Расчет объема земляных работ: Как производится расчет объема земляных работ для траншеи?

Содержание

Подсчёт объёмов земляных работ

Пользовательское соглашение

ООО «Дженерал Смета», именуемое в дальнейшем Исполнитель, предлагает на изложенных ниже условиях любому юридическому или физическому лицу, именуемому в дальнейшем Клиент, услуги по безвозмездной передаче информационных email-сообщений.

1. Термины и определения

1.1 Информационное email-сообщение – (далее – email-сообщение) – электронное письмо, отправленное Исполнителем Клиенту на его email-адрес.

1.2 Тематика сообщений – (далее – тематика) – информационное содержание email-сообщения:

1.1.1 Акции и специальные предложения касающиеся ПК «Smeta.RU».

1.1.2 Акции и специальные предложения касающиеся ПК «Система ПИР».

1.1.3 Акции и специальные предложения касающиеся официального учебного центра Исполнителя.

1.1.4 Новости и изменения касающиеся ПК «Smeta.RU».

1.1.5 Новости и изменения касающиеся ПК «Система ПИР».

1.1.6 Новости и изменения касающиеся официального учебного центра Исполнителя.

1.1.7 Новости и изменения касающиеся ценообразования в строительстве и проектировании.

1.3 Периодичность сообщений – (далее – периодичность) – средняя частота рассылки email-сообщений составляет 1 сообщение в неделю, но не более 1 сообщения в день.

2. Предмет Соглашения

2.1.Предметом Соглашения является безвозмездное оказание Исполнителем Клиенту услуг по передаче email-сообщений. Каждому Клиенту отправляются сообщения всех Тематик, указанных в п.1.2.

3. Права и обязанности сторон

3.1. Исполнитель обязуется:

3.1.1. Оказывать Клиенту Услуги с надлежащим качеством в порядке, определенном настоящим Соглашением.

3.1.2. Сохранять конфиденциальность информации, полученной от Клиента.

3.1.3. Предоставить Клиенту возможность отписаться от рассылок полностью, или частично (изменить тематику email-сообщений).

3.1.4. Немедленно прекратить рассылку email-сообщений в адрес Клиента, в случае его отказа от рассылки таких сообщений.

3.1.5. Изменить тематику email-сообщений по требованию Клиента.

3.2. Исполнитель вправе:

3.2.1. Прекратить, или приостановить оказание Услуг в любой момент, не уведомляя об этом Клиента.

4. Гарантии и конфиденциальность

4.1. Исполнитель имеет право раскрывать сведения о Клиенте только в соответствии с законодательством РФ.

4.2. Исполнитель прилагает все возможные усилия по защите, безопасному хранению и неразглашению конфиденциальной информации Клиента.

4.3. Исполнитель осуществляет сбор, хранение, обработку, использование и распространение информации в целях предоставления Клиенту необходимых услуг.

4.4. Исполнитель не продает и не передает персональную информацию о пользователях сервиса. Исполнитель вправе предоставлять доступ к персональной информации о Клиенте в следующих случаях:

4.4.1. Клиент дал на то согласие;

4.4.2. этого требует российское законодательство или органы власти в соответствии с предусмотренными законами процедурами.

5. Ответственность и ограничение ответственности

5.1. За неисполнение или ненадлежащее исполнение настоящего Соглашения Стороны несут ответственность в соответствии с законодательством РФ.

6. Расторжение и изменение условий Соглашения

6.1. Заключение настоящего Соглашения производится в целом, без каких-либо условий, изъятий и оговорок.

6.2. Фактом принятия (акцепта) Клиентом условий настоящего Соглашения является отправка своего email-адреса Исполнителю посредством специальной электронной формы на сайте Исполнителя.

6.4. Настоящее Соглашение, при условии соблюдения порядка его акцепта, считается заключенным в простой письменной форме.

6.5. Соглашение вступает в силу незамедлительно.

6.6. Исполнитель оставляет за собой право периодически изменять условия настоящего Соглашения, вводить новые Приложения к настоящему Соглашению, не публикуя уведомления о таких изменениях на сайте Исполнителя.

Расчет объема земляных работ при устройстве котлована

Котлован — это выемка в грунте, предназначенная для закладки фундамента под различные сооружения.

Целесообразность использования котлована определяется видом и назначением будущего сооружения. Например, если фундаментом вашего дома будет монолитная железобетонная плита или вы предусматриваете цокольный этаж, то необходимо рытье котлована. В остальных же случаях лучше и дешевле использовать траншеи (под ленточный фундамент) или небольшие ямки (для столбчатого фундамента).

Содержание:

1. Калькулятор

2. Инструкция к калькулятору

Для удобства выполнения работ по устройству фундамента котлован вырывается с запасом, то есть он должен быть шире на 600-800 мм по периметру от внешней границы будущего фундамента.

Ниже представлен калькулятор расчета объема земляных работ при устройстве котлована. С его помощью вы можете определить не только объем земляных работ, но и общую стоимость копания и вывоза грунта.

Калькулятор

Инструкция к калькулятору

Для того, чтобы произвести расчет вы должны заполнить левую часть калькулятора (исходные данные):

Периметр котлована (Р) — определяется как сумма всех сторон котлована по его верху. К примеру на представленном рисунке P=P1+P2+P3+P4+Р5+P6.

Площадь котлована (S) — имеется в виду площадь котлована по его дну.

Глубина котлована (H) — расстояние от поверхности земли до дна котлована.

Соотношение глубины котлована к длине откоса — это так называемая крутизна откоса котлована, которая в зависимости от вида грунта и глубины котлована имеет разные значения.

Стоимость копания и вывоза грунта — расценки подрядчиков в случаи их привлечения.

Расчет объемов земляных работ

Почему важно точное определение объемов земляных работ?

Служба заказчика одной инвестиционной компании попросила геодезистов помочь в подсчете объемов земляных работ. На строительную площадку производилась намывка грунта, и подрядчик объявил, что объем составил 100 тыс. кубов. Когда проверили достоверность расчетов, оказалось, что фактический объем не превышает 80 тыс. кубометров.

Это ощутимая разница, за которой стоят значительные и необоснованные расходы для заказчика.

Вот почему точный расчет земляных работ так важен.

Как рассчитывается объем грунта?

Например, как сделать расчет объема котлована с откосами, траншеи под фундамент или объем кучи песка?

Если форма поверхности сложная, применяют расчет с использованием триангуляции. Суть его в следующем:

  1. куча фотографируется с разных ракурсов.
  2. по фотоснимкам создается модель местности в виде точек.
  3. из общего облака точек выделяются точки, составляющие кучу.
  4. из точек строится объемная триангуляционная модель.
  5. программным путем производится построение модели нижней поверхности фигуры
  6. вычисляется объем получившегося объемного тела.

Для проверки модель основания кучи и ее верхняя поверхность экспортируется в специализированное ПО для расчета контрольного объема.

Подсчет объемов работ с использованием триангуляции является наиболее точным.

В случае с котлованом рассчитывается объем выемки от проектного горизонта.

В этом случае задача упрощается, поскольку работать приходится с более простыми геометрическими формами. То же самое относится и к насыпи. Объемы рассчитываются по известным геометрическим формулам. При сложной конфигурации земляного сооружения его разбивают на более простые фигуры, объемы которых суммируют либо же пользуются вышеописанным приближенным методом расчета.

В строительной практике чаще всего приходится рассчитывать объем траншей, котлованов, складов, выполнять определение объемов земляных работ по вертикальной планировке площадок.

Выбор того или иного метода расчета определяется в каждом конкретном случае индивидуально, с учетом размеров и конфигурации сооружения, рельефа местности, способа производства земляных работ, а также исходя из требуемой точности расчетов.

В простейшем определение объема строительных работ можно выполнить самостоятельно.

Если же вам предстоит работать с более сложными объектами, заказать подсчет объемов земляных работ вы можете у нас, в компании «Инженерная геодезия».

Мы используем современное оборудование, благодаря которому достигается высокая точность вычислений. Камеральную обработку результатов топографической съемки производят опытные специалисты.

Стоимость расчета земляных работ можете уточнить в нашем перечне цен

Мы поможем вам профессионально решить все спорные вопросы, которые нередко возникают между заказчиком и исполнителем при определении объемов земляных работ.

Расчет объема земляных работ — ГК «РИТЦ»

Расчет объема земляных работ

Подсчет объема земляных масс, с которыми придется иметь дело в ходе строительства, — важный элемент общего планирования работ. От правильного определения масштабов привлекаемых ресурсов зависит многое – сроки, стоимость, рентабельность и т.д.

Казалось бы, вычислить объем фигуры с заданными сторонами может любой старшеклассник. Однако практика наглядно показывает, что к вычислению подобного рода нужно относиться очень внимательно и ответственно, а выполнять эту работу должны хорошо подкованные профессионалы.  

Нюансы безошибочных вычислений

Предположим, перед вами стоит задача – организовать рытье котлована под фундамент. Хорошо, если он строго прямоугольной формы – достаточно просто перемножить длины сторон, чтобы определить объем. 

Но как быть, если это котлован сложной формы? Что если он предусматривает закругленные сегменты, откосы, непрямые углы, призмы, усеченные пирамиды? А при этом еще имеются запланированные и естественные перепады рельефа?

Именно для таких случаем предусмотрены особые методики и формулы, разработанные специально для подсчета объема земляных работ. Эти методы – инструмент профессионала, который с заданной точностью ответит на все вопросы и поможет спланировать необходимые ресурсы.

Есть и другие нюансы, которые не предусмотрены школьным учебником тригонометрии. Например, какой дополнительный объем заложить под песчаную подушку для ленточного фундамента? Как вычислить необходимые параметры для монтажа гидроизоляции.  

Выполнение этих расчетов должно быть безошибочным. Казалось бы, не страшно, если при строительстве коттеджа вам не удалось точно запланировать, сколько кубометров грунта нужно вывезти и на какой срок заказать грузовик. Но совсем другое дело, если речь о крупном проекте, где цена ошибки – это десятки и даже сотни дополнительных рейсов тяжелой техники.

Это лишь немногие примеры, которые наглядно демонстрируют необходимость заказать профессиональный расчет объема земляных работ.

У нас все точно!

Проведение учета земляных работ – одно из главных направлений в работе компании ЦМиГ, входящей в группу компаний РИТЦ. Наши специалисты имеют колоссальный многолетний опыт выполнения профессиональных вычислений на стройплощадках и карьерах Калужской области, а также Москвы, Тулы и других городов и областей России. Начальные расценки на расчет объема земляных масс представлены в прайс-листе. Ознакомьтесь с основными направлениями работы и обратитесь в наш офис, чтобы уточнить условия и окончательную стоимость.  

Наше кредо – профессионализм и точность. При этом мы всегда стремимся сделать работу не только хорошо, но и недорого.

