питающей теплообменник.
Это позволит смыть раствор для удаления накипи в ведро. Позвольте этому смыть несколько ведер с водой
.Обязательно утилизируйте промывочный раствор в соответствии с инструкциями производителя.
4 — Закройте шаровой кран 7A и отстойник 5B. Протяните шланг от сборщика отстойника
5A в ведро.
5 — Открыть отстойник 5A, шаровой кран 7C и 7B. Это промоет теплообменник
пресной водой в обратном направлении. Позвольте этому смыть несколько ведер с водой.
6 — Повторяйте шаги с 1 по 5, пока не убедитесь, что весь раствор средства для удаления накипи
удален.
7 — Закройте все клапаны, снимите шланги и верните шаровые клапаны в желаемое рабочее положение
.Опять же, обязательно утилизируйте промывочный раствор в соответствии с инструкциями производителя
.
Иллюстрации
Иллюстрация Справочная информация по деталям
Воздухообрабатывающий агрегат
Типичный кондиционер, который может быть установлен в гараже, мастерской, сарае или теплице.
Нагреватель блока
Типовой нагреватель блока, который может быть установлен в гараже, мастерской, сарае или теплице.
Резервный электрический котел (переключение вручную)
Чтобы перейти от использования наружной печи к резервному котлу, просто поверните трехходовой шаровой клапан на входе насоса первичного контура в противоположном направлении.Это предотвратит нагрев наружной топки резервным котлом. Убедитесь, что наружная печь была должным образом отключена, как указано в руководстве пользователя, и что у вас есть достаточное количество гликоля в системе для предотвращения замерзания наружных трубопроводов. Если наружная печь все еще работает, а трехходовой клапан находится в положении резервного котла, это может вызвать перегрев наружной печи и, возможно, выкипание. Если резервный котел менее экономичен в эксплуатации, чем водонагреватель, теплообменник воды для бытового потребления должен быть отключен, как описано на стр. 19 «Работа», чтобы водонагреватель мог удовлетворить свои потребности.Убедитесь, что на резервном бойлере установлен расширительный бак под давлением надлежащего размера, чтобы приспособиться к расширению / сжатию в системе. Это очень важно. Если клапаны, идущие к наружной печи, закрыты, расширение жидкости должно куда-то идти, иначе в системе может произойти разрыв.
Термостатические смесительные клапаны: применение в водопроводе и водяном отоплении
Термостатический смесительный клапан для жилых помещений
Термостатические смесительные клапаны для водопровода или водяного отопления? Что ж, оказывается, они подходят и для того, и для другого.Такой же клапан используется в системе горячего водоснабжения, а также регулирующий клапан для систем водяного отопления. Это делает эти важные элементы оборудования настоящими рабочими лошадками для механической промышленности, кроссовером, который одинаково важен для обоих секторов.
Термостатические смесительные клапаны используются в жилых, коммерческих и институциональных системах как для водопровода, так и для водяного отопления. Основная функция этих клапанов — регулировать температуру воды на выходе либо в систему горячего водоснабжения, либо обеспечивать подачу низкотемпературной воды в систему водяного теплого пола.Часто один и тот же физический клапан может использоваться для обоих приложений.
Однако существует множество различных типов, размеров и конфигураций клапанов, которые предназначены для конкретных применений. Что касается водопровода, существует множество уникальных применений, требующих очень специфических термостатических клапанов. Для большинства гидравлических систем термостатические клапаны обычно представляют собой трехходовые клапаны, используемые для малых и средних проектов.
Изменения в правилах водоснабжения, принятые в большинстве юрисдикций Канады, теперь требуют контроля температуры горячей воды с помощью термостатических смесительных клапанов.Температура воды не должна превышать 49 ° C (120 ° F), подаваемая на все приспособления. Для этого необходимо, чтобы смесительный клапан, сертифицированный по стандарту CSA CAN / CSA B125-01, был установлен на распределительной линии горячей воды как можно ближе к верхней части бака водонагревателя и на заводе был установлен на 49 ° C.
Если условия площадки, такие как длинные участки трубопровода, могут привести к тому, что температура воды, подаваемой в кран, будет значительно ниже 49 ° C, то вместо клапана, устанавливаемого в точке использования, должен быть установлен смесительный клапан, сертифицированный по стандарту CSA B125-01. танк.
Чтобы понять эти требования норм, важно понять, почему контроль температуры так важен в системе горячего водоснабжения. Термостатический смесительный клапан обеспечивает важные преимущества безопасности и комфорта для жителей здания. Бытовое горячее водоснабжение потенциально подвергает жильцов здания двум очень специфическим опасностям: угрозе ожога из-за чрезмерно горячей воды и возможности роста бактерий Legionella.