На реализацию вашей цели будут работать лучшие специалисты, современные математические методики и мощные вычислительные комплексы. 

Почему без расчета не обойтись?

Проведение расчета объема земляных работ позволяет решать целый ряд стратегических задач, позволяя свести к оптимальным величинам общую стоимость проекта. Услуги профессиональной геодезической организации, в частности, позволят вам:

  • Подсчитать цену проведения грунтовых работ и узнать их длительность. Без этого не составить смету строительства, а работа требует точной планировки, а том числе и финансовой.

  • Подобрать наиболее целесообразные способы проведения земляных работ. Правильная организация сэкономит ваше время, деньги и силы.

  • Выяснить, какая техника и инструменты понадобятся для реализации задачи. Необходимые технические ресурсы всегда лучше готовить заранее.

  • Определить необходимость вывоза земли либо её перераспределения по участку в ходе обратных засыпок. Если есть возможность, лучше использовать грунт с пользой, чем тратиться на его вывоз.

  • Организовать систему вывоза грунта со строительного участка. Если грунт не понадобился на площадки, лучше избавиться от него быстро и по возможности дешево, чтобы не занимал полезное пространство.

Очевидно, что предварительная планировка объема земляных работ оптимизирует производственный процесс, позволяя экономить все задействованные ресурсы. 

Строго по выбранной методике 

Земляные сооружения достаточно легко классифицируются – они делятся на котлованы, траншеи и насыпи. Если с простыми формами метод определения объема понятен, но в случае сложно-составной конфигурации объекта инженеру нужно провести разбивку на более простые фигуры и затем суммировать значения.

Сложные и протяженные земляные сооружения разбиваются вертикальными плоскостями, чтобы образовались призматоиды. Их объем в свою очередь определяется через значения сторон поперечных сечений.

В случаях с насыпями на больших площадях необходимо выполнить разбивку сложной фигуры на 3- и 4-гранные призмы, стороны которых могут колебаться от 10 до 100 метров. 

Одно из ключевых понятий при подсчете объема земляных работ – углы откосов. На их величину влияют, прежде всего, два фактора – параметры грунта и глубина/высота сооружения. Например, для песка допустимый угол откоса при глубине в 150 см – 63 градуса. Подобные константы позволяют вычислить объем земляных работ с максимальной точностью. 

При расчете объема земляных масс необходимо учитывать и вспомогательные элементы и параметры – подъезды к объекту, площадки для разворота техники. Кроме того, в расчет принимаются факторы усадки грунта, недобора ковшом экскаватора и др.

 

Рассчитаем и распланируем!

Вы можете заказать услуги по учету объема земляных работ в компании ЦМиГ для объектов любой сложности и специфики. Начальные расценки представлены в нашем прайсе, окончательная цена определяется в соответствии с условиями работ. 

Будем рады видеть вас в нашем главном офисе в Калуге. Кроме того, для вашего удобства мы открыли представительство в Московской и Тульской областях. 

Мы готовы провести любые геодезические изыскания, в том числе подсчет объема земляных масс, на выгодных для вас условиях и максимально сжатые сроки. Доверьте задачу профессионалам – и получите превосходный результат!

Расчет объемов земляных работ — геодезическая фирма «Лимб»

Расчет объемов земляных работ относится к важным инженерно-геодезическим изысканиям. Он широко применяется в строительстве, прокладке различных инженерных сетей и систем водоснабжения. Эти расчеты необходимы проектировщикам во время разработки новых проектов и являются важными при контроле над работой подрядчика. Они являются важным звеном любого производственного процесса, где применяются любые земляные работы. К данному виду относятся работы, связанные с выработкой грунта в выемках и укладкой его в насыпи.

Цена:

от 100 руб

1 м3

Выезд в течение суток с момента подачи заявки
Выезжаем в любой день недели

Методы расчета объемов

Существует несколько способов определения объема проведения земляных работ. Для устройства котлованов и насыпей с четко определенными размерами расчет достаточно прост. В этом случае применяются обычные геометрические формулы. Если выемки грунта имеют сложную геометрическую форму, их необходимо разбить на более простые, произвести расчет каждой и затем суммировать полученные значения. При этом принимается, что объем грунта каждой фигуры определен плоскостями, а отдельные отклонения не слишком влияют на точность расчета. Для объектов большой площади или объектов, имеющих значительную протяженность (дамбы, плотины, дороги), расчеты объема производят более сложными методами. К ним относят методы трехгранных или четырехгранных призм и поперечников.

Знание точных объемов земляных работ необходимо для:

  • обоснования выбранных технологических методов производства и способов их выполнения;
  • определения необходимости транспортировки вынутого грунта или допустимость его распределения на территории будущего строительства;
  • определения стоимости и сроков выполнения всех этапов работы.

В большинстве случаев объемы разрабатываемого грунта измеряются кубическими метрами. Все производимые проектные работы ведутся, учитывая объемы грунта в плотном теле. При вычислении объема рыхлого грунта используют коэффициенты разрыхления. Если на строящемся объекте попадается большое количество разных видов грунта, то объемы подсчитываются по любому из них отдельно.

ООО «Лимб» производит расчет объемов земляных работ любой сложности, применяя для этого различные математические методы с использованием современных средств вычислительной техники.

В зависимости от типа строящейся конструкции, условий природного ландшафта и заданной точности расчетов инженеры компании выберут самый точный метод.

Во время проектирования строительного объекта специалисты могут произвести вычисления по рабочим чертежам. В процессе производства они сделают сами все необходимые замеры на местности и произведут точный подсчет.

Расчет объемов земляных работ — подсчет объема грунта котлована или траншеи

Земляные работы – трудоёмкий и сложный вид хозяйственной деятельности, связанный с большими затратами на реализацию. Определение сметной стоимости всего комплекса операций и составление календарного плана требует точного расчёта. Он основан на выполнении целого ряда подробных измерений и вычислений. Масса, объём грунта, удаляемого при устройстве траншей или котлованов, и другие факторы влияют на выбор техники, предназначенной для выемки и вывоза земли. Это также оказывает воздействие на уровень затрат. От вида и сложности выполняемых земляных работ напрямую зависят технические характеристики и специфические особенности применяемых машин.

Подготовка к выполнению расчёта объёма работ требует оценки естественного рельефа участка, предназначенного под застройку. Если он сложный и нуждается в изменениях, работа начинается с вертикального планирования, включающего выемку и перемещение грунта, а также его отсыпку и уплотнение.

К земляным работам относится:

  • Предварительное рыхление грунта.
  • Удаление его в отвал.
  • Строительство насыпей, в том числе с последующим уплотнением.
  • Рытьё каналов, траншей и котлованов, а также обратная деятельность, осуществляемая после планировки поверхности, уплотнения грунта, укладки трубопроводов и возведения фундаментов.
  • Выравнивание откосов и зачистка дна земляных сооружений.

Земляные работы часто выполняются на подготовительном этапе строительства зданий и других объектов. В этом случае подсчёт их объёма приобретает особое значение для определения даты ввода сооружений в эксплуатацию. Он осуществляется с учётом класса грунта в соответствии с требованиями нормативных документов.

Оценка объёма земляных работ

Расчёт финансовых затрат производится в последовательности, позволяющей минимизировать возможные погрешности при определении стоимости. Это обеспечивает рациональное использование наличных ресурсов и уменьшает объём замораживаемых средств, предназначенных для компенсации непредвиденных расходов.

Осуществление расчётов предполагает выполнение ряда действий:

  • измерение участка;
  • создание детального топографического плана в масштабе 1:500;
  • определение оптимального места размещения и закрепление репера;
  • привязка к местности и разметка участка в соответствии с проектом.

Выбор оптимального метода подсчёта зависит преимущественно от вида сооружения и необходимой точности расчёта. В основном применяются три способа:

  • аналитический;
  • графический;
  • комбинированный, графоаналитический.

Объём и массу разрабатываемого грунта почти всегда удобнее рассчитывать аналитическим способом. В процессе осуществляется разбивка участка на геометрические фигуры. Их объёмы рассчитываются и суммируются при использовании стандартных математических формул стереометрии. В результате специалисты получают максимально точные цифры.

Как ещё можно оценить объём

С определенной погрешностью выполнить подсчёт объёма грунта, который надо удалить из котлована или траншеи, можно используя онлайн калькулятор. При этом его функции не ограничиваются способностью расчёта прямоугольных объектов. Есть возможность посчитать массу грунта, изымаемого из круглого, а также многоугольного котлована с откосами.

Такой метод, на первый взгляд, позволяет обойтись без привлечения сторонних специалистов и снизить стоимость строительства, но высокая вероятность ошибки и большие допуски при вычислениях делают его рискованным. Поэтому расчёт объёма земляных работ и массы извлекаемого грунта должен производиться профессионалами, имеющими не только теоретический, но и практический опыт. В соответствии с проделанными расчётами определяется время, необходимое для разработки котлована или траншеи и производится определение сметной стоимости проекта. На этом предварительный этап можно считать завершённым.

Выполнение работ

Рациональное использование финансовых ресурсов предполагает периодические проверки размеров строящегося котлована и прокладываемой траншеи. Так обеспечивается контроль уже освоенного объёма земляных работ. Он позволяет оценить массу оставшегося грунта и узнать, соответствует ли реальный объём вычисленному. Осуществление регулярных контрольных измерений даёт возможность своевременно корректировать сметную стоимость строительства и определить дополнительные затраты, если это необходимо для сохранения темпа в соответствии с календарным планом. Таким способом можно избежать простоев, связанных с перерасходом или недостатком выделенных средств/материалов, выполнив весь объём работ точно в срок.

По окончании строительства объекта производится сверка реальных результатов с проектными. Снова подсчитывается количество земляных масс и осуществляется оформление необходимой документации. В комплект входит топографическая съёмка участка до начала строительства и после его завершения, карта расчёта количества грунта и картограмма подсчёта его реального объёма. Имея на руках все необходимые документы, можно убедиться в эффективности выполнения вычислений и качестве работ подрядчика.

Опытные специалисты компании «Топограф» обеспечат выполнение всех пунктов плана в точном соответствии с действующими нормами и правилами. Высококвалифицированные инженеры с помощью новейшего оборудования произведут необходимые замеры и расчёты, а также предоставят подробный отчёт заказчику. Достаточно сделать всего лишь один звонок, чтобы получить полноценную консультацию и узнать об услугах. Работаем в Киеве, области и во всех регионах Украины.

Расчет объема земляных работ | Сметный.ru

Весомую роль в стоимости строительства играет объем земляных работ. Это особенно касается устройства наружных инженерных сетей (теплотрассы, водопроводы), фундаментов зданий и сооружений и иных линейных и площадных объектов, требующих для своей реализации разработки грунта. Среди услуг нашей компании расчет объема земляных работ выведен отдельной позицией.

Учитывая современные темпы строительства, стремительные и динамичные, строительные организации — непосредственные исполнители работ, ощущают острую нехватку времени на подготовку документации. При этом неизбежно снижается точность оценки стоимости строительства, а значит и точность оценки рентабельности.

Если при расчетах штучных и длинномерных позиций данная проблема не столь остра, то при учете земляных работ она имеет большое значение.

Так, к примеру, должна быть разобрана в смете разработка грунта при строительстве линейного подземного сооружения за пределами города:

1. Снятие плодородного слоя почвы

2. Разработка основной породы

3. Обратная засыпка

Это лишь важнейшие этапы земляных работ.

При этом обязательно должны быть учтены:

Мощность плодородного слоя

Мощность и виды основной породы, т. к. возможно, что при разработке траншеи глубиной 3 метра, можно встретить 3-4 типа почв. Должно быть их как минимум 2: плодородный и основной. Разумеется, что вид почвы определяет категорию сложности грунта для его разработки и непосредственно влияет на стоимость земляных работ.

Все данные содержатся в проекте сооружения. Для точного расчета анализируется заключение о геологическом исследовании и проект трассы, включая профили.

Далее следует геометрия. Это расчеты всего множества фигур, послойно образующих саму выемку и объекты, размещаемые в траншее. Эти фигуры: трапеции, усеченные трапеции, пирамиды, усеченные пирамиды, циллиндры, паралеллепипеды, конусы, усеченные конусы, неправильные многоугольники и прочие. Все разнообразие их вызвано неравномерностью залегания почвенных слоев, проектными уклонами трассы, величинами откоса и глубиной залегания трассы на всей протяженности.

Сведения об отвалах земли полученные из проекта используются для определения стоимости перевозок грунта. При этом из технической части сборника земляных работ, в соответствии с данными геологического отчета, принимается плотность грунта (для расчета массы) и коэффициент разрыхления.

Мероприятия по рекультивации земель, при отсутствии для них соответствующего раздела проекта учитываются в основной смете в составе земляных работ. Они включат в себя некоторые культивационные мероприятия и, возможно, посев определенных культур или многолетних трав.

Точный расчет земляных работ, принимая во внимание все вышеперечисленные факторы и некоторые, не вошедшие в список, но возможно возникающие, при рассмотрении конкретного случая, требуют от сметчика собранности, абсолютной внимательности и выдержки, и конечно же времени, которое так дорого и всегда на счету.

Наша компания поможет вам, даже при наличии сметчиков в вашем штате, произвести точный расчет объема земляных работ, не упустив из вида ни одной детали. Так же он будет всегда обоснован, и окончательные результаты будут переданы вам вместе с описанием расчета. При этом цена расчета, проводимого нашей компанией является весьма выгодной для вас.

Как рассчитать выемки и насыпи для проектов земляных работ

Третий метод, который обычно используется для расчета объемов земляных работ, — это метод треугольных призм. Это, безусловно, наиболее технически сложный метод, но он также и самый точный.

Этот метод начинается с триангуляции существующей местности. Это включает в себя соединение точек на местности для создания непрерывной поверхности из соединенных треугольников. Это называется триангулированной нерегулярной сетью или сокращенно TIN.Этот шаг повторяется для предложенного ландшафта.

Следующим этапом является объединение этих двух триангуляций для создания третьей триангуляции, которая содержит все ребра исходных триангуляций. Это будет использоваться для выполнения расчетов, а объединение двух входных триангуляций означает, что каждая деталь как существующей, так и предлагаемой будет включена в расчеты. Это основа точности этого метода.

Последний этап — вычисление выемки и насыпи каждой вершины на расчетном TIN.Эти значения можно использовать для расчета выемки и насыпи для каждого треугольника, а общие объемы легко получить, сложив все треугольники вместе.

Из-за большой сложности этих вычислений и тысяч треугольников, которые генерируются, нецелесообразно вычислять треугольные призмы вручную. Вместо этого эти расчеты выполняются с помощью специального программного обеспечения, такого как Kubla Cubed. Однако следует отметить, что не все программное обеспечение для земляных работ использует этот метод; некоторые программные расчеты основаны на автоматических расчетах сетки с высокой плотностью или на методе поперечного сечения, используемом в сочетании с TINS.

У метода треугольной призмы есть несколько больших преимуществ. Прежде всего, этот метод является наиболее математически полным из трех. Поскольку каждая деталь существующего и предлагаемого ландшафта сохраняется в объединенной триангуляции, в этих вычислениях ничего не теряется, тогда как все другие методы допускают определенную степень потерь из-за деталей, попадающих в пределы плотности сеток или поперечных сечений.

Еще одним преимуществом этого метода является то, что вы можете представить самый высокий уровень детализации, даже если сайт очень большой.Используя методы сетки и поперечного сечения, вы должны определить плотность квадратов или секций сетки, и любая деталь, находящаяся в пределах этого интервала, может быть потеряна. С другой стороны, с помощью метода треугольной призмы можно отобразить самый тонкий уровень детализации даже на очень больших участках, поскольку высокая плотность треугольников в одной области не оказывает такого влияния, которое требует наличия других участков участка. та же деталь. Это означает, что даже на очень большом участке вы можете изобразить небольшую траншею без потери точности.

Оценка объемов земляных работ | Подрядчик по планированию и земляным работам

Формулы и методы определения объемов и площадей правильных форм и поверхностей восходят, по крайней мере, к древней Греции. Пифагор и другие математики определили те формулы, которые до сих пор используются для вычисления объемов сфер и пирамид, а также площадей конических сечений кривых. Но то, что было для греков вопросом мистической философии, для подрядчиков земляных работ было вопросом финансовой жизни или смерти.Это не преувеличение. Точная оценка объемов и площадей земляных работ важна для подрядчика как для подачи точного предложения, которое может привести к заключению контракта, так и для надлежащего управления ресурсами, выделенными для проекта, чтобы он показал прибыль. Поскольку в любом оценочном расчете земляных работ есть неотъемлемая ошибка, подрядчик должен должным образом управлять возникающими неизвестными, чтобы гарантировать успех проекта.

Источники ошибок измерения — карта — это не местность
«Чем точнее карта, тем больше она напоминает территорию.Самая точная карта — это территория, поэтому она будет совершенно точной и совершенно бесполезной ». — Нил Гейман

Фотографии: 3D-вид Trimble
, визуализированный с помощью Timble Software

Ничто не является точным на 100%. Ни измерения, ни карты, ни плана, ни диаграммы. Да и быть не должно. Они используются только в зависимости от того, насколько хорошо они соответствуют реальной местности или структуре, которые они представляют. Однако, зная, что это правда, мы должны принять во внимание последствия этого внутреннего несовершенства измерений, полученных на карте.И для этого мы должны понимать источники потенциальных ошибок и минимизировать их в максимально возможной степени, сохраняя при этом полезную модель рассматриваемого сайта.

Освойте все, от правил OSHA до высокотехнологичного оборудования для обеспечения безопасности, в этом БЕСПЛАТНОМ специальном отчете: «Темы безопасности строительства, которые могут спасти жизни». Загрузите прямо сейчас!

Каковы источники погрешности измерения? Начните с самого первоначального обследования. Существует три широких категории первоначальной ошибки инспектора: инструментальная, личная и естественная.Ошибка прибора возникает из-за фактического несовершенства изготовления самого геодезического инструмента или из-за первоначальной настройки геодезиста при настройке прибора. Даже простые геодезические инструменты, такие как измерительные ленты, могут подвергаться воздействию температуры окружающей среды, в результате чего лента оказывается длиннее или короче, чем должна быть. Личная ошибка возникает из-за того, что инспектор всего лишь человек. Человеческое зрение и память несовершенны, что может привести к неправильному чтению или ошибочной записи полевых измерений.Как упоминалось выше, тепло может повлиять на измерения, и это только один источник естественной ошибки. К другим источникам естественной погрешности относятся влажность, сила тяжести, ветер, рефракция, кривизна выравнивания площадки и магнитное склонение, все из которых могут повлиять на съемочные приборы.

Но даже до появления ошибок в полевых измерениях сама основа обследования может быть ошибочной. Это ранее установленные эталоны, которые привязывают всю съемку площадки к местным топографическим данным и самому реальному миру.Все контрольные показатели, расположенные рядом с сайтом, должны быть проверены перед исследованием на точность и достоверность. В идеале, три каждого «третьего порядка» (с наивысшей установленной точностью) должны служить основой для наземного исследования, но по крайней мере один такой эталон необходим. Если нет другого варианта, обследование может основываться на «относительном ориентире», таком как угол здания или крышка люка. Присвоение такой точке произвольной высоты, например 100 футов, может позволить измерить высоту относительно этого импровизированного ориентира.Но этот специальный подход по своей сути менее точен и никогда не должен использоваться для обследований критически важных объектов.

Добавьте Grading & Excavation Contractor Weekly в свой информационный бюллетень и будьте в курсе последних статей по планировке и земляным работам: строительное оборудование, страхование, материалы, безопасность, программное обеспечение, грузовики и трейлеры.

Для проверки эталонных показателей может потребоваться либо региональное обследование, чтобы связать каждый эталонный показатель с известными точками, либо тщательный поиск записей предыдущих обследований собственности и сертификатов эталонных показателей. Этот поиск по записям имеет жизненно важное значение и фактически должен быть первым шагом в любом обследовании сайта. Тщательный поиск записей также позволит выявить информацию о прошлой деятельности на объекте, которая, возможно, изменила существующую поверхность с момента последнего предыдущего обследования, о существовании и местонахождении подземных коммуникаций, которые могут помешать запланированным земляным работам, а также гидрогеологических журналах бурения, которые определяют слои почвы и возвышения грунтовых вод под поверхностью участка. Также следует записать расположение и высоту каждого устья скважины, чтобы можно было в дальнейшем проверить точность съемки.Другие исследования участков могут выявить особые зоны воздействия, такие как карстовый рельеф или охраняемые водно-болотные угодья.

Trimble 3D и срезы

Даже самый тщательный поиск записей бесполезен без ботинок на земле, выполняющих физические обходы на месте до начала съемки. Просто нет замены старомодной доброй физической разведке местности. Множество деталей участков от новой растительности, недавних активистов смены участков и участков эрозии не будет отображаться даже при самом последнем обследовании участка или быть описанным в самой последней записи участка.Так что даже в эпоху LIDAR и AutoCAD нет замены человеческому наблюдению.