Ошпаривание от воздействия очень горячей воды приводит к разрушению клеток кожи, а иногда и нижележащих структур мышц.Ошпаривание может вызвать такие же опасные ожоги, как и ожог от огня. Исследования показали, что ожоги горячей водой могут возникнуть за считанные секунды — даже меньше для маленьких детей с тонкой нежной кожей. Кроме того, медленное время реакции пожилых людей и инвалидов делает их особенно уязвимыми для серьезных ожогов горячей водой.
Температура воды 60 ° C (140 ° F) может вызвать ожог третьей степени у взрослых за пять секунд, а у детей от 0 до пяти лет за три секунды. Во избежание ожогов в растворе поддерживайте температуру воды ниже 49 ° C.
Болезнь легионеров — это разновидность пневмонии, которую вызывает обычная бактерия Legionella. И болезнь, и бактерия были впервые обнаружены в 1976 году, когда вспышка на съезде Американского легиона привела к 29 смертельным случаям.
Когда легионелла попадает в водопроводную систему, эти бактерии могут быстро размножаться. Температура воды от 20 ° C (68 ° F) до 49 ° C (115 ° F) в бытовой системе водоснабжения обеспечивает идеальные условия для роста бактерий. Бактерия существует внутри труб и часто встречается в накипи и отложениях в резервуарах водонагревателя.Наиболее широко распространенный и предпочтительный метод предотвращения Legionella — постоянное поддержание температуры хранения в системе горячего водоснабжения на уровне 60 ° C (140 ° F) или выше, но не ниже 55 ° C (131 ° F).
Так что же делать? Уменьшите температуру водонагревателя до более низкой температуры, чтобы предотвратить опасное ожог, но есть риск роста бактерий? Увеличьте температуру, чтобы предотвратить рост бактерий Legionella, но рискуете обжечься? Ни то ни другое — не лучший выбор.
Смесительный клапан системы установлен на выходе из резервуара
Теперь легко понять, почему водопроводный кодекс требует использования термостатического смесительного клапана.Это идеальный способ решить обе эти серьезные проблемы и предоставить конечному пользователю удобную и безопасную подачу горячей воды.
Термостатический смесительный клапан нейтрализует обе угрозы, позволяя настроить водонагреватель на достаточно высокую температуру, чтобы снизить угрозу роста бактерий, но при этом смешивающее действие поддерживает соответствующую температуру воды на выходе из светильников и позволяет жильцам пользоваться раковинами, душ или ванна с меньшим опасением ошпаривания.
Дополнительным преимуществом для конечного пользователя при использовании смесительного клапана является большая полезная емкость горячей воды.Когда вода хранится при более высокой температуре 60 ° C, а затем смешивается с ней до 49 ° C на выходе, в результате увеличивается полезная подача горячей воды примерно на 50 процентов по сравнению с простым поддержанием в баке температуры 49 ° C. Это приводит к превращению емкости 40-галлонного бака в эквивалент 60-галлонного бака. Это большее количество горячей воды, подаваемой из резервуара, означает, что у конечного пользователя меньше вероятность того, что горячая вода закончится.
Существует два основных типа термостатических смесительных клапанов, используемых в водопроводных системах.Системное устройство предназначено для ограничения температуры воды в источнике горячей воды для раздачи в водопровод и устанавливается рядом с выходом водонагревателя. Системные клапаны доступны в широком диапазоне размеров для жилых и коммерческих помещений от ¾ дюйма до 3 дюймов.
Некоторые производители выпускают комплекты резервуаров для жилых помещений, которые включают смесительный клапан, соединительную арматуру и гибкую байпасную линию для холодной воды. Эти комплекты упрощают подключение к верхней части обычного водонагревателя резервуарного типа.
Устройство в месте использования предназначено для ограничения температуры воды одним или несколькими приборами. Обычно его прикрепляют непосредственно к душевой кабине или под раковиной, чтобы контролировать температуру воды и обеспечивать защиту от ожогов.
Существует специальный тип аварийного термостатического смесительного клапана, который специально разработан для подачи теплой воды при аварийном промывании глаз или при смывании душа. Текущий стандарт ANSI требует экстренной промывки глаз и обливания водой для подачи теплой воды в течение 15 минут.Это гарантирует, что пользователь не подвергнется воздействию очень холодной воды и, возможно, переохлаждения, или очень горячей воды ошпаривания.
Комплект смесительного клапана для бытового резервуара с датчиком температуры
В системах водяного отопления термостатический смесительный клапан представляет собой простое решение для подачи более низких температур подаваемой воды в систему водяного теплого пола в жилых и небольших коммерческих помещениях. Когда излучающий пол с подогревом сочетается в одной системе с системами распределения с более высокой температурой, такими как фанкойлы или радиаторы плинтуса, необходим смесительный клапан.
Смесительный клапан позволяет настроить источник тепла (бойлер или водонагреватель) на более высокую температуру для удовлетворения высоких температурных нагрузок, а затем снабдить радиационный контур водой с более низкой температурой через смесительный клапан.
Примером может служить очень распространенная гибридная система с лучистым подогревом пола в подвале и фанкойлом для обогрева верхних этажей. Это двухтемпературная система с излучающим полом большой массы, обычно требующим температуры подаваемой воды от 35 ° C до 45 ° C, и фанкойлом, требующим гораздо более высокой температуры от 65 ° C до 75 ° C.Если вы попытаетесь установить только одну температуру в обе зоны, вы создадите большие проблемы. При высокой температуре подачи вы резко перегреете пол, что приведет к потенциальному повреждению или затруднению контроля тепловой мощности. При низкой температуре подачи вы не получите достаточной тепловой мощности от фанкойла.
Решение состоит в том, чтобы разделить систему на два контура с двумя насосами и одним термостатическим смесительным клапаном (см. Схему трубопроводов). Фанкойл будет получать воду с высокой температурой непосредственно от источника тепла, а теплый пол будет получать воду с более низкой температурой, поступающую от термостатического клапана.
Очень важно убедиться, что циркуляционный насос для излучающего контура установлен после смесительного клапана, иначе вы не получите достаточного потока через излучающие контуры. Помните, что вода всегда будет идти по пути наименьшего сопротивления, и если насос находится перед термостатическим клапаном, она будет течь прямо через клапан, а не по контурам.
Термостатический смесительный клапан для теплого пола
Также важно никогда не пытаться заставить эту систему работать только с одним насосом для обеих нагрузок.Держите нагрузки отдельно, чтобы обеспечить необходимый поток для обеих сторон. Используйте пружинные обратные клапаны на обеих линиях подачи, чтобы предотвратить термосифонирование в зонах над механическим помещением. Чтобы обеспечить точность настройки температуры, убедитесь, что температура горячей воды, подаваемой к смесительному клапану, по крайней мере на 5 ° C (10F) выше, чем желаемая температура смешанной воды.
Добавление системы лучистого теплого пола в подвале к водонагревателю — очень популярный вариант для многих домов. Что не может не понравиться тёплому уютному лучистому отапливаемому подвалу? Даже при использовании только этого однотемпературного контура излучающего теплого пола по-прежнему очень важно иметь термостатический клапан.Согласно правилам, требующим, чтобы температура воды в водонагревателе поддерживалась на уровне 60 ° C, температура воды должна быть понижена до того, как она попадет на пол. Поэтому очень важно установить термостатический клапан перед насосом излучающего теплого пола.
Основная функция термостатического смесительного клапана в системах отопления — регулирование температуры воды на стороне подачи в распределительной системе, но во многих системах это не единственная функция смесительного устройства. В системах, использующих «обычные» котлы без конденсации, термостатический смесительный клапан также может гарантировать, что температура обратной линии котла остается достаточно высокой для предотвращения постоянной конденсации дымовых газов.
При использовании для этой цели смесительного клапана часть горячей воды смешивается с более холодной водой, возвращающейся из распределительной системы, смесь направляется обратно в котел. Цель состоит в том, чтобы повысить температуру на входе в котел до уровня, достаточного для предотвращения конденсации дымовых газов, что обычно означает выше 55 ° C (131 ° F). Такое повышение возвратной воды никогда не требуется для конденсационного котла, и с учетом того, что сегодня устанавливается все больше и больше конденсационных котлов, такое применение больше не будет встречаться очень часто.
Двухтемпературная гидронная система с термостатическим смесительным клапаном
Для термостатических смесительных клапанов используются три основных технологии: технология восковых элементов, биметаллическая лента и технология наполнения жидкостью. Наиболее распространенным типом, применяемым в жилых и небольших коммерческих помещениях, как для водопровода, так и для отопления, является технология восковых элементов. Восковый элемент с небольшим количеством движущихся частей обеспечивает высокую точность, быструю реакцию и чрезвычайно долгий срок службы.
Термостатический смесительный клапан использует три основных компонента для своей работы: какой-то шпиндель или вал, термоэлемент и возвратную пружину.Возвратная пружина обеспечивает возвратную силу вверх к термоэлементу. Термоэлемент действует как подвижный блок, который реагирует на изменения температуры, открывая отверстия для изменения потока воды между входами горячей и холодной воды.
При использовании темперированной воды термоэлемент определяет температуру на выходе и устанавливает узел седла, который регулирует поток горячей и холодной воды, подаваемой в канал смешанной воды. Если смешанная температура на выходе увеличивается, термостат расширится, перемещая узел седла, чтобы впустить больше холодной воды и в то же время ограничивая входное отверстие для горячей воды.
И наоборот, если смешанная температура на выходе уменьшается, термостат сжимается, пропуская больше горячей воды и ограничивая входное отверстие для холодной воды. В обоих случаях температура смешанной воды на выходе автоматически и постоянно поддерживается на уровне заданной температуры. Большинство клапанов имеют функцию безопасности, которая перекрывает входной порт для горячей или холодной воды в случае отказа подачи холодной или горячей воды.