Оценщикам также необходимо учитывать влияние самих земляных работ на объемы почвы. Фактически существует три типа объемов грунта: насыпные, рыхлые и уплотненные. Объемы берегов — это измерения количества почвы, уже находящейся в земле. Это прямые измерения между существующими степенями и предлагаемыми степенями выемки грунта. Рыхлые объемы — это объемы почвы, которые не были нарушены во время выемки и удаления и помещены в кузов самосвалов или в отвалах в рыхлом состоянии.Обычно предполагается увеличение на 25% (так называемый «коэффициент набухания») для большинства типов почвы, чтобы отразить увеличение общего объема почвы в результате нарушения во время выемки грунта. Таким образом, 1 кубический ярд естественного грунта на месте превращается в 1,25 кубического ярда в штабеле или задней части самосвала. Если этот рыхлый грунт повторно используется на месте, он будет уплотнен на месте, чтобы получить стабильную конструкционную насыпь или компактные грунтовые покрытия с низкой проницаемостью. Обычное практическое правило при укладке и уплотнении почвы состоит в том, чтобы сначала разложить ее рыхлыми подъемниками толщиной 8 дюймов, а затем уплотнить на месте до плотных подъемов толщиной 6 дюймов.Таким образом, результирующий уплотненный объем составляет только 75% от объема рыхлой почвы, и поэтому 1,25 кубических ярда рыхлой почвы превращаются в 0,94 кубических ярда уплотненной почвы — окончательное сокращение на 6% по сравнению с первоначальным естественным объемом на месте. Это может показаться неважным, но при крупных земляных работах это может стать серьезной и дорогостоящей ошибкой.

Воздушная топография, в отличие от наземных съемок, имеет свои собственные источники потенциальных ошибок. Все аэрофотоснимки подвержены геометрическому искажению, поскольку они не обеспечивают вид сверху вниз, а представляют собой вид под углом, что является результатом высоты камеры, кривизны земли или нескомпенсированного движения воздушной платформы. Результатом является смещение рельефа, когда здания и другие крупные объекты могут быть неточно видны на топографической карте. И даже самая точная аэротопографическая карта имеет точность только до половины наименьшего горизонтального интервала карты. Таким образом, карта, показывающая интервалы изолиний высот в 1 фут, будет иметь точность высот только плюс-минус 0,5 фута.

Ошибки обследования могут накапливаться, и их нельзя полностью избежать. Нет ничего точного на 100%, и в этом нет необходимости, при условии, что количество и степень ошибок обследования строго минимизированы.Например, серия из трех измерений, точность которых составляет всего 10%, снизит общую точность исследуемого элемента до менее 75%. Даже когда ошибки минимизируются или избегаются, результат все равно является интерполяцией, а не реальностью. Некоторые наилучшие предположения лучше других, и, в конце концов, большинство, на что может надеяться оценщик, является наилучшим возможным предположением.

Это в основном потому, что точность и точность — не одно и то же. Предположение, что они похожи, — распространенная ошибка даже опытных специалистов по земляным работам.Точность определяется как количество единиц, которые используются для описания значения (измерение, записанное с точностью до одной тысячной фута, является более точным, чем одна лишь одна десятая фута). Точность, с другой стороны, определяется как близость измерения к реальному значению измеряемой характеристики. Оценщикам следует сосредоточиться на достижении высокой степени точности, учитывая при этом все те факторы, которые делают невозможным достижение 100% точности в реальном мире.

Итак, как лучше всего решить эти проблемы с точностью и полнотой? По словам Алана Шарпа из Trimble: «Когда дело доходит до оценки объемов земляных работ, заказчики ищут: 1) Возможность интегрировать данные из многих источников — системы проектирования, бумажные планы, файлы PDF, машинные данные, данные дронов, сканеры и т. Д. геодезические системы; 2) Более плавные и простые рабочие процессы и целостный подход ко всем связанным процессам вокруг общей трехмерной конструируемой модели; 3) Конструируемые модели, которые они могут построить с использованием автоматизированных методов — независимо от того, что они делают — уплотнение, мощение, профилирование, рытье траншей, бурение и взрывные работы и т. Д.; 4) Интеллектуальная отчетность со всеми необходимыми данными в простых, легко читаемых отчетах; 5) Инструменты презентации, которые позволяют поддерживать процесс и заявку с помощью четких графиков и хорошо задокументированных планов работы, которые они могут использовать для успешного выигрыша большего количества заявок; 6) Конструируемые модели для отслеживания и мониторинга прогресса проекта, улучшения ключевых показателей эффективности и оптимизации рабочих процессов строительства; 7) Удаленная видимость проектов по мере их реализации; 8) Непрерывный и эволюционный процесс через взлет, оценку, предложение, график, работу / выполнение, как построено, процесс передачи обслуживания; и 9) Способность использовать информацию, полученную по одному проекту, на последующих проектах для повышения точности заявок с большей уверенностью и снижения проектного риска.”

Измерение площадей — плоские и наклонные участки
Метод треугольной площади. Предлагаемый участок земляных работ должен быть обозначен границей. Граница будет охватывать все участки выемки и насыпи. В результате получается правильный (квадрат, прямоугольник и т. Д.) Или неправильный многоугольник. Но даже самый неправильный многоугольник можно разбить на набор отдельных треугольников разной площади, длины сторон и углов углов. Зная положение (север и восток) каждого угла треугольника, оценщик может затем вычислить площадь отдельных треугольников.Затем можно рассчитать общую плоскую площадь участка, сложив сумму всех отдельных треугольников. Метод площади треугольника
рассчитывается следующим образом:

A = sqrt [s * (s — a) * (s — b) * (s — c)]

Где:

  • A = площадь треугольной области (квадратных футов)
  • a, b, c = длины трех сторон треугольника (футы)
  • с = (a + b + c) / 2

Метод длинных интервалов. Метод длинных интервалов лучше всего использовать для участков с пологими уклонами или уклонами с постоянным ровным уклоном, но с очень неровными границами. Интервалы устанавливаются перпендикулярно базовой линии, которая была выровнена по мере необходимости для максимально точного расчета площади. Длина каждого интервала простирается от того места, где интервал пересекает одну сторону границы области, до того места, где он пересекает противоположную сторону границы. Метод длинного интервала рассчитывается следующим образом:

А = D * ((L1 + L2) / 2)

Где:

  • A = площадь (квадратные футы)
  • L = длины соседних интервалов (футы)
  • D = расстояние между интервалами по базовой линии (футы)

Другой 3D-вид от Trimble Software

Картирование CF увеличено

Измерение объемов — зажатое между двумя поверхностями
Итак, как оценщики вычисляют объем между двумя поверхностями? Это может быть очень сложный процесс, поскольку величина изменения высоты поверхности почвы может значительно и неравномерно варьироваться по участку.Первая поверхность — это, как правило, топография существующей площадки, а вторая — оценки строительной площадки после строительства. Уровни после строительства могут быть получены в результате выемки (выемки) существующего грунта, засыпки (засыпки) дополнительного грунта или их комбинации. Объемы, необходимые для размещения почвы, обычно обозначаются как положительные, в то время как объемы, полученные в результате выемки грунта, рассматриваются как отрицательные. Полученные числа можно сложить вместе, чтобы получить процентное соотношение для сайта.Хорошо спроектированный участок (если это возможно) приведет к сбалансированному срезу для заполнения с чистым объемом двух равным нулю. В зависимости от характера участка и предполагаемых земляных работ существует несколько вариантов для точной оценки итоговых объемов земляных работ.

Метод глубины и площади. Объекты площадок с постоянной толщиной выемки для засыпки можно оценить с помощью простого расчета методом глубины и площади. При таком подходе площадь участка умножается на толщину предлагаемых земляных работ.Типичными примерами этого являются выемки или насыпка для выравнивания с целью создания основы для последующей укладки дорожного покрытия, заполнение уже существующей ямы в фундаменте с плоским дном, снятие верхнего слоя почвы на постоянную глубину, например, 6 дюймов, или рытье траншей с постоянной шириной и глубиной ниже уклоны поверхности по длине предполагаемого заглубленного трубопровода. Сама существующая поверхность не обязательно должна быть плоской (хотя это повысит точность оценки), если полученная поверхность параллельна наклонам и отметкам существующей поверхности.Но при расчетах для участка со значительным уклоном необходимо учитывать влияние уклона. Например, участок с плоской областью — если смотреть прямо сверху, как на карте или виде в плане — может иметь площадь 1 000 000 квадратных футов (квадрат размером 1 000 на 1 000 футов). Однако, если эта область не плоская, а вместо этого имеет уклон 25% (от 1 по вертикали до 4 по горизонтали) в одном направлении, то ее фактические размеры составляют примерно 1031 фут на 1000 футов, в результате чего фактическая площадь поверхности составляет 1 031 000 квадратных футов.Это может показаться небольшим, но для крупных проектов такая процентная разница может привести к значительным изменениям в общей оценке объема, что в дальнейшем может привести к потраченным значительным суммам денег сверх первоначальной оценки затрат. Метод глубины и площади рассчитывается следующим образом:

В = Т * А * (1/27)

Где:

  • V = объем (куб. Ярды)
  • A = площадь уклона (квадратных футов)
  • T = толщина пласта или даже разреза (футы)

Сеточный метод. Сеточный метод обычно используется для оценки объемов, добытых из карьеров (и часто упоминается как метод карьера). Подобно методу глубины и площади, метод сетки использует измерения толщины на заданной площади. Однако толщина может варьироваться в зависимости от участка, и рассматриваемые области представляют собой серию местоположений сетки, размещенных с постоянными интервалами, ориентированными на конкретную трассу (север-юг, линия собственности, трасса проезжей части и т. Д.). Каждая точка сетки рассматривается как центр квадрата, стороны которого равны сторонам интервала сетки (например, 10 футов на 10 футов для сеток с интервалами 10 футов на 10 футов).Уклон поверхности внутри самого квадрата сетки рассчитывается и аппроксимируется путем присвоения обследованных или предполагаемых отметок каждой из угловых точек квадрата. Квадрат рассматривается как колонна, которая идет прямо вниз (или вверх) вертикально через предлагаемую выемку грунта (или размещение насыпи), где четыре угла совпадают с соответствующими углами, расположенными на предлагаемой поверхности. Затем можно провести измерения, чтобы определить глубину резания или насыпи на каждом углу (опять же, сохраняя отрицательные расстояния реза и положительные расстояния насыпи).

Затем четыре глубины усредняются путем их сложения и деления на четыре. Это дает усредненную глубину квадрата сетки, которую затем можно просто умножить на площадь квадрата, чтобы определить объем столбца грязи в данной точке сетки. Излишне говорить, что точность может быть увеличена за счет уменьшения интервалов сетки и использования все меньших квадратов. Однако количество результирующих квадратов как квадрат уменьшения интервала (уменьшение интервала вдвое увеличивает количество квадратов, которые должны быть вычислены в четыре раза, уменьшение интервала до трети, увеличивает количество квадратов на коэффициент девять и т. д.). Метод площади сетки рассчитывается следующим образом:

В = ((D1 + D2 + D3 + D4) / 4) * A * (1/27)

Где:

  • V = объем (куб. Ярды)
  • A = площадь квадрата сетки
    (квадратных футов)
  • D = глубина резания / насыпи на каждой решетке
    угол (фут)

Метод конечной площади. Вместо вычисления объемов сверху вниз от существующей поверхности до предполагаемой поверхности, метод конечной площади вычисляет объемы с помощью вертикальных срезов, разрезаемых через равные промежутки времени через засыпки или выемки.Срезы выровнены перпендикулярно базовой линии по всей длине участка земляных работ. Обычно это самый длинный размер участка для повышения точности, но его также можно выровнять по линии участка или участка, сервитута, полосы отвода, осевой линии проезжей части и т. Д. Интервал между параллельными участками может варьироваться в зависимости от размера участка. и проектная точность расчета. Объем массивной застройки на 1000 акров мог быть рассчитан с разумной точностью с интервалами от 100 до 200 футов.Меньший квадратный участок под застройку площадью менее 10 акров (660 футов на 660 футов) не сможет обеспечить разумную точность с таким большим интервалом, поскольку он будет использовать только шесть секций. Как правило, чем меньше размер сайта, тем меньше требуемый интервал между срезами.

Вывод листов из Trimble Software

Хотя эти срезы можно было нарисовать (и рисовались ранее) вручную, самый простой способ нарисовать эти срезы — использовать программу AutoCAD, которая генерирует поперечные сечения, а затем определяет площадь каждого среза.Обратите внимание, что иногда для визуальной ясности рисунка увеличиваются размеры по вертикали. Часто это в пять или 10 раз больше, чем горизонтальный размер (например, горизонтальный 1 дюйм равен 100 футам, а вертикальный 1 дюйм равен 20 футам, что приведет к пятикратному увеличению вертикального размера чертежа. при расчете площадей среза это преувеличение учитывается, а не просто измеряется площадь на чертеже, поэтому избегайте пятикратного увеличения площади среза. Как всегда, области вырезания отрицательные, а области заливки — положительные. Площадь поперечного сечения может быть определена вручную, но обычно рассчитывается в программе AutoCAD, либо с помощью метода треугольной площади, если поперечные сечения простые и регулярные, либо с помощью метода интервала длины, если форма поперечного сечения нерегулярная и сложная. . Метод конечной площади рассчитывается следующим образом:

В = L * ((A1 + A2) / 2) * (1/27)

Где:

  • V = объем (куб. Ярды)
  • A = площади прилегающих поперечных сечений
    (квадратных футов)
  • L = расстояние между поперечными сечениями по базовой линии (футы)

Призмоидальная формула. Призмоидальная формула является усовершенствованием метода конечной площади и часто бывает необходима, если существующая поверхность земли очень неровная в полосах площади между соседними интервалами срезов. С помощью этого метода оценщик добавляет дополнительное поперечное сечение на полпути между двумя поперечными сечениями, ограничивающими неровную поверхность (обратите внимание, что этот метод не обязательно выполнять для каждого интервала на участке — только для участков с локализованными неровностями). Площадь этого среднего поперечного сечения рассчитывается отдельно, а не является средним значением двух смежных поперечных сечений.Формула Призмоида рассчитывается следующим образом:

В = L * ((A1 + (4 * Am) + A2) / 6) * (1/27)

Где:

  • V = объем (куб. Ярды)
  • A1, A2 = площади смежных поперечных сечений (квадратные футы)
  • Am = площадь среднего поперечного сечения (квадратных футов)
  • L = расстояние между поперечными сечениями по базовой линии (футы)

Метод контурной площади. Метод контурной площади использует горизонтальные линии высот, проведенные на топографической карте участка, и линии уклона, проведенные на предлагаемом плане участка, для расчета объемов выемки и насыпи участка.Этот метод во многих отношениях является более простым способом расчета объемов по сравнению с методом конечной площади, поскольку нет необходимости в дополнительных чертежах и поперечных сечениях. Традиционно измерение площадей, ограниченных контурными линиями высот, производилось вручную с помощью планиметра, прикрепленного к чертежной доске. Объемы вычисляются путем усреднения площади смежных отметок изолиний и умножения среднего значения на разницу высот (метод почти идентичен методу конечной области — только ориентация областей горизонтальная, а не вертикальная).Метод контурной площади рассчитывается следующим образом:

В = Н * ((A1 + A2) / 2) * (1/27)

Где:

  • V = объем (куб. Ярды)
  • A = площади прилегающих контуров высот (квадратных футов)
  • H = разница высот между контурами (футы)

Методы триангулированной нерегулярной сети (TIN) и цифровой модели местности (DTM). Метод триангулированной нерегулярной сети использует файлы, созданные AutoCAD (“.tin ”файлы) на топографических поверхностях для определения объемов. Эти поверхности состоят из треугольников, созданных программным обеспечением из точек полевой съемки, которые оно графически соединяет с другими близлежащими точками (с точки зрения расстояния по горизонтали, а не разности высот), чтобы сформировать серию неправильных треугольников, которые покрывают поверхность, как грани на поверхности. жемчужина. Это, в свою очередь, позволяет создавать высокоточные цифровые модели местности. Учитывая огромное количество требуемых вычислений, это процесс, который можно выполнить только на компьютере.ЦМР позволяют выполнять прямой расчет между поверхностью и фиксированной отметкой или двумя такими поверхностями. ЦМР также можно создавать для различных слоев почвы при выемке грунта, что позволяет напрямую рассчитывать объемы для каждого типа почвы.

Программное обеспечение и системы измерения — основные поставщики
Roctek International производит программное обеспечение WinEx-GRADE и WinEx Master, которое оценивает объемы выемки и насыпи с использованием метода сетки с высокой плотностью. Они предлагают несколько функций, уникальных для их линейки продуктов, таких как Vector Direct, LineTracker и Alternate Plan.Утилита импорта Vector Direct может практически исключить трассировку из файлов Vector PDF и CAD, импортировав как линии, так и отметки. LineTracker значительно увеличивает эффективность отслеживания за счет обнаружения ближайшей линии и привязки к ней. Это позволяет пользователю рисовать быстрее без потери точности даже за счет перекрывающихся линий и выносок. Альтернативный план позволяет использовать неограниченное количество страниц с разным масштабом в пределах одного взлета. Их профессиональные инструменты аналитики и визуализации позволяют оператору проверять весь план участка в 3D, в то время как отметка с указанием и щелчком мыши показывает вам, что именно происходит в любой момент.Дополнительные специализированные функции включают в себя: экспорт в GPS, количество земляного полотна для любой рабочей зоны, процедуры чрезмерной выемки грунта, подпорные стены, отдельные и связанные точечные процедуры, процедуры разметки верхнего слоя почвы и повторного распределения, информацию о пластовом слое из журналов ствола скважины, срезы поперечных сечений под любым углом, расширенные процедуры траншеи для подземных коммуникаций и расширенные возможности балансировки площадки. Roctek остается на переднем крае технологий с частыми обновлениями, управляемыми пользователями, и предлагает непревзойденное обслуживание клиентов, предоставляя квалифицированную техническую поддержку пользователям с любым уровнем опыта. Как заметил один заказчик: «Программное обеспечение WinEx Master от Roctek создано для удовлетворения ВСЕХ потребностей в резке и насыпи. Это мощный инструмент с превосходными инструментами отчетности, оцифровки и визуализации. Благодаря такому количеству функций это не то, чему вы можете научиться в одночасье, но отличное обслуживание клиентов! Они будут с вами на экране всю ночь, если вам нужно быстро выучить это ».

Vertigraph, Inc. предоставляет BidScreen XL в качестве дополнительного программного обеспечения, которое документирует изменение количества в Microsoft Excel.Bidscreen XL идеально подходит для любой торговли. Комбинация обеспечивает гибкость и простоту. Когда загружается BidScreen XL, весь начальный процесс измерения и расчета количеств выполняется непосредственно Microsoft Excel, причем все данные сохраняются в книге Excel. Он работает с основными типами векторных и растровых файлов, такими как PDF, DWG, DXF, TIFF и т. Д. Функции и формулы, помещенные в электронную таблицу Excel, будут вычислять количества и оценивать цену предложения на основе измерений BidScreen XL. Связанная программа SiteWorx / OS (более применима к подрядчикам по земляным работам, чем приложение BidScreen XL) создает модели поверхности и рассчитывает объем выемки на площадке.

Согласно Sharp, их успехи в оценке и назначении ставок можно увидеть в их программном обеспечении для взлета, таком как Trimble Business Center, HCE, которое используется для оцифровки и моделирования данных из бумажных планов, растровых файлов PDF, векторных файлов PDF или файлов САПР. Их программное обеспечение может применять все детали строительства, включенные в строительную документацию и спецификации, в том числе скважины, слои пластов, зоны сноса, траншеи и детали инженерных сетей, а также глубину улучшения материалов и площадок для площадок, парковок и ландшафтного дизайна дороги, чтобы построить детальная смета объемов для проекта.

После определения количества модели и местоположения количества могут быть преобразованы в оценку рабочего процесса, чтобы определить, как будет выполняться проект, когда будет выполняться каждый шаг, сколько времени займет каждый шаг и какое оборудование и персонал будут обязательный. Затем программное обеспечение может анализировать поток материалов вокруг проекта и может использоваться для определения оптимального способа выемки или размещения почвы. Оптимизация может включать тип и количество оборудования, включая сопутствующие эксплуатационные расходы, такие как топливо, операторы, техническое обслуживание и время, а также затраты на мобилизацию.Например, функция массовых перевозок в Business Center – HCE предоставляет расширенные методы определения оптимальных процессов при минимальных затратах на строительство. Эти результаты затем могут быть объединены в оценочный пакет подрядчика для проведения детальной оценки, зная, что были оценены передовая практика и оптимальные количества.

Эти данные затем могут быть объединены в программное обеспечение для планирования, которое может преобразовывать количества и расстояния перевозки с темпами добычи и назначенными ресурсами для создания графика времени и места.Trimble TILOS — это усовершенствование традиционных процессов планирования, основанное на технологии диаграмм GANTT, где список действий может быть снабжен началом, концом и продолжительностью, но не с указанием того, где в проекте и в каком направлении вы работаете. Традиционные пользователи диаграмм GANTT не могут надежно применять сезонные или экологические ограничения. Они также не могут увидеть влияние конфликтующих операций, потому что традиционные решения для планирования не содержат геопространственных элементов, необходимых для того, чтобы видеть, что происходит, где, когда и с какими ресурсами.TILOS, однако, объединяет все эти элементы и может представлять информацию о расписании как традиционными способами, так и в виде диаграммы времени-местоположения. Эта диаграмма временного положения может представлять на одной странице всю информацию, обычно включаемую в диаграмму GANTT. Диаграмму времени и места также можно использовать для отображения хода работ по проекту. Система TILOS интегрируется с системой массовых перевозок Business Center-HCE, что позволяет автоматически вносить оценки проекта в диаграмму времени и места.

После того, как тендерное предложение выиграно, подрядчик переходит в операционную фазу. Традиционно на этом этапе создаются более подробные модели, а оценочная модель обычно не используется. При использовании технологии Trimble оценочная модель просто открывается и улучшается по мере необходимости, и ее можно быстрее развернуть для управления строительными работами благодаря беспрепятственному подключению к полевым системам для съемки, определения местоположения, проверки уклонов и управления машиной. Единая конструктивная модель может быстро задействовать самые сложные проекты с подключением к Trimble или сторонним системам и системам OEM.Объединение групп оценки и оперативных исполнителей с использованием общих инструментов чрезвычайно важно для обеспечения конкурентоспособности при подаче заявок на строительство.

Отбор количества — объяснение методов расчета объема


В этом посте мы собираемся обсудить различные методы расчета объема, которые можно использовать для определения количества земляных работ. Для различных проектов гражданского строительства, таких как дорожные работы, проект оросительного канала, обследование резервуаров, землеройные работы и т. Д., используется другой метод расчета. Некоторые из этих методов были внедрены до изобретения компьютеров и продолжают применяться до сих пор. В этом документе обсуждаются отраслевые практики использования различных методов расчета объемов, чтобы читатели могли наконец выбрать подходящий для своего проекта.

Земляные работы
Земляные работы — это инженерные работы, создаваемые путем перемещения и / или обработки огромного количества почвы или несформированной породы. Земляные работы выполняются для изменения топографии участка для достижения проектных уровней.Земляные работы включают в себя вырубку и насыпку для достижения необходимого рельефа.

Раскрой: Резка — это процесс выемки грунта с места работы или карьеров для достижения желаемой топографии.

Наполнение: Заполнение — это процесс перемещения выкопанного материала или дополнительного земляного материала к месту работы для достижения желаемой топографии.

Применение земляных работ: Обычно земляные работы выполняются в следующих проектах:

  • Дорожные работы
  • Железные дороги
  • Ирригационные проекты, такие как каналы и плотины
  • Другим распространенным применением земляных работ является профилирование земли для изменения топографии участка или стабилизации склонов.

Методы расчета земляных работ: Есть четыре популярных метода расчета земляных работ, которые мы обсудим в этом документе.
  • Метод сечения
  • Метод среднего
  • Деление квадратом
  • Контурный метод
Первым шагом при выполнении расчета земляных работ является съемка участка.Путем геодезии определяются отметки существующей земли в различных точках рабочей площадки. Далее все расчеты производятся в зависимости от этих значений.

Чтобы полностью понять расчет площади и объема, вам необходимо пройти следующие сообщения

  1. Подготовка данных для земляных работ
  2. Земляные работы: расчет объема
  3. Земляные работы: Расчет объема: Метод сечения
  4. Земляные работы: Расчет объема: Метод сечения: Расчет площади: Правило трапеции
  5. Земляные работы: Расчет объема: Метод сечения: Расчет площади: Расчет чистой площади
  6. Земляные работы: Расчет объема: Метод сечения: Расчет площади: Правило 1/3 Simpsons
  7. Земляные работы: Расчет объема: Метод сечения: Расчет площади: Сводка
  8. Земляные работы: Расчет объема: Метод сечения: 3 метода расчета объема
  9. Земляные работы: Расчет объема: Метод среднего
  10. Земляные работы: Расчет объема: метод деления квадрата
  11. Земляные работы: Расчет объема: контурный метод
  12. Земляные работы: Расчет объема: сводка

В следующих сообщениях приведены простые примеры, чтобы расчет можно было выполнить и проверить в разумные сроки. На решение сложных примеров уходит много времени, и для таких целей рекомендуется использовать любое программное обеспечение.

Обратите внимание, что ESurvey Earthwork — одно из самых популярных программ для расчета земляных работ, в котором площадь и объем можно определить с помощью нескольких параметров.

Подготовка данных

Расчет земельных работ на строительной площадке

С развитием технологий наблюдается большой прогресс в том, как мы воспринимаем наземное чтение.Раньше использовались только автоматические уровни, а теперь для считывания показаний с земли используются тахеометр, GPS, лидары. Раньше расчеты земляных работ выполнялись просто на бумаге, а затем выполнялись некоторые простые компьютерные приложения. Однако сейчас используются либо электронные таблицы, например Excel, либо современные программные продукты, специально разработанные для расчета земляных работ. Но объемные расчеты, выполняемые программным обеспечением, все равно должны быть представлены в понятной форме, даже если разные программные продукты дают разные результаты.

Существует три различных метода, обычно используемых для расчета земляных работ для проектов по резке / заполнению. Прежде чем обсуждать их подробно, давайте попробуем понять некоторые основные определения терминов, относящихся к расчету земляных работ.

Земляные работы

Земляные работы — это инженерные работы, создаваемые путем перемещения и / или обработки огромного количества почвы или несформированной породы. Земляные работы выполняются для изменения топографии участка для достижения проектных уровней. Земляные работы включают в себя вырубку и насыпку для достижения необходимого рельефа.

Резка

Резка — это процесс выемки грунта с места работы для достижения желаемой топографии.

Начинка

Заполнение — это процесс перемещения выкопанного материала или дополнительного земляного материала к месту работы для достижения желаемой топографии.

Давайте возьмем 2 простых примера для нашего исследования

В приведенном ниже примере график имеет размер 30 X 30 метров, и все уровни сетки измерены на уровне сетки 10M
Пример 1 (только резка)
Первый этаж
Раздел 0 10 20 30
30 192. 51 193,71 193,21 193,47
20 193,04 193,14 192,92 193.01
10 192,61 192,56 192,63 192,67
0 192,56 192,68 192,67 192,57
Уровень формации
191.9 193,1 192,6 192,87
192,43 192,53 192,31 192,4
192. 01 191,96 192,03 192,06
191,95 192,07 192,07 191,97
Пример 2 (резка и заполнение)
Первый этаж
192.51 193,71 193,21 193,47
193,04 193,14 192,92 193.01
192,61 192,56 192,63 192,67
192,56 192,68 192,67 192,57
Уровень формации
193. 4 193,5 193,3 193,2
193,5 193,3 193,2 193,4
193,4 193,6 193,4 193,4
193,1 193,4 193,5 193,3

Средний метод:

В этом методе определяются Уровни в каждой точке сетки.Разница между средним значением двух наборов уровней, умноженным на площадь, дает результат. Это очень простой и понятный метод. Но это можно использовать только тогда, когда есть нарезка или заливка. Когда выравнивание поверхности включает в себя и резку, и заливку, метод усреднения дает неверный результат, так как значения резки и заполнения обнуляют друг друга при усреднении.
Пример 1 (Только резка)
Наполнение
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Среднее значение 0 0
Раскрой
0. 61 0,61 0,61 0,6
0,61 0,61 0,61 0,61
0,6 0,6 0,6 0,61
0,61 0,61 0,6 0,6
Среднее значение 0.606 545,62
Пример 2 (и резка, и заполнение)
Наполнение
0 0,21 0 0,27
0 0 0 0
0 0 0 0
0 0 0 0
Среднее значение 0. 03 27
Раскрой
0,89 0 0,09 0
0,46 0,16 0,28 0,39
0,79 1,04 0,77 0,73
0,54 0.72 0,83 0,73
Среднее значение 0,526 473,625

Объем = Средний * 900 = 0,606 * 900 = 545,62

Блочный метод (метод деления квадрата):

В этом методе объем резки или заполнения определяется для каждого блока и складывается, чтобы получить окончательный объем. Этот метод математически проще, чем метод сечения, но более точен, чем метод среднего значения. Здесь также встречается проблема обнуления, когда в одном блоке есть и нарезка, и заливка. Но здесь погрешность очень мала по сравнению со средним методом для всей области.

Пример 1 (Только резка):

Разница в среднем для каждого блока 10 X 10
0.61 0,61 0.6075
0.605 0.605 0.6075
0.605 0.6025 0.6025

Объем = Сумма * 100 (Площадь каждого блока) = 5,455 * 100 = 545,5 (Резка)

Примечание: Значение 0,61 = Среднее (192,51, 193,71, 193,04, 193,14) — Среднее (191,9, 193,1, 192,43, 192,53 ) [Значения взяты из первых 2 строк и 2 столбцов уровня земли и формации)

Пример 2 (резка и заполнение):

Разница в среднем для каждого блока 10 X 10
0.325 0,08 0,1225
0,6125 0,5625 0,5425
0,7725 0,84 0,765

Объем = Сумма * 100 (Площадь каждого блока) = 4,6225 * 100 = 462,25 (Заполнение).

Примечание. Хотя в этом примере есть некоторое сокращение, из-за обнуления значения в том же блоке мы не получаем никакого значения в Cutting.

Метод секции:

В этом методе секции рисуются для каждой строки значения. Площадь резки и заполнения определяется для каждой секции трапециевидным методом или методом расчета нетто-площади. Затем объем определяется путем умножения средней площади на расстояние между секциями. Этот метод более точен, но для большей площади найти область становится сложно, так как нам нужно найти пересечение точек, где встречаются линии, представляющие поверхности.

Пример 1 (Только резка):

Sl.
Раздел Объем резки Объем заполнения
Площадь
кв. Mtrs
Предыдущий
Площадь
Средняя
кв. Mtrs
Объем
Cu Метры
Площадь
кв. Mtrs
Предыдущий
Площадь
Средняя
кв. Mtrs
Объем
Cu Метры
1 0,000 18.150 0,000 9,075 0,000 0,000 0,000 0,000 0,000
2 10.000 18.050 18,150 18.100 181,000 0,000 0,000 0,000 0,000
3 20.000 18,300 18.050 18,175 181,750 0,000 0,000 0,000 0,000
4 30,000 18,250 18,300 18,275 182,750 0,000 0,000 0,000 0,000
Итого 545.500 0,000

Разделы, относящиеся к примеру 2 (резка и заполнение):

Пример 2 (резка и заполнение):

Sl.
Раздел Объем резки Объем заполнения
Площадь
кв. Mtrs
Предыдущий
Площадь
Средняя
кв.Mtrs
Объем
Cu Метры
Площадь
кв. Mtrs
Предыдущий
Площадь
Средняя
кв. Mtrs
Объем
Cu Метры
1 0,000 0,000 0,000 0,000 0,000 21,850 0,000 10,925 0,000
2 10.000 0,000 0,000 0,000 0,000 25,700 21,850 23,775 237,750
3 20,000 0,000 0,000 0,000 0,000 8,650 25,700 17,175 171,750
4 30.000 1,948 0,000 0,974 9,740 3,848 8,650 6,249 62,490
Итого 9,740 471.990

Сводка результатов
Sl. Метод Пример 1 Пример 2
Раскрой Начинка Раскрой Начинка
1 Метод среднего 545,62 0 27,000 473,625
2 Блочный метод 545.5 0 0,000 462,25
3 Метод сечения 545,500 0 9,740 471.990

Метод
Обзор различных методов
Методы Методы / Формула Преимущества Недостатки Применимость
Метод среднего Объем = Глубина нарезки / заполнения * площадь Самый простой метод расчета
  • Приблизительно,
  • не может применяться, если есть и резка, и наполнение.
Используется для очень маленьких проектов
Блочный метод Объем = Сумма (Глубина резания / заполнения * площадь каждого блока) Площадь очень просто вычислить Box обнулит объем, если и резка, и заполнение находятся в одном блоке Обычно используется для поиска объема для проектов выравнивания перед строительством здания
Метод сечения Площадь, подлежащая выяснению с помощью
  • Метод трапеции
  • Площадь нетто Метод
Объем = Lx1 / 2 (A1 + A2)
Математически очень хорошо и, следовательно, используется в большинстве инфраструктурных проектов Требует большого количества вычислений Используется в большинстве инфраструктурных проектов, включая дороги
, ирригационные проекты, проекты железных дорог и т. Д.

Заключение

Из приведенных выше примеров мы можем сделать вывод, что метод сечения сложен по сравнению с любым другим методом, но дает точные результаты. Также, если для расчета используется метод среднего или блочного, то вполне вероятно, что объем будет немного меньше, и подрядчик получит меньшее количество и, следовательно, меньшую оплату за свою работу.

Что такое «вырезать и заполнить» при съемке?

Процессы, связанные со строительством дорог, железных дорог и каналов, часто включают добавление или удаление больших масс грязи и камня.Это добавление и удаление массы в земляных работах называется «насыпью и насыпью». Вырезание и заполнение — это обычный процесс, в котором движение земли обрабатывается логически.

Целью резки и заполнения является, в конечном счете, экономия энергии и максимальное использование существующих материалов, чтобы избежать попадания или вывоза массы грязи. Хотя это обычное дело, это может быть утомительный процесс — перемещение земли требует значительных усилий, а ошибки могут привести к дорогостоящим переделкам. Чтобы избежать таких проблем, специалисты по планированию проектов используют подробные и интеллектуальные карты выемок и насыпей, предоставляя исчерпывающие планы, которые помогают командам земляных работ наиболее эффективно использовать массу и рабочую силу.

Что такое «вырезать и заполнить»?

Так что именно означает «вырезать до заполнения»? Вырубка и насыпь также известны как раскопки и насыпи. Это процесс, при котором экскаваторы перемещают и размещают объемы материала для создания оптимального ландшафта для дороги, железной дороги или канала. Эти два термина определены следующим образом:

  • Огранка: Земля, удаленная с участка, считается «вырезанной» или выкопанной землей.
  • Насыпь: Земля, внесенная в область, считается «насыпью» или насыпной землей.

Когда выкапываются железные дороги, дороги или каналы, скошенный материал выталкивается, чтобы заполнить близлежащие холмы и насыпи. Этот процесс обычно выполняется с помощью землеройного оборудования. Бульдозеры и экскаваторы удаляют землю из участков вырубки и переносят ее на самосвалы, которые доставляют ее на места засыпки. После того, как земля перемещена в место насыпи, засыпанная земля уплотняется роликовым или пластинчатым уплотнением.

В процессе уплотнения воздух удаляется до начала строительства.Это важно, так как предотвращает смещение и оседание земли во время или после процесса строительства, что может повредить фундамент и элементы здания.

Конечная цель выемки и насыпи — максимальное сохранение массы. Если засыпать больше, чем засыпать, руководителям проектов нужно найти место для сброса излишков камня и почвы, в то время как засыпка больше, чем вырубка, приводит к тому, что менеджеру нужно привозить грязь из другого места. Оба эти результата приводят к дополнительным затратам на материалы, рабочую силу и оборудование.Чтобы избежать внесения или удаления лишней массы, процессы нарезки и насыпи планируются таким образом, чтобы срезанная масса и масса насыпи оставались примерно одинаковыми.

Несмотря на то, что он эффективен для экономии массы, нарезка и насыпка — дорогостоящий процесс. Стоимость такого рода земляных работ увеличивается по мере того, как перемещается больше земли и для этого требуется больше оборудования и рабочей силы. Чтобы максимально использовать землю, оборудование и рабочую силу, планировщики участков часто используют так называемую карту выемок и насыпей.

Как используются карты выемки и насыпи?

Когда они планируют области, где требуется выемка и насыпь, дизайнеры создают чертежи, называемые схемами выемки и насыпи.На этих диаграммах показаны все области, где требуется вырезка или насыпка. Такие карты создаются путем проведения высокоточных измерений существующей топографии и высоты с последующим наложением карты желаемой топографии. На этих картах выемка и насыпь определены следующим образом:

  • Обрезка: Области, где существующая отметка превышает желаемую отметку, имеют «вырезанный» материал.
  • Заливка: Области, в которых существующая топография лежит ниже желаемой линии отметки, являются «заполненными» пространствами.

Карты выемки и насыпи обычно создаются в двух вариантах. Самые простые карты используют двумерные диаграммы, в то время как более современные решения используют программное обеспечение для трехмерного моделирования. Эти два варианта более подробно описаны ниже:

  • Двумерные диаграммы: В самом простом случае диаграммы выемки и насыпи показывают местоположение вдоль оси X с положительной или отрицательной осью Y, количественно выражая количество выемки или насыпи с помощью отрицательного или положительного числа соответственно .Поскольку земля существует в трех измерениях, эти диаграммы должны быть созданы для множества поперечных сечений ландшафта через равные промежутки времени.
  • 3-мерные диаграммы: 3-х мерные карты представляют собой более современные решения для проектов выемки и насыпи земляных работ. Рельеф сначала измеряется с помощью точного геодезического оборудования, а точки данных используются для создания программной модели местности. Как только базовая модель будет завершена, планировщик создает модель желаемого ландшафта и накладывает ее на существующую модель местности, чтобы определить области выемки и засыпки в трех измерениях.Модели программного обеспечения могут выделять области вырезания и заливки разными цветами, которые различаются в зависимости от диапазонов значений.

Выбор использования двухмерной модели вместо трехмерной должен зависеть от уровня точности, требуемого для проекта. Для проектов меньшего масштаба с ограниченными потребностями в выемке и насыпи может не требоваться более двухмерных диаграмм. Однако для более крупных и дорогих проектов обычно требуется точность, обеспечиваемая трехмерной диаграммой. Помимо этой разницы, возможность использовать один тип диаграммы над другим зависит от доступа к сайту и доступности оборудования.

Элементы ландшафта на картах выемки и насыпи

Карты выемки и насыпи содержат многие из тех же элементов ландшафта, что и традиционные карты, хотя они часто также включают отметки для целей расчета. Некоторые общие особенности местности, включенные в карты выемки и насыпи, подробно описаны ниже:

  • Холм: Холм определяется как область возвышенности, где земля поднимается на склоне. Холмы показаны на картах с помощью горизонталей, образующих концентрические окружности.Самый маленький замкнутый круг представляет вершину холма.
  • Седло: Седло — это низкая точка между двумя точками возвышения. Это может выглядеть как низменность между двумя холмами, перерыв или провал на гребне хребта. Эта функция обычно представлена ​​на карте в виде песочных часов.
  • Долина: Долина выглядит как длинная канавка на земле и обычно содержит ручей или реку, текущую через нее. На карте долины обычно представлены горизонтальными линиями в форме U или V с закрытым концом, направленным вверх по течению.Рисунки — менее заметные версии долин и обозначены таким же образом.
  • Хребет: Хребет — это участок с крутым уклоном и возвышенностью с одной стороны. Обычно гребни отображаются с контурными линиями, образующими U- или V-образную форму с закрытым концом, направленным в сторону от возвышенности. Иногда от гребней образуются отроги, представляющие собой сплошные линии возвышенности, выступающие из гребня. Они отмечены аналогично, хотя могут повлиять на форму гребня.
  • Впадина: Впадины — это низкие точки или провалы в земле.Карты обычно показывают впадины только в том случае, если они достаточно большие по размеру, и эти особенности отмечаются замкнутыми контурными линиями с отметками, указывающими на более низкие области.
  • Утес: Обрыв — это внезапный обрыв, проявляющийся как вертикальное или почти вертикальное изменение высоты. Скалы обычно выглядят как контурные линии, проведенные очень близко друг к другу или друг над другом.

На полной карте можно запланировать выемку и насыпь вокруг существующих топографических объектов.Обычно карта с этими особенностями может использоваться в качестве основы, на которую накладывается окончательный проект, чтобы определить области потенциальных выемок и насыпей. После того, как начальные планы составлены, планы выемки и насыпи добавляются на основе топографических особенностей.

Как рассчитать выемку и заливку

Итак, вы определили, что вам нужно будет использовать выемку и насыпь в своем проекте, и у вас есть представление о том, какой метод вы будете использовать. Как рассчитать площадь выемки и насыпи, чтобы можно было спланировать трудозатраты и рассчитать затраты на проект? Метод расчета во многом зависит от метода, который вы будете использовать в своем проекте.

Доступен ряд программных продуктов для создания карт выемки и насыпи, и многие из них автоматически рассчитывают и оптимизируют проекты выемки и насыпи. Однако, если вы используете больше ручных методов, может потребоваться ручной расчет. Для расчета значений выемки и насыпи используются различные методы расчета, некоторые из которых подробно описаны ниже.

1. Метод поперечного сечения

Метод расчета поперечного сечения является обычным методом, используемым с методом 2-мерного картирования.С помощью этого метода поперечные сечения существующих и предполагаемых уровней земли измеряются через равные промежутки времени по всему участку. Площадь выемки и насыпи определяется для каждого поперечного сечения, затем соседние поперечные сечения сравниваются и средние значения их площадей выемки и насыпи умножаются на расстояние между ними. Это делается для каждой смежной пары секций, затем общие объемы складываются вместе, чтобы создать полные объемы выемки и насыпи для проекта.

Метод расчета сечения требует значительно больше времени, чем автоматический метод расчета объема, а точность метода зависит от установленного расстояния между сечениями.Более близкие участки приводят к большей точности, но требуют больше времени для расчета, тогда как дальнейшие участки менее точны, но требуют меньше времени для расчета.

2. Метод сетки

Метод расчета сетки включает нанесение сетки на план проекта земляных работ. Для каждого узла сетки определите существующий и предлагаемый уровень земли и рассчитайте необходимый выем или насыпь. После расчета глубины выемки или насыпи умножьте значение на площадь ячейки сетки. Сделайте это для каждого квадрата сетки, затем сложите объемы, чтобы определить общие объемы выемки и насыпи для проекта.

Как и метод расчета сечений, метод сетки требует времени на внедрение и значительно больше времени, чем любые автоматические системы. Кроме того, точность метода сетки зависит от размера ячейки сетки. Для более крупных ячеек требуется меньше времени для расчета, но они менее точны, в то время как ячейки меньшего размера более точны, но для расчета требуется больше времени.

3. Автоматизированные методы

Если вы используете программу для земляных работ, вам может не понадобиться использовать один из описанных выше ручных методов.Вместо этого программа выполнит расчеты за вас. Следует отметить, что эти программные системы работают быстрее, но по своей сути не более точны — например, некоторые программные вычисления основаны на версиях с высокой плотностью методов поперечных сечений или сеток. Однако в автоматизированных системах часто используются более сложные методы расчета, например метод треугольной призмы.

Метод треугольной призмы — распространенный метод расчета при земляных работах, который известен своей превосходной точностью.Однако это должно быть выполнено с использованием программного обеспечения из-за его технической сложности.

Метод треугольной призмы начинается с триангуляции существующего ландшафта для создания непрерывной поверхности из соединенных треугольников. Тот же метод используется для моделирования желаемой местности. После завершения обеих поверхностей триангуляции объединяются для создания третьей триангуляции. После объединения вырез и насыпь рассчитываются путем сложения объемов созданных треугольников. Благодаря превосходному представлению как существующих, так и желаемых ландшафтов, этот метод дает отличное представление объемов для проектов выемки и насыпи.

Работа со специалистами по подготовке данных

Процесс вырезания и насыпи — чрезвычайно полезный процесс для земляных работ в жилых, коммерческих и дорожных проектах. Однако, несмотря на то, что при выемке и насыпи используется существующий рельеф, для максимальной эффективности требуется подробное планирование. Для достижения этой цели проектировщикам проекта нужны подробные карты выемок и насыпей — это означает, что им необходимо геодезическое оборудование для получения информации о местности и программное обеспечение для обработки и визуализации данных значимым образом.Специалисты по взлету могут помочь.

Take-off Professionals готовит 3D-модели и оказывает сопутствующие услуги для самых разных отраслей, от коммерческого строительства до проектов гражданского строительства. Наши инновационные сервисы данных доступны, чтобы помочь вам собрать ваши данные о местности и превратить их в значимые модели, которые вы можете использовать в своем следующем проекте выемки и насыпи.

TOPS работает с широким спектром систем, поэтому мы можем оказывать услуги как можно большему количеству компаний. Мы работаем с данными оборудования Carlson, Leica, Topcon и Trimble и можем предоставить модели в любом нужном вам формате, независимо от того, используют ли ваши инженеры Civil 3D, MicroStation или другое программное обеспечение для проектирования.Мы можем работать даже с мультибрендовыми автопарками.

Работая с нами, вы можете доверять нашим многолетним знаниям и опыту, а также нашим инновационным технологиям GPS и трехмерного управления оборудованием. С помощью наших инструментов и услуг ваша компания может получить подробную информацию о вашем проекте, чтобы максимально использовать возможности резки и насыпи на местности.

Хотите узнать больше о наших моделях и о том, как они могут помочь в вашем следующем проекте по выемке и насыпи? Вы можете сразу же связаться с нашей командой экспертов по подготовке данных, заполнив нашу онлайн-форму или позвонив нам по телефону 623-323-8441.

(PDF) Повышение точности оценки объемов земляных работ для предлагаемых лесных дорог с использованием цифровой модели рельефа с высоким разрешением

рабочих объемов между двумя методами обусловлены

их разными уровнями возможностей захвата

вариаций местности. Из-за ограничений в получении

«истинного» объема земляных работ для данного участка дороги,

невозможно должным образом проверить нашу модель для оценки объема земляных работ

.Тем не менее, наше сравнение

результатов модели и ручных расчетов площади выемки и насыпи

подтверждает, что наша модель

правильно рассчитывает объем земляных работ, а

дает точные оценки, основанные на предположении, что

ЦМР

высокого разрешения, полученная с помощью LiDAR, обеспечивает точное отображение поверхности земли

.

4.2 Тестовые примеры — Testiranje studija slu ~ aja

Представлены результаты модели оценки земляных работ для

различных расстояний поперечного сечения на трех гипо-

теоретических 1000-метровых дорогах, которые сравниваются с

традиционный метод на рисунке 13.Линия тренда

была добавлена ​​к оценкам

объемов земляных работ по нашей модели, чтобы показать образец

изменений объема по разным интервалам

поперечных сечений. Для гипотетической дороги с небольшим уклоном традиционный метод

(обозначенный как «Tra» на рис. 13) ove-

увеличил объем выемки и насыпи на 5,0% и

на 5,9%, соответственно, по сравнению с результатами

Модель

с шагом поперечного сечения 1 метр. Для дороги с умеренным уклоном

традиционный метод ниже

оценил объем вырубки на 1.7%, но завышено заполняет объем

на 1,9%. Напротив, традиционный метод

завышает объем выемки на 2,2%, но занижает объем засыпки

на 12,3% для дороги, расположенной на крутой местности

. Результаты модели для различных участков spa-

показывают общую закономерность, указывающую на то, что по мере увеличения расстояния между секциями

оценки объема земляных работ

становятся ближе к объемам, оцененным с помощью традиционного метода

.Вероятно, это объясняется

тем фактом, что по мере увеличения расстояния между поперечными сечениями способность

улавливать вариации рельефа, которые могут существовать между последовательными поперечными сечениями, уменьшается, в результате чего оценки объема становятся ближе к тем, из

традиционным методом. Хотя линии тренда

могут указывать на связь между результатами нашей модели

и традиционным методом, не было обнаружено никаких доказательств согласованности

в переоценке или недооценке объемов земляных

.Объемы выемки и насыпи

были либо завышены, либо занижены в зависимости от

от конкретных условий местности на участках дороги.

Хотя Aruga et al. (2005) не учитывали

тех же факторов, которые мы использовали в этом исследовании, оба исследования показали, что расстояние между станциями

важно для точной оценки объема земляных работ. Чем короче

расстояние, тем больше возможностей у

, описывающих изменчивость грунта вдоль дороги.

Таким образом, можно более точно оценить объем земляных работ

мес с небольшими расстояниями между

поперечными сечениями.

Результаты оценки земляных работ для трех диапазонов

пересеченности местности представлены на рис. 14.

Количество участков дороги, включенных в каждый тер-

, класс устойчивости к дождю (коэффициент вариации) — разный

Ferent. Таким образом, для сравнения трех классов жесткости покрытия

мы построили средний объем выемки и насыпи

на погонный метр дороги для каждого шага поперечного сечения

, используемого моделью и традиционным методом

.Как и ожидалось, результаты модели выемки и оценки объема насыпи

были аналогичны результатам традиционного метода

на участках дороги, на которых

имеют низкий коэффициент вариации. Для участков дороги

, которые относятся к среднему классу с коэффициентом вариации

, разница в оценках объема выемки между моделью и традиционным методом составила

, но объемы засыпки оцениваются по традиционному

.

были на 13% ниже результатов модели с

с шагом поперечного сечения 1 метр.Наконец, для участков дороги

с высоким коэффициентом вариации (сильно пересеченная местность

) традиционный метод завышения

ed сократил объемы на 10,4%, в то время как

объемы засыпки занижены на 20,9%. В целом, можно заметить, что

различия в оценках объема земляных работ между нашей моделью и традиционным методом становятся на

больше по мере увеличения неровности местности.

Предыдущие исследования, проведенные Aruga et al.(2005)

,

и Akay (2003) также подчеркнули важность коротких расстояний между разрезами

для повышения точности расчета объема земляных работ

, что согласуется с нашими выводами в этом исследовании. Чем

более пересеченной является местность, где проложена лесная дорога

, тем важнее будет проложить перекрестки

на небольших расстояниях, чтобы получить точную оценку объема земляных работ

.Однако мы понимаем,

, что съемка большого количества перекрестных разрезов

в полевых условиях может занять много времени. Мы надеемся, что использование нашей модели в сочетании с

ЦМР высокого разрешения поможет повысить точность оценки объема земляных работ

без особых дополнительных полевых работ

.

5. Выводы — Zaklju ~ ci

В этом исследовании мы разработали компьютеризированную модель

для точной оценки объемов земляных работ на лесных дорогах с малым объемом

с использованием ЦМР высокого разрешения

и проанализировали влияние шаг поперечного сечения по

точность оценки объемов земляных работ.Al-

, хотя ожидается, что точность земляных работ увеличится на

по мере уменьшения расстояния между поперечными сечениями, насколько нам известно

, наша модель является первой попыткой количественно определить различия между методами с использованием информации о земле

только на станциях (средний мет-

хорват. j. for. eng. 33 (2012) 1 139

Повышение точности оценки объемов земляных работ для предлагаемых лесных дорог … (125–142) ​​M. Contreras et al. .

Формула расчета объема земляных работ | Расчет земляных работ

В этом видеоуроке по строительству дается подробное объяснение того, как рассчитать земляные работы или объем земли с помощью контурной карты.Кроме того, можно научиться рассчитывать количество воды в пруду или водохранилище или любом другом водоохранилище.

Для этого используются два следующих метода.

метод № 1: Трапецеидальная формула: —
объем = V = D (Ao + An / 2) + (A1 + A2 + A3 + ………… An-1)
где
V обозначает объем земли или воды. .
D обозначает интервал изолиний.
Ao — площадь первого контура.
An означает Площадь последнего контура.
A1, A2, A3… обозначают площади оставшихся контуров.

метод № 2: Призмоидальная формула: —
Объем = V = D / 3 (Ao + An) + 4 (A1 + A3 + A5 ……) + 2 (A2 + A4 + A6 ……)
Где,
V стоит для объема земли или воды.
D обозначает интервал изолиний.
Ao означает Площадь первого контура.
An означает Площадь последнего контура.
A1, A3, A5 — участки с нечетными контурами.
A2, A4, A6 — участки с четными контурами.

Здесь дается решение следующей задачи: —
Указанная ниже площадь различных контуров в резервуаре: —

Контур — Площадь, м2
670 — 2000
671 — 10650
672 — 12400
673 — 12630
674 — 15320
675 — 18160

Решение: Применение формулы трапеции: —

V = D (Ao + An / 2) + (A1 + A2 + A3 + ………… An-1) (D обозначает разницу между площадями контура)
V = 1 (2000 + 18160) / 2 [сумма первая и последняя контуры] + 10650 + 12400 + 12630 + 15320 [сумма оставшихся контуров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